]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_cache.c
Update bcachefs sources to 91e6c3e0d5 bcachefs: Gap buffer for journal keys
[bcachefs-tools-debian] / libbcachefs / btree_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "btree_cache.h"
6 #include "btree_io.h"
7 #include "btree_iter.h"
8 #include "btree_locking.h"
9 #include "debug.h"
10 #include "error.h"
11
12 #include <linux/prefetch.h>
13 #include <linux/sched/mm.h>
14 #include <trace/events/bcachefs.h>
15
16 struct lock_class_key bch2_btree_node_lock_key;
17
18 const char * const bch2_btree_node_flags[] = {
19 #define x(f)    #f,
20         BTREE_FLAGS()
21 #undef x
22         NULL
23 };
24
25 void bch2_recalc_btree_reserve(struct bch_fs *c)
26 {
27         unsigned i, reserve = 16;
28
29         if (!c->btree_roots[0].b)
30                 reserve += 8;
31
32         for (i = 0; i < BTREE_ID_NR; i++)
33                 if (c->btree_roots[i].b)
34                         reserve += min_t(unsigned, 1,
35                                          c->btree_roots[i].b->c.level) * 8;
36
37         c->btree_cache.reserve = reserve;
38 }
39
40 static inline unsigned btree_cache_can_free(struct btree_cache *bc)
41 {
42         return max_t(int, 0, bc->used - bc->reserve);
43 }
44
45 static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
46 {
47         if (b->c.lock.readers)
48                 list_move(&b->list, &bc->freed_pcpu);
49         else
50                 list_move(&b->list, &bc->freed_nonpcpu);
51 }
52
53 static void btree_node_data_free(struct bch_fs *c, struct btree *b)
54 {
55         struct btree_cache *bc = &c->btree_cache;
56
57         EBUG_ON(btree_node_write_in_flight(b));
58
59         kvpfree(b->data, btree_bytes(c));
60         b->data = NULL;
61 #ifdef __KERNEL__
62         vfree(b->aux_data);
63 #else
64         munmap(b->aux_data, btree_aux_data_bytes(b));
65 #endif
66         b->aux_data = NULL;
67
68         bc->used--;
69
70         btree_node_to_freedlist(bc, b);
71 }
72
73 static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
74                                    const void *obj)
75 {
76         const struct btree *b = obj;
77         const u64 *v = arg->key;
78
79         return b->hash_val == *v ? 0 : 1;
80 }
81
82 static const struct rhashtable_params bch_btree_cache_params = {
83         .head_offset    = offsetof(struct btree, hash),
84         .key_offset     = offsetof(struct btree, hash_val),
85         .key_len        = sizeof(u64),
86         .obj_cmpfn      = bch2_btree_cache_cmp_fn,
87 };
88
89 static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
90 {
91         BUG_ON(b->data || b->aux_data);
92
93         b->data = kvpmalloc(btree_bytes(c), gfp);
94         if (!b->data)
95                 return -ENOMEM;
96 #ifdef __KERNEL__
97         b->aux_data = vmalloc_exec(btree_aux_data_bytes(b), gfp);
98 #else
99         b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
100                            PROT_READ|PROT_WRITE|PROT_EXEC,
101                            MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
102         if (b->aux_data == MAP_FAILED)
103                 b->aux_data = NULL;
104 #endif
105         if (!b->aux_data) {
106                 kvpfree(b->data, btree_bytes(c));
107                 b->data = NULL;
108                 return -ENOMEM;
109         }
110
111         return 0;
112 }
113
114 static struct btree *__btree_node_mem_alloc(struct bch_fs *c)
115 {
116         struct btree *b = kzalloc(sizeof(struct btree), GFP_KERNEL);
117         if (!b)
118                 return NULL;
119
120         bkey_btree_ptr_init(&b->key);
121         __six_lock_init(&b->c.lock, "b->c.lock", &bch2_btree_node_lock_key);
122         INIT_LIST_HEAD(&b->list);
123         INIT_LIST_HEAD(&b->write_blocked);
124         b->byte_order = ilog2(btree_bytes(c));
125         return b;
126 }
127
128 struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
129 {
130         struct btree_cache *bc = &c->btree_cache;
131         struct btree *b = __btree_node_mem_alloc(c);
132         if (!b)
133                 return NULL;
134
135         if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
136                 kfree(b);
137                 return NULL;
138         }
139
140         bc->used++;
141         list_add(&b->list, &bc->freeable);
142         return b;
143 }
144
145 /* Btree in memory cache - hash table */
146
147 void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
148 {
149         int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
150         BUG_ON(ret);
151
152         /* Cause future lookups for this node to fail: */
153         b->hash_val = 0;
154
155         six_lock_wakeup_all(&b->c.lock);
156 }
157
158 int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
159 {
160         BUG_ON(b->hash_val);
161         b->hash_val = btree_ptr_hash_val(&b->key);
162
163         return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
164                                              bch_btree_cache_params);
165 }
166
167 int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
168                                 unsigned level, enum btree_id id)
169 {
170         int ret;
171
172         b->c.level      = level;
173         b->c.btree_id   = id;
174
175         mutex_lock(&bc->lock);
176         ret = __bch2_btree_node_hash_insert(bc, b);
177         if (!ret)
178                 list_add(&b->list, &bc->live);
179         mutex_unlock(&bc->lock);
180
181         return ret;
182 }
183
184 __flatten
185 static inline struct btree *btree_cache_find(struct btree_cache *bc,
186                                      const struct bkey_i *k)
