]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_cache.c
Update bcachefs sources to 72740a707b64 bcachefs: Split brain detection
[bcachefs-tools-debian] / libbcachefs / btree_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "btree_cache.h"
6 #include "btree_io.h"
7 #include "btree_iter.h"
8 #include "btree_locking.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "journal.h"
13 #include "trace.h"
14
15 #include <linux/prefetch.h>
16 #include <linux/sched/mm.h>
17
18 const char * const bch2_btree_node_flags[] = {
19 #define x(f)    #f,
20         BTREE_FLAGS()
21 #undef x
22         NULL
23 };
24
25 void bch2_recalc_btree_reserve(struct bch_fs *c)
26 {
27         unsigned i, reserve = 16;
28
29         if (!c->btree_roots_known[0].b)
30                 reserve += 8;
31
32         for (i = 0; i < btree_id_nr_alive(c); i++) {
33                 struct btree_root *r = bch2_btree_id_root(c, i);
34
35                 if (r->b)
36                         reserve += min_t(unsigned, 1, r->b->c.level) * 8;
37         }
38
39         c->btree_cache.reserve = reserve;
40 }
41
42 static inline unsigned btree_cache_can_free(struct btree_cache *bc)
43 {
44         return max_t(int, 0, bc->used - bc->reserve);
45 }
46
47 static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
48 {
49         if (b->c.lock.readers)
50                 list_move(&b->list, &bc->freed_pcpu);
51         else
52                 list_move(&b->list, &bc->freed_nonpcpu);
53 }
54
55 static void btree_node_data_free(struct bch_fs *c, struct btree *b)
56 {
57         struct btree_cache *bc = &c->btree_cache;
58
59         EBUG_ON(btree_node_write_in_flight(b));
60
61         clear_btree_node_just_written(b);
62
63         kvpfree(b->data, btree_bytes(c));
64         b->data = NULL;
65 #ifdef __KERNEL__
66         kvfree(b->aux_data);
67 #else
68         munmap(b->aux_data, btree_aux_data_bytes(b));
69 #endif
70         b->aux_data = NULL;
71
72         bc->used--;
73
74         btree_node_to_freedlist(bc, b);
75 }
76
77 static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
78                                    const void *obj)
79 {
80         const struct btree *b = obj;
81         const u64 *v = arg->key;
82
83         return b->hash_val == *v ? 0 : 1;
84 }
85
86 static const struct rhashtable_params bch_btree_cache_params = {
87         .head_offset    = offsetof(struct btree, hash),
88         .key_offset     = offsetof(struct btree, hash_val),
89         .key_len        = sizeof(u64),
90         .obj_cmpfn      = bch2_btree_cache_cmp_fn,
91 };
92
93 static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
94 {
95         BUG_ON(b->data || b->aux_data);
96
97         b->data = kvpmalloc(btree_bytes(c), gfp);
98         if (!b->data)
99                 return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
100 #ifdef __KERNEL__
101         b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
102 #else
103         b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
104                            PROT_READ|PROT_WRITE|PROT_EXEC,
105                            MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
106         if (b->aux_data == MAP_FAILED)
107                 b->aux_data = NULL;
108 #endif
109         if (!b->aux_data) {
110                 kvpfree(b->data, btree_bytes(c));
111                 b->data = NULL;
112                 return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
113         }
114
115         return 0;
116 }
117
118 static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
119 {
120         struct btree *b;
121
122         b = kzalloc(sizeof(struct btree), gfp);
123         if (!b)
124                 return NULL;
125
126         bkey_btree_ptr_init(&b->key);
127         INIT_LIST_HEAD(&b->list);
128         INIT_LIST_HEAD(&b->write_blocked);
129         b->byte_order = ilog2(btree_bytes(c));
130         return b;
131 }
132
133 struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
134 {
135         struct btree_cache *bc = &c->btree_cache;
136         struct btree *b;
137
138         b = __btree_node_mem_alloc(c, GFP_KERNEL);
139         if (!b)
140                 return NULL;
141
142         if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