187 {
188         u64 v = btree_ptr_hash_val(k);
189
190         return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
191 }
192
193 /*
194  * this version is for btree nodes that have already been freed (we're not
195  * reaping a real btree node)
196  */
197 static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
198 {
199         struct btree_cache *bc = &c->btree_cache;
200         int ret = 0;
201
202         lockdep_assert_held(&bc->lock);
203 wait_on_io:
204         if (b->flags & ((1U << BTREE_NODE_dirty)|
205                         (1U << BTREE_NODE_read_in_flight)|
206                         (1U << BTREE_NODE_write_in_flight))) {
207                 if (!flush)
208                         return -ENOMEM;
209
210                 /* XXX: waiting on IO with btree cache lock held */
211                 bch2_btree_node_wait_on_read(b);
212                 bch2_btree_node_wait_on_write(b);
213         }
214
215         if (!six_trylock_intent(&b->c.lock))
216                 return -ENOMEM;
217
218         if (!six_trylock_write(&b->c.lock))
219                 goto out_unlock_intent;
220
221         /* recheck under lock */
222         if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
223                         (1U << BTREE_NODE_write_in_flight))) {
224                 if (!flush)
225                         goto out_unlock;
226                 six_unlock_write(&b->c.lock);
227                 six_unlock_intent(&b->c.lock);
228                 goto wait_on_io;
229         }
230
231         if (btree_node_noevict(b) ||
232             btree_node_write_blocked(b) ||
233             btree_node_will_make_reachable(b))
234                 goto out_unlock;
235
236         if (btree_node_dirty(b)) {
237                 if (!flush)
238                         goto out_unlock;
239                 /*
240                  * Using the underscore version because we don't want to compact
241                  * bsets after the write, since this node is about to be evicted
242                  * - unless btree verify mode is enabled, since it runs out of
243                  * the post write cleanup:
244                  */
245                 if (bch2_verify_btree_ondisk)
246                         bch2_btree_node_write(c, b, SIX_LOCK_intent, 0);
247                 else
248                         __bch2_btree_node_write(c, b, 0);
249
250                 six_unlock_write(&b->c.lock);
251                 six_unlock_intent(&b->c.lock);
252                 goto wait_on_io;
253         }
254 out:
255         if (b->hash_val && !ret)
256                 trace_btree_node_reap(c, b);
257         return ret;
258 out_unlock:
259         six_unlock_write(&b->c.lock);
260 out_unlock_intent:
261         six_unlock_intent(&b->c.lock);
262         ret = -ENOMEM;
263         goto out;
264 }
265
266 static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
267 {
268         return __btree_node_reclaim(c, b, false);
269 }
270
271 static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
272 {
273         return __btree_node_reclaim(c, b, true);
274 }
275
276 static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
277                                            struct shrink_control *sc)
278 {
279         struct bch_fs *c = container_of(shrink, struct bch_fs,
280                                         btree_cache.shrink);
281         struct btree_cache *bc = &c->btree_cache;
282         struct btree *b, *t;
283         unsigned long nr = sc->nr_to_scan;
284         unsigned long can_free = 0;
285         unsigned long touched = 0;
286         unsigned long freed = 0;
287         unsigned i, flags;
288         unsigned long ret = SHRINK_STOP;
289
290         if (bch2_btree_shrinker_disabled)
291                 return SHRINK_STOP;
292
293         /* Return -1 if we can't do anything right now */
294         if (sc->gfp_mask & __GFP_FS)
295                 mutex_lock(&bc->lock);
296         else if (!mutex_trylock(&bc->lock))
297                 goto out_norestore;
298
299         flags = memalloc_nofs_save();
300
301         /*
302          * It's _really_ critical that we don't free too many btree nodes - we
303          * have to always leave ourselves a reserve. The reserve is how we
304          * guarantee that allocating memory for a new btree node can always
305          * succeed, so that inserting keys into the btree can always succeed and
306          * IO can always make forward progress:
307          */
308         can_free = btree_cache_can_free(bc);
309         nr = min_t(unsigned long, nr, can_free);
310
311         i = 0;
312         list_for_each_entry_safe(b, t, &bc->freeable, list) {
313                 /*
314                  * Leave a few nodes on the freeable list, so that a btree split
315                  * won't have to hit the system allocator:
316                  */
317                 if (++i <= 3)
318                         continue;
319
320                 touched++;
321
322                 if (touched >= nr)
323                         break;
324
325                 if (!btree_node_reclaim(c, b)) {
326                         btree_node_data_free(c, b);
327                         six_unlock_write(&b->c.lock);
328                         six_unlock_intent(&b->c.lock);
329                         freed++;
330                 }
331         }
332 restart:
333         list_for_each_entry_safe(b, t, &bc->live, list) {
334                 /* tweak this */
335                 if (btree_node_accessed(b)) {
336                         clear_btree_node_accessed(b);
337                         goto touched;