143                 kfree(b);
144                 return NULL;
145         }
146
147         bch2_btree_lock_init(&b->c, 0);
148
149         bc->used++;
150         list_add(&b->list, &bc->freeable);
151         return b;
152 }
153
154 /* Btree in memory cache - hash table */
155
156 void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
157 {
158         int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
159
160         BUG_ON(ret);
161
162         /* Cause future lookups for this node to fail: */
163         b->hash_val = 0;
164 }
165
166 int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
167 {
168         BUG_ON(b->hash_val);
169         b->hash_val = btree_ptr_hash_val(&b->key);
170
171         return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
172                                              bch_btree_cache_params);
173 }
174
175 int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
176                                 unsigned level, enum btree_id id)
177 {
178         int ret;
179
180         b->c.level      = level;
181         b->c.btree_id   = id;
182
183         mutex_lock(&bc->lock);
184         ret = __bch2_btree_node_hash_insert(bc, b);
185         if (!ret)
186                 list_add_tail(&b->list, &bc->live);
187         mutex_unlock(&bc->lock);
188
189         return ret;
190 }
191
192 __flatten
193 static inline struct btree *btree_cache_find(struct btree_cache *bc,
194                                      const struct bkey_i *k)
195 {
196         u64 v = btree_ptr_hash_val(k);
197
198         return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
199 }
200
201 /*
202  * this version is for btree nodes that have already been freed (we're not
203  * reaping a real btree node)
204  */
205 static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
206 {
207         struct btree_cache *bc = &c->btree_cache;
208         int ret = 0;
209
210         lockdep_assert_held(&bc->lock);
211 wait_on_io:
212         if (b->flags & ((1U << BTREE_NODE_dirty)|
213                         (1U << BTREE_NODE_read_in_flight)|
214                         (1U << BTREE_NODE_write_in_flight))) {
215                 if (!flush)
216                         return -BCH_ERR_ENOMEM_btree_node_reclaim;
217
218                 /* XXX: waiting on IO with btree cache lock held */
219                 bch2_btree_node_wait_on_read(b);
220                 bch2_btree_node_wait_on_write(b);
221         }
222
223         if (!six_trylock_intent(&b->c.lock))
224                 return -BCH_ERR_ENOMEM_btree_node_reclaim;
225
226         if (!six_trylock_write(&b->c.lock))
227                 goto out_unlock_intent;
228
229         /* recheck under lock */
230         if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
231                         (1U << BTREE_NODE_write_in_flight))) {
232                 if (!flush)
233                         goto out_unlock;
234                 six_unlock_write(&b->c.lock);
235                 six_unlock_intent(&b->c.lock);
236                 goto wait_on_io;
237         }
238
239         if (btree_node_noevict(b) ||
240             btree_node_write_blocked(b) ||
241             btree_node_will_make_reachable(b))
242                 goto out_unlock;
243
244         if (btree_node_dirty(b)) {
245                 if (!flush)
246                         goto out_unlock;
247                 /*
248                  * Using the underscore version because we don't want to compact
249                  * bsets after the write, since this node is about to be evicted
250                  * - unless btree verify mode is enabled, since it runs out of
251                  * the post write cleanup:
252                  */
253                 if (bch2_verify_btree_ondisk)
254                         bch2_btree_node_write(c, b, SIX_LOCK_intent,
255                                               BTREE_WRITE_cache_reclaim);
256                 else
257                         __bch2_btree_node_write(c, b,
258                                                 BTREE_WRITE_cache_reclaim);
259
260                 six_unlock_write(&b->c.lock);
261                 six_unlock_intent(&b->c.lock);
262                 goto wait_on_io;