338                 }
339
340                 if (!btree_node_reclaim(c, b)) {
341                         /* can't call bch2_btree_node_hash_remove under lock  */
342                         freed++;
343                         if (&t->list != &bc->live)
344                                 list_move_tail(&bc->live, &t->list);
345
346                         btree_node_data_free(c, b);
347                         mutex_unlock(&bc->lock);
348
349                         bch2_btree_node_hash_remove(bc, b);
350                         six_unlock_write(&b->c.lock);
351                         six_unlock_intent(&b->c.lock);
352
353                         if (freed >= nr)
354                                 goto out;
355
356                         if (sc->gfp_mask & __GFP_FS)
357                                 mutex_lock(&bc->lock);
358                         else if (!mutex_trylock(&bc->lock))
359                                 goto out;
360                         goto restart;
361                 } else {
362                         continue;
363                 }
364 touched:
365                 touched++;
366
367                 if (touched >= nr) {
368                         /* Save position */
369                         if (&t->list != &bc->live)
370                                 list_move_tail(&bc->live, &t->list);
371                         break;
372                 }
373         }
374
375         mutex_unlock(&bc->lock);
376 out:
377         ret = freed;
378         memalloc_nofs_restore(flags);
379 out_norestore:
380         trace_btree_cache_scan(sc->nr_to_scan, can_free, ret);
381         return ret;
382 }
383
384 static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
385                                             struct shrink_control *sc)
386 {
387         struct bch_fs *c = container_of(shrink, struct bch_fs,
388                                         btree_cache.shrink);
389         struct btree_cache *bc = &c->btree_cache;
390
391         if (bch2_btree_shrinker_disabled)
392                 return 0;
393
394         return btree_cache_can_free(bc);
395 }
396
397 void bch2_fs_btree_cache_exit(struct bch_fs *c)
398 {
399         struct btree_cache *bc = &c->btree_cache;
400         struct btree *b;
401         unsigned i, flags;
402
403         if (bc->shrink.list.next)
404                 unregister_shrinker(&bc->shrink);
405
406         /* vfree() can allocate memory: */
407         flags = memalloc_nofs_save();
408         mutex_lock(&bc->lock);
409
410         if (c->verify_data)
411                 list_move(&c->verify_data->list, &bc->live);
412
413         kvpfree(c->verify_ondisk, btree_bytes(c));
414
415         for (i = 0; i < BTREE_ID_NR; i++)
416                 if (c->btree_roots[i].b)
417                         list_add(&c->btree_roots[i].b->list, &bc->live);
418
419         list_splice(&bc->freeable, &bc->live);
420
421         while (!list_empty(&bc->live)) {
422                 b = list_first_entry(&bc->live, struct btree, list);
423
424                 BUG_ON(btree_node_read_in_flight(b) ||
425                        btree_node_write_in_flight(b));
426
427                 if (btree_node_dirty(b))
428                         bch2_btree_complete_write(c, b, btree_current_write(b));
429                 clear_btree_node_dirty_acct(c, b);
430
431                 btree_node_data_free(c, b);
432         }
433
434         BUG_ON(atomic_read(&c->btree_cache.dirty));
435
436         list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
437
438         while (!list_empty(&bc->freed_nonpcpu)) {
439                 b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
440                 list_del(&b->list);
441                 six_lock_pcpu_free(&b->c.lock);
442                 kfree(b);
443         }
444
445         mutex_unlock(&bc->lock);
446         memalloc_nofs_restore(flags);
447
448         if (bc->table_init_done)
449                 rhashtable_destroy(&bc->table);
450 }
451
452 int bch2_fs_btree_cache_init(struct bch_fs *c)
453 {
454         struct btree_cache *bc = &c->btree_cache;
455         unsigned i;
456         int ret = 0;
457
458         pr_verbose_init(c->opts, "");
459
460         ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
461         if (ret)
462                 goto out;
463
464         bc->table_init_done = true;
465
466         bch2_recalc_btree_reserve(c);
467
468         for (i = 0; i < bc->reserve; i++)
469                 if (!__bch2_btree_node_mem_alloc(c)) {
470                         ret = -ENOMEM;
471                         goto out;
472                 }
473
474         list_splice_init(&bc->live, &bc->freeable);
475
476         mutex_init(&c->verify_lock);
477
478         bc->shrink.count_objects        = bch2_btree_cache_count;
479         bc->shrink.scan_objects         = bch2_btree_cache_scan;
480         bc->shrink.seeks                = 4;
481         ret = register_shrinker(&bc->shrink);
482 out:
483         pr_verbose_init(c->opts, "ret %i", ret);
484         return ret;
485 }
486
487 void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
488 {
489         mutex_init(&bc->lock);
490         INIT_LIST_HEAD(&bc->live);
491         INIT_LIST_HEAD(&bc->freeable);
492         INIT_LIST_HEAD(&bc->freed_pcpu);
493         INIT_LIST_HEAD(&bc->freed_nonpcpu);
494 }
495
496 /*
497  * We can only have one thread cannibalizing other cached btree nodes at a time,
498  * or we'll deadlock. We use an open coded mutex to ensure that, which a
499  * cannibalize_bucket() will take. This means every time we unlock the root of
500  * the btree, we need to release this lock if we have it held.
501  */
502 void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
503 {
504         struct btree_cache *bc = &c->btree_cache;
505
506         if (bc->alloc_lock == current) {
507                 trace_btree_node_cannibalize_unlock(c);
508                 bc->alloc_lock = NULL;
509                 closure_wake_up(&bc->alloc_wait);
510         }
511 }
512
513 int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
514 {
515         struct btree_cache *bc = &c->btree_cache;
516         struct task_struct *old;
517
518         old = cmpxchg(&bc->alloc_lock, NULL, current);
519         if (old == NULL || old == current)
520                 goto success;
521
522         if (!cl) {
523                 trace_btree_node_cannibalize_lock_fail(c);
524                 return -ENOMEM;
525         }
526
527         closure_wait(&bc->alloc_wait, cl);
528
529         /* Try again, after adding ourselves to waitlist */
530         old = cmpxchg(&bc->alloc_lock, NULL, current);
531         if (old == NULL || old == current) {
532                 /* We raced */
533                 closure_wake_up(&bc->alloc_wait);
534                 goto success;
535         }
536
537         trace_btree_node_cannibalize_lock_fail(c);
538         return -EAGAIN;
539
540 success:
541         trace_btree_node_cannibalize_lock(c);
542         return 0;
543 }
544
545 static struct btree *btree_node_cannibalize(struct bch_fs *c)
546 {
547         struct btree_cache *bc = &c->btree_cache;
548         struct btree *b;
549
550         list_for_each_entry_reverse(b, &bc->live, list)
551                 if (!btree_node_reclaim(c, b))
552                         return b;
553
554         while (1) {
555                 list_for_each_entry_reverse(b, &bc->live, list)
556                         if (!btree_node_write_and_reclaim(c, b))
557                                 return b;
558
559                 /*
560                  * Rare case: all nodes were intent-locked.
561                  * Just busy-wait.
562                  */
563                 WARN_ONCE(1, "btree cache cannibalize failed\n");
564                 cond_resched();
565         }
566 }
567
568 struct btree *bch2_btree_node_mem_alloc(struct bch_fs *c, bool pcpu_read_locks)
569 {
570         struct btree_cache *bc = &c->btree_cache;
571         struct list_head *freed = pcpu_read_locks
572                 ? &bc->freed_pcpu
573                 : &bc->freed_nonpcpu;
574         struct btree *b, *b2;
575         u64 start_time = local_clock();
576         unsigned flags;
577
578         flags = memalloc_nofs_save();
579         mutex_lock(&bc->lock);
580
581         /*
582          * We never free struct btree itself, just the memory that holds the on
583          * disk node. Check the freed list before allocating a new one:
584          */
585         list_for_each_entry(b, freed, list)
586                 if (!btree_node_reclaim(c, b)) {
587                         list_del_init(&b->list);
588                         goto got_node;
589                 }
590
591         b = __btree_node_mem_alloc(c);
592         if (!b)
593                 goto err_locked;
594
595         if (pcpu_read_locks)
596                 six_lock_pcpu_alloc(&b->c.lock);
597
598         BUG_ON(!six_trylock_intent(&b->c.lock));
599         BUG_ON(!six_trylock_write(&b->c.lock));
600 got_node:
601
602         /*
603          * btree_free() doesn't free memory; it sticks the node on the end of
604          * the list. Check if there's any freed nodes there:
605          */
606         list_for_each_entry(b2, &bc->freeable, list)
607                 if (!btree_node_reclaim(c, b2)) {
608                         swap(b->data, b2->data);
609                         swap(b->aux_data, b2->aux_data);
610                         btree_node_to_freedlist(bc, b2);
611                         six_unlock_write(&b2->c.lock);
612                         six_unlock_intent(&b2->c.lock);
613                         goto got_mem;
614                 }
615
616         mutex_unlock(&bc->lock);
617
618         if (btree_node_data_alloc(c, b, __GFP_NOWARN|GFP_KERNEL))
619                 goto err;
620
621         mutex_lock(&bc->lock);
622         bc->used++;
623 got_mem:
624         mutex_unlock(&bc->lock);
625
626         BUG_ON(btree_node_hashed(b));
627         BUG_ON(btree_node_dirty(b));
628         BUG_ON(btree_node_write_in_flight(b));
629 out:
630         b->flags                = 0;
631         b->written              = 0;
632         b->nsets                = 0;
633         b->sib_u64s[0]          = 0;
634         b->sib_u64s[1]          = 0;
635         b->whiteout_u64s        = 0;
636         bch2_btree_keys_init(b);
637         set_btree_node_accessed(b);
638
639         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
640                                start_time);
641
642         memalloc_nofs_restore(flags);