263         }
264 out:
265         if (b->hash_val && !ret)
266                 trace_and_count(c, btree_cache_reap, c, b);
267         return ret;
268 out_unlock:
269         six_unlock_write(&b->c.lock);
270 out_unlock_intent:
271         six_unlock_intent(&b->c.lock);
272         ret = -BCH_ERR_ENOMEM_btree_node_reclaim;
273         goto out;
274 }
275
276 static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
277 {
278         return __btree_node_reclaim(c, b, false);
279 }
280
281 static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
282 {
283         return __btree_node_reclaim(c, b, true);
284 }
285
286 static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
287                                            struct shrink_control *sc)
288 {
289         struct bch_fs *c = shrink->private_data;
290         struct btree_cache *bc = &c->btree_cache;
291         struct btree *b, *t;
292         unsigned long nr = sc->nr_to_scan;
293         unsigned long can_free = 0;
294         unsigned long freed = 0;
295         unsigned long touched = 0;
296         unsigned i, flags;
297         unsigned long ret = SHRINK_STOP;
298         bool trigger_writes = atomic_read(&bc->dirty) + nr >=
299                 bc->used * 3 / 4;
300
301         if (bch2_btree_shrinker_disabled)
302                 return SHRINK_STOP;
303
304         mutex_lock(&bc->lock);
305         flags = memalloc_nofs_save();
306
307         /*
308          * It's _really_ critical that we don't free too many btree nodes - we
309          * have to always leave ourselves a reserve. The reserve is how we
310          * guarantee that allocating memory for a new btree node can always
311          * succeed, so that inserting keys into the btree can always succeed and
312          * IO can always make forward progress:
313          */
314         can_free = btree_cache_can_free(bc);
315         nr = min_t(unsigned long, nr, can_free);
316
317         i = 0;
318         list_for_each_entry_safe(b, t, &bc->freeable, list) {
319                 /*
320                  * Leave a few nodes on the freeable list, so that a btree split
321                  * won't have to hit the system allocator:
322                  */
323                 if (++i <= 3)
324                         continue;
325
326                 touched++;
327
328                 if (touched >= nr)
329                         goto out;
330
331                 if (!btree_node_reclaim(c, b)) {
332                         btree_node_data_free(c, b);
333                         six_unlock_write(&b->c.lock);
334                         six_unlock_intent(&b->c.lock);
335                         freed++;
336                 }
337         }
338 restart:
339         list_for_each_entry_safe(b, t, &bc->live, list) {
340                 touched++;
341
342                 if (btree_node_accessed(b)) {
343                         clear_btree_node_accessed(b);
344                 } else if (!btree_node_reclaim(c, b)) {
345                         freed++;
346                         btree_node_data_free(c, b);
347
348                         bch2_btree_node_hash_remove(bc, b);
349                         six_unlock_write(&b->c.lock);
350                         six_unlock_intent(&b->c.lock);
351
352                         if (freed == nr)
353                                 goto out_rotate;
354                 } else if (trigger_writes &&
355                            btree_node_dirty(b) &&
356                            !btree_node_will_make_reachable(b) &&
357                            !btree_node_write_blocked(b) &&
358                            six_trylock_read(&b->c.lock)) {
359                         list_move(&bc->live, &b->list);
360                         mutex_unlock(&bc->lock);
361                         __bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
362                         six_unlock_read(&b->c.lock);
363                         if (touched >= nr)
364                                 goto out_nounlock;
365                         mutex_lock(&bc->lock);
366                         goto restart;
367                 }
368
369                 if (touched >= nr)
370                         break;
371         }
372 out_rotate:
373         if (&t->list != &bc->live)
374                 list_move_tail(&bc->live, &t->list);
375 out:
376         mutex_unlock(&bc->lock);
377 out_nounlock:
378         ret = freed;
379         memalloc_nofs_restore(flags);
380         trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
381         return ret;
382 }
383
384 static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
385                                             struct shrink_control *sc)
386 {
387         struct bch_fs *c = shrink->private_data;
388         struct btree_cache *bc = &c->btree_cache;
389
390         if (bch2_btree_shrinker_disabled)
391                 return 0;
392
393         return btree_cache_can_free(bc);
394 }
395
396 void bch2_fs_btree_cache_exit(struct bch_fs *c)
397 {
398         struct btree_cache *bc = &c->btree_cache;
399         struct btree *b;
400         unsigned i, flags;
401
402         shrinker_free(bc->shrink);
403
404         /* vfree() can allocate memory: */
405         flags = memalloc_nofs_save();
406         mutex_lock(&bc->lock);
407
408         if (c->verify_data)
409                 list_move(&c->verify_data->list, &bc->live);
410
411         kvpfree(c->verify_ondisk, btree_bytes(c));
412
413         for (i = 0; i < btree_id_nr_alive(c); i++) {
414                 struct btree_root *r = bch2_btree_id_root(c, i);
415
416                 if (r->b)
417                         list_add(&r->b->list, &bc->live);
418         }
419
420         list_splice(&bc->freeable, &bc->live);
421
422         while (!list_empty(&bc->live)) {
423                 b = list_first_entry(&bc->live, struct btree, list);
424
425                 BUG_ON(btree_node_read_in_flight(b) ||
426                        btree_node_write_in_flight(b));
427
428                 btree_node_data_free(c, b);
429         }
430
431         BUG_ON(!bch2_journal_error(&c->journal) &&
432                atomic_read(&c->btree_cache.dirty));
433
434         list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
435
436         while (!list_empty(&bc->freed_nonpcpu)) {
437                 b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
438                 list_del(&b->list);
439                 six_lock_exit(&b->c.lock);
440                 kfree(b);
441         }
442
443         mutex_unlock(&bc->lock);
444         memalloc_nofs_restore(flags);
445
446         if (bc->table_init_done)
447                 rhashtable_destroy(&bc->table);
448 }
449
450 int bch2_fs_btree_cache_init(struct bch_fs *c)
451 {
452         struct btree_cache *bc = &c->btree_cache;
453         struct shrinker *shrink;
454         unsigned i;
455         int ret = 0;
456
457         ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
458         if (ret)
459                 goto err;
460
461         bc->table_init_done = true;
462
463         bch2_recalc_btree_reserve(c);
464
465         for (i = 0; i < bc->reserve; i++)
466                 if (!__bch2_btree_node_mem_alloc(c))
467                         goto err;
468
469         list_splice_init(&bc->live, &bc->freeable);
470
471         mutex_init(&c->verify_lock);
472
473         shrink = shrinker_alloc(0, "%s-btree_cache", c->name);
474         if (!shrink)
475                 goto err;
476         bc->shrink = shrink;
477         shrink->count_objects   = bch2_btree_cache_count;
478         shrink->scan_objects    = bch2_btree_cache_scan;
479         shrink->seeks           = 4;
480         shrink->private_data    = c;
481         shrinker_register(shrink);
482
483         return 0;
484 err:
485         return -BCH_ERR_ENOMEM_fs_btree_cache_init;
486 }
487
488 void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
489 {
490         mutex_init(&bc->lock);
491         INIT_LIST_HEAD(&bc->live);
492         INIT_LIST_HEAD(&bc->freeable);
493         INIT_LIST_HEAD(&bc->freed_pcpu);
494         INIT_LIST_HEAD(&bc->freed_nonpcpu);
495 }
496
497 /*
498  * We can only have one thread cannibalizing other cached btree nodes at a time,
499  * or we'll deadlock. We use an open coded mutex to ensure that, which a
500  * cannibalize_bucket() will take. This means every time we unlock the root of
501  * the btree, we need to release this lock if we have it held.