643         return b;
644 err:
645         mutex_lock(&bc->lock);
646 err_locked:
647         /* Try to cannibalize another cached btree node: */
648         if (bc->alloc_lock == current) {
649                 b2 = btree_node_cannibalize(c);
650                 bch2_btree_node_hash_remove(bc, b2);
651
652                 if (b) {
653                         swap(b->data, b2->data);
654                         swap(b->aux_data, b2->aux_data);
655                         btree_node_to_freedlist(bc, b2);
656                         six_unlock_write(&b2->c.lock);
657                         six_unlock_intent(&b2->c.lock);
658                 } else {
659                         b = b2;
660                         list_del_init(&b->list);
661                 }
662
663                 mutex_unlock(&bc->lock);
664
665                 trace_btree_node_cannibalize(c);
666                 goto out;
667         }
668
669         mutex_unlock(&bc->lock);
670         memalloc_nofs_restore(flags);
671         return ERR_PTR(-ENOMEM);
672 }
673
674 /* Slowpath, don't want it inlined into btree_iter_traverse() */
675 static noinline struct btree *bch2_btree_node_fill(struct bch_fs *c,
676                                 struct btree_trans *trans,
677                                 struct btree_path *path,
678                                 const struct bkey_i *k,
679                                 enum btree_id btree_id,
680                                 unsigned level,
681                                 enum six_lock_type lock_type,
682                                 bool sync)
683 {
684         struct btree_cache *bc = &c->btree_cache;
685         struct btree *b;
686         u32 seq;
687
688         BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
689         /*
690          * Parent node must be locked, else we could read in a btree node that's
691          * been freed:
692          */
693         if (trans && !bch2_btree_node_relock(trans, path, level + 1)) {
694                 trace_trans_restart_relock_parent_for_fill(trans->fn,
695                                         _THIS_IP_, btree_id, &path->pos);
696                 btree_trans_restart(trans);
697                 return ERR_PTR(-EINTR);
698         }
699
700         b = bch2_btree_node_mem_alloc(c, level != 0);
701
702         if (trans && b == ERR_PTR(-ENOMEM)) {
703                 trans->memory_allocation_failure = true;
704                 trace_trans_restart_memory_allocation_failure(trans->fn,
705                                 _THIS_IP_, btree_id, &path->pos);
706                 btree_trans_restart(trans);
707                 return ERR_PTR(-EINTR);
708         }
709
710         if (IS_ERR(b))
711                 return b;
712
713         bkey_copy(&b->key, k);
714         if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
715                 /* raced with another fill: */
716
717                 /* mark as unhashed... */
718                 b->hash_val = 0;
719
720                 mutex_lock(&bc->lock);
721                 list_add(&b->list, &bc->freeable);
722                 mutex_unlock(&bc->lock);
723
724                 six_unlock_write(&b->c.lock);
725                 six_unlock_intent(&b->c.lock);
726                 return NULL;
727         }
728
729         set_btree_node_read_in_flight(b);
730
731         six_unlock_write(&b->c.lock);
732         seq = b->c.lock.state.seq;
733         six_unlock_intent(&b->c.lock);
734
735         /* Unlock before doing IO: */
736         if (trans && sync)
737                 bch2_trans_unlock(trans);
738
739         bch2_btree_node_read(c, b, sync);
740
741         if (!sync)
742                 return NULL;
743
744         if (trans &&
745             (!bch2_trans_relock(trans) ||
746              !bch2_btree_path_relock_intent(trans, path))) {
747                 BUG_ON(!trans->restarted);
748                 return ERR_PTR(-EINTR);
749         }
750
751         if (!six_relock_type(&b->c.lock, lock_type, seq)) {
752                 trace_trans_restart_relock_after_fill(trans->fn, _THIS_IP_,
753                                            btree_id, &path->pos);
754                 btree_trans_restart(trans);
755                 return ERR_PTR(-EINTR);
756         }
757
758         return b;
759 }
760
761 static int lock_node_check_fn(struct six_lock *lock, void *p)
762 {
763         struct btree *b = container_of(lock, struct btree, c.lock);
764         const struct bkey_i *k = p;
765
766         return b->hash_val == btree_ptr_hash_val(k) ? 0 : -1;
767 }
768
769 static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
770 {
771         struct printbuf buf1 = PRINTBUF;
772         struct printbuf buf2 = PRINTBUF;
773         struct printbuf buf3 = PRINTBUF;
774
775         if (!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags))