502  */
503 void bch2_btree_cache_cannibalize_unlock(struct btree_trans *trans)
504 {
505         struct bch_fs *c = trans->c;
506         struct btree_cache *bc = &c->btree_cache;
507
508         if (bc->alloc_lock == current) {
509                 trace_and_count(c, btree_cache_cannibalize_unlock, trans);
510                 bc->alloc_lock = NULL;
511                 closure_wake_up(&bc->alloc_wait);
512         }
513 }
514
515 int bch2_btree_cache_cannibalize_lock(struct btree_trans *trans, struct closure *cl)
516 {
517         struct bch_fs *c = trans->c;
518         struct btree_cache *bc = &c->btree_cache;
519         struct task_struct *old;
520
521         old = cmpxchg(&bc->alloc_lock, NULL, current);
522         if (old == NULL || old == current)
523                 goto success;
524
525         if (!cl) {
526                 trace_and_count(c, btree_cache_cannibalize_lock_fail, trans);
527                 return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock;
528         }
529
530         closure_wait(&bc->alloc_wait, cl);
531
532         /* Try again, after adding ourselves to waitlist */
533         old = cmpxchg(&bc->alloc_lock, NULL, current);
534         if (old == NULL || old == current) {
535                 /* We raced */
536                 closure_wake_up(&bc->alloc_wait);
537                 goto success;
538         }
539
540         trace_and_count(c, btree_cache_cannibalize_lock_fail, trans);
541         return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
542
543 success:
544         trace_and_count(c, btree_cache_cannibalize_lock, trans);
545         return 0;
546 }
547
548 static struct btree *btree_node_cannibalize(struct bch_fs *c)
549 {
550         struct btree_cache *bc = &c->btree_cache;
551         struct btree *b;
552
553         list_for_each_entry_reverse(b, &bc->live, list)
554                 if (!btree_node_reclaim(c, b))
555                         return b;
556
557         while (1) {
558                 list_for_each_entry_reverse(b, &bc->live, list)
559                         if (!btree_node_write_and_reclaim(c, b))
560                                 return b;
561
562                 /*
563                  * Rare case: all nodes were intent-locked.
564                  * Just busy-wait.
565                  */
566                 WARN_ONCE(1, "btree cache cannibalize failed\n");
567                 cond_resched();
568         }
569 }
570
571 struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks)
572 {
573         struct bch_fs *c = trans->c;
574         struct btree_cache *bc = &c->btree_cache;
575         struct list_head *freed = pcpu_read_locks
576                 ? &bc->freed_pcpu
577                 : &bc->freed_nonpcpu;
578         struct btree *b, *b2;
579         u64 start_time = local_clock();
580         unsigned flags;
581
582         flags = memalloc_nofs_save();
583         mutex_lock(&bc->lock);
584
585         /*
586          * We never free struct btree itself, just the memory that holds the on
587          * disk node. Check the freed list before allocating a new one:
588          */
589         list_for_each_entry(b, freed, list)
590                 if (!btree_node_reclaim(c, b)) {
591                         list_del_init(&b->list);
592                         goto got_node;
593                 }
594
595         b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN);
596         if (!b) {
597                 mutex_unlock(&bc->lock);
598                 bch2_trans_unlock(trans);
599                 b = __btree_node_mem_alloc(c, GFP_KERNEL);
600                 if (!b)
601                         goto err;
602                 mutex_lock(&bc->lock);
603         }
604
605         bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0);
606
607         BUG_ON(!six_trylock_intent(&b->c.lock));
608         BUG_ON(!six_trylock_write(&b->c.lock));
609 got_node:
610
611         /*
612          * btree_free() doesn't free memory; it sticks the node on the end of
613          * the list. Check if there's any freed nodes there:
614          */
615         list_for_each_entry(b2, &bc->freeable, list)
616                 if (!btree_node_reclaim(c, b2)) {
617                         swap(b->data, b2->data);
618                         swap(b->aux_data, b2->aux_data);
619                         btree_node_to_freedlist(bc, b2);
620                         six_unlock_write(&b2->c.lock);
621                         six_unlock_intent(&b2->c.lock);
622                         goto got_mem;
623                 }
624
625         mutex_unlock(&bc->lock);
626
627         if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) {
628                 bch2_trans_unlock(trans);
629                 if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN))
630                         goto err;
631         }
632
633         mutex_lock(&bc->lock);
634         bc->used++;
635 got_mem:
636         mutex_unlock(&bc->lock);
637
638         BUG_ON(btree_node_hashed(b));
639         BUG_ON(btree_node_dirty(b));