776                 return;
777
778         bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&b->key));
779         bch2_bpos_to_text(&buf2, b->data->min_key);
780         bch2_bpos_to_text(&buf3, b->data->max_key);
781
782         bch2_fs_inconsistent(c, "btree node header doesn't match ptr\n"
783                              "btree %s level %u\n"
784                              "ptr: %s\n"
785                              "header: btree %s level %llu\n"
786                              "min %s max %s\n",
787                              bch2_btree_ids[b->c.btree_id], b->c.level,
788                              buf1.buf,
789                              bch2_btree_ids[BTREE_NODE_ID(b->data)],
790                              BTREE_NODE_LEVEL(b->data),
791                              buf2.buf, buf3.buf);
792
793         printbuf_exit(&buf3);
794         printbuf_exit(&buf2);
795         printbuf_exit(&buf1);
796 }
797
798 static inline void btree_check_header(struct bch_fs *c, struct btree *b)
799 {
800         if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
801             b->c.level != BTREE_NODE_LEVEL(b->data) ||
802             bpos_cmp(b->data->max_key, b->key.k.p) ||
803             (b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
804              bpos_cmp(b->data->min_key,
805                       bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
806                 btree_bad_header(c, b);
807 }
808
809 /**
810  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
811  * in from disk if necessary.
812  *
813  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
814  *
815  * The btree node will have either a read or a write lock held, depending on
816  * the @write parameter.
817  */
818 struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
819                                   const struct bkey_i *k, unsigned level,
820                                   enum six_lock_type lock_type,
821                                   unsigned long trace_ip)
822 {
823         struct bch_fs *c = trans->c;
824         struct btree_cache *bc = &c->btree_cache;
825         struct btree *b;
826         struct bset_tree *t;
827
828         EBUG_ON(level >= BTREE_MAX_DEPTH);
829
830         b = btree_node_mem_ptr(k);
831
832         /*
833          * Check b->hash_val _before_ calling btree_node_lock() - this might not
834          * be the node we want anymore, and trying to lock the wrong node could
835          * cause an unneccessary transaction restart:
836          */
837         if (likely(c->opts.btree_node_mem_ptr_optimization &&
838                    b &&
839                    b->hash_val == btree_ptr_hash_val(k)))
840                         goto lock_node;
841 retry:
842         b = btree_cache_find(bc, k);
843         if (unlikely(!b)) {
844                 /*
845                  * We must have the parent locked to call bch2_btree_node_fill(),
846                  * else we could read in a btree node from disk that's been
847                  * freed:
848                  */
849                 b = bch2_btree_node_fill(c, trans, path, k, path->btree_id,
850                                          level, lock_type, true);
851
852                 /* We raced and found the btree node in the cache */
853                 if (!b)
854                         goto retry;
855
856                 if (IS_ERR(b))
857                         return b;
858         } else {
859 lock_node:
860                 /*
861                  * There's a potential deadlock with splits and insertions into
862                  * interior nodes we have to avoid:
863                  *
864                  * The other thread might be holding an intent lock on the node
865                  * we want, and they want to update its parent node so they're
866                  * going to upgrade their intent lock on the parent node to a
867                  * write lock.
868                  *
869                  * But if we're holding a read lock on the parent, and we're
870                  * trying to get the intent lock they're holding, we deadlock.
871                  *
872                  * So to avoid this we drop the read locks on parent nodes when
873                  * we're starting to take intent locks - and handle the race.
874                  *
875                  * The race is that they might be about to free the node we
876                  * want, and dropping our read lock on the parent node lets them
877                  * update the parent marking the node we want as freed, and then
878                  * free it:
879                  *
880                  * To guard against this, btree nodes are evicted from the cache
881                  * when they're freed - and b->hash_val is zeroed out, which we
882                  * check for after we lock the node.
883                  *
884                  * Then, bch2_btree_node_relock() on the parent will fail - because
885                  * the parent was modified, when the pointer to the node we want
886                  * was removed - and we'll bail out:
887                  */
888                 if (btree_node_read_locked(path, level + 1))
889                         btree_node_unlock(path, level + 1);
890
891                 if (!btree_node_lock(trans, path, b, k->k.p, level, lock_type,
892                                      lock_node_check_fn, (void *) k, trace_ip)) {
893                         if (!trans->restarted)
894                                 goto retry;
895                         return ERR_PTR(-EINTR);
896                 }
897
898                 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
899                              b->c.level != level ||
900                              race_fault())) {
901                         six_unlock_type(&b->c.lock, lock_type);
902                         if (bch2_btree_node_relock(trans, path, level + 1))
903                                 goto retry;
904
905                         trace_trans_restart_btree_node_reused(trans->fn,
906                                                               trace_ip,
907                                                               path->btree_id,
908                                                               &path->pos);
909                         btree_trans_restart(trans);
910                         return ERR_PTR(-EINTR);
911                 }
912         }
913
914         if (unlikely(btree_node_read_in_flight(b))) {
915                 u32 seq = b->c.lock.state.seq;
916
917                 six_unlock_type(&b->c.lock, lock_type);
918                 bch2_trans_unlock(trans);
919
920                 bch2_btree_node_wait_on_read(b);
921
922                 /*
923                  * should_be_locked is not set on this path yet, so we need to
924                  * relock it specifically:
925                  */
926                 if (trans &&
927                     (!bch2_trans_relock(trans) ||
928                      !bch2_btree_path_relock_intent(trans, path))) {
929                         BUG_ON(!trans->restarted);
930                         return ERR_PTR(-EINTR);
931                 }
932
933                 if (!six_relock_type(&b->c.lock, lock_type, seq))
934                         goto retry;
935         }
936
937         prefetch(b->aux_data);
938
939         for_each_bset(b, t) {
940                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
941
942                 prefetch(p + L1_CACHE_BYTES * 0);
943                 prefetch(p + L1_CACHE_BYTES * 1);
944                 prefetch(p + L1_CACHE_BYTES * 2);
945         }
946
947         /* avoid atomic set bit if it's not needed: */
948         if (!btree_node_accessed(b))
949                 set_btree_node_accessed(b);
950
951         if (unlikely(btree_node_read_error(b))) {
952                 six_unlock_type(&b->c.lock, lock_type);
953                 return ERR_PTR(-EIO);
954         }
955
956         EBUG_ON(b->c.btree_id != path->btree_id);
957         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
958         btree_check_header(c, b);
959
960         return b;
961 }
962
963 struct btree *bch2_btree_node_get_noiter(struct bch_fs *c,
964                                          const struct bkey_i *k,
965                                          enum btree_id btree_id,
966                                          unsigned level,
967                                          bool nofill)
968 {
969         struct btree_cache *bc = &c->btree_cache;
970         struct btree *b;
971         struct bset_tree *t;
972         int ret;
973
974         EBUG_ON(level >= BTREE_MAX_DEPTH);
975
976         if (c->opts.btree_node_mem_ptr_optimization) {
977                 b = btree_node_mem_ptr(k);
978                 if (b)
979                         goto lock_node;
980         }
981 retry:
982         b = btree_cache_find(bc, k);
983         if (unlikely(!b)) {
984                 if (nofill)
985                         goto out;
986
987                 b = bch2_btree_node_fill(c, NULL, NULL, k, btree_id,
988                                          level, SIX_LOCK_read, true);
989
990                 /* We raced and found the btree node in the cache */
991                 if (!b)
992                         goto retry;
993
994                 if (IS_ERR(b) &&
995                     !bch2_btree_cache_cannibalize_lock(c, NULL))
996                         goto retry;
997
998                 if (IS_ERR(b))
999                         goto out;
1000         } else {
1001 lock_node:
1002                 ret = six_lock_read(&b->c.lock, lock_node_check_fn, (void *) k);
1003                 if (ret)
1004                         goto retry;
1005
1006                 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1007                              b->c.btree_id != btree_id ||
1008                              b->c.level != level)) {
1009                         six_unlock_read(&b->c.lock);
1010                         goto retry;
1011                 }
1012         }
1013
1014         /* XXX: waiting on IO with btree locks held: */
1015         __bch2_btree_node_wait_on_read(b);
1016
1017         prefetch(b->aux_data);
1018
1019         for_each_bset(b, t) {
1020                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
1021
1022                 prefetch(p + L1_CACHE_BYTES * 0);
1023                 prefetch(p + L1_CACHE_BYTES * 1);
1024                 prefetch(p + L1_CACHE_BYTES * 2);
1025         }
1026
1027         /* avoid atomic set bit if it's not needed: */
1028         if (!btree_node_accessed(b))
1029                 set_btree_node_accessed(b);
1030
1031         if (unlikely(btree_node_read_error(b))) {
1032                 six_unlock_read(&b->c.lock);
1033                 b = ERR_PTR(-EIO);
1034                 goto out;
1035         }
1036
1037         EBUG_ON(b->c.btree_id != btree_id);
1038         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1039         btree_check_header(c, b);
1040 out:
1041         bch2_btree_cache_cannibalize_unlock(c);
1042         return b;
1043 }
1044
1045 int bch2_btree_node_prefetch(struct bch_fs *c,
1046                              struct btree_trans *trans,
1047                              struct btree_path *path,
1048                              const struct bkey_i *k,
1049                              enum btree_id btree_id, unsigned level)
1050 {
1051         struct btree_cache *bc = &c->btree_cache;
1052         struct btree *b;
1053
1054         BUG_ON(trans && !btree_node_locked(path, level + 1));
1055         BUG_ON(level >= BTREE_MAX_DEPTH);
1056
1057         b = btree_cache_find(bc, k);
1058         if (b)
1059                 return 0;
1060
1061         b = bch2_btree_node_fill(c, trans, path, k, btree_id,
1062                                  level, SIX_LOCK_read, false);
1063         return PTR_ERR_OR_ZERO(b);
1064 }
1065
1066 void bch2_btree_node_evict(struct bch_fs *c, const struct bkey_i *k)
1067 {
1068         struct btree_cache *bc = &c->btree_cache;
1069         struct btree *b;
1070
1071         b = btree_cache_find(bc, k);
1072         if (!b)
1073                 return;
1074 wait_on_io:
1075         /* not allowed to wait on io with btree locks held: */
1076
1077         /* XXX we're called from btree_gc which will be holding other btree
1078          * nodes locked
1079          * */
1080         __bch2_btree_node_wait_on_read(b);
1081         __bch2_btree_node_wait_on_write(b);
1082
1083         six_lock_intent(&b->c.lock, NULL, NULL);
1084         six_lock_write(&b->c.lock, NULL, NULL);
1085
1086         if (btree_node_dirty(b)) {
1087                 __bch2_btree_node_write(c, b, 0);
1088                 six_unlock_write(&b->c.lock);
1089                 six_unlock_intent(&b->c.lock);
1090                 goto wait_on_io;
1091         }
1092
1093         BUG_ON(btree_node_dirty(b));
1094
1095         mutex_lock(&bc->lock);
1096         btree_node_data_free(c, b);
1097         bch2_btree_node_hash_remove(bc, b);
1098         mutex_unlock(&bc->lock);
1099
1100         six_unlock_write(&b->c.lock);
1101         six_unlock_intent(&b->c.lock);
1102 }
1103
1104 void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
1105                              struct btree *b)
1106 {
1107         const struct bkey_format *f = &b->format;
1108         struct bset_stats stats;
1109
1110         memset(&stats, 0, sizeof(stats));
1111
1112         bch2_btree_keys_stats(b, &stats);
1113
1114         pr_buf(out, "l %u ", b->c.level);
1115         bch2_bpos_to_text(out, b->data->min_key);
1116         pr_buf(out, " - ");
1117         bch2_bpos_to_text(out, b->data->max_key);
1118         pr_buf(out, ":\n"
1119                "    ptrs: ");
1120         bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1121
1122         pr_buf(out, "\n"
1123                "    format: u64s %u fields %u %u %u %u %u\n"
1124                "    unpack fn len: %u\n"
1125                "    bytes used %zu/%zu (%zu%% full)\n"
1126                "    sib u64s: %u, %u (merge threshold %u)\n"
1127                "    nr packed keys %u\n"
1128                "    nr unpacked keys %u\n"
1129                "    floats %zu\n"
1130                "    failed unpacked %zu\n",
1131                f->key_u64s,
1132                f->bits_per_field[0],
1133                f->bits_per_field[1],
1134                f->bits_per_field[2],
1135                f->bits_per_field[3],
1136                f->bits_per_field[4],
1137                b->unpack_fn_len,
1138                b->nr.live_u64s * sizeof(u64),
1139                btree_bytes(c) - sizeof(struct btree_node),
1140                b->nr.live_u64s * 100 / btree_max_u64s(c),
1141                b->sib_u64s[0],
1142                b->sib_u64s[1],
1143                c->btree_foreground_merge_threshold,
1144                b->nr.packed_keys,
1145                b->nr.unpacked_keys,
1146                stats.floats,
1147                stats.failed);
1148 }
1149
1150 void bch2_btree_cache_to_text(struct printbuf *out, struct bch_fs *c)
1151 {
1152         pr_buf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
1153         pr_buf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
1154         pr_buf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
1155 }