640         BUG_ON(btree_node_write_in_flight(b));
641 out:
642         b->flags                = 0;
643         b->written              = 0;
644         b->nsets                = 0;
645         b->sib_u64s[0]          = 0;
646         b->sib_u64s[1]          = 0;
647         b->whiteout_u64s        = 0;
648         bch2_btree_keys_init(b);
649         set_btree_node_accessed(b);
650
651         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
652                                start_time);
653
654         memalloc_nofs_restore(flags);
655         return b;
656 err:
657         mutex_lock(&bc->lock);
658
659         /* Try to cannibalize another cached btree node: */
660         if (bc->alloc_lock == current) {
661                 b2 = btree_node_cannibalize(c);
662                 clear_btree_node_just_written(b2);
663                 bch2_btree_node_hash_remove(bc, b2);
664
665                 if (b) {
666                         swap(b->data, b2->data);
667                         swap(b->aux_data, b2->aux_data);
668                         btree_node_to_freedlist(bc, b2);
669                         six_unlock_write(&b2->c.lock);
670                         six_unlock_intent(&b2->c.lock);
671                 } else {
672                         b = b2;
673                         list_del_init(&b->list);
674                 }
675
676                 mutex_unlock(&bc->lock);
677
678                 trace_and_count(c, btree_cache_cannibalize, trans);
679                 goto out;
680         }
681
682         mutex_unlock(&bc->lock);
683         memalloc_nofs_restore(flags);
684         return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc);
685 }
686
687 /* Slowpath, don't want it inlined into btree_iter_traverse() */
688 static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans,
689                                 struct btree_path *path,
690                                 const struct bkey_i *k,
691                                 enum btree_id btree_id,
692                                 unsigned level,
693                                 enum six_lock_type lock_type,
694                                 bool sync)
695 {
696         struct bch_fs *c = trans->c;
697         struct btree_cache *bc = &c->btree_cache;
698         struct btree *b;
699         u32 seq;
700
701         BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
702         /*
703          * Parent node must be locked, else we could read in a btree node that's
704          * been freed:
705          */
706         if (path && !bch2_btree_node_relock(trans, path, level + 1)) {
707                 trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
708                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
709         }
710
711         b = bch2_btree_node_mem_alloc(trans, level != 0);
712
713         if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) {
714                 trans->memory_allocation_failure = true;
715                 trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
716                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
717         }
718
719         if (IS_ERR(b))
720                 return b;
721
722         /*
723          * Btree nodes read in from disk should not have the accessed bit set
724          * initially, so that linear scans don't thrash the cache:
725          */
726         clear_btree_node_accessed(b);
727
728         bkey_copy(&b->key, k);
729         if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
730                 /* raced with another fill: */
731
732                 /* mark as unhashed... */
733                 b->hash_val = 0;
734
735                 mutex_lock(&bc->lock);
736                 list_add(&b->list, &bc->freeable);
737                 mutex_unlock(&bc->lock);
738
739                 six_unlock_write(&b->c.lock);
740                 six_unlock_intent(&b->c.lock);
741                 return NULL;
742         }
743
744         set_btree_node_read_in_flight(b);
745
746         six_unlock_write(&b->c.lock);
747         seq = six_lock_seq(&b->c.lock);
748         six_unlock_intent(&b->c.lock);
749
750         /* Unlock before doing IO: */
751         if (path && sync)
752                 bch2_trans_unlock_noassert(trans);
753
754         bch2_btree_node_read(trans, b, sync);
755
756         if (!sync)
757                 return NULL;
758
759         if (path) {
760                 int ret = bch2_trans_relock(trans) ?:
761                         bch2_btree_path_relock_intent(trans, path);
762                 if (ret) {
763                         BUG_ON(!trans->restarted);
764                         return ERR_PTR(ret);
765                 }
766         }
767
768         if (!six_relock_type(&b->c.lock, lock_type, seq)) {
769                 if (path)
770                         trace_and_count(c, trans_restart_relock_after_fill, trans, _THIS_IP_, path);
771                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill));
772         }
773
774         return b;
775 }
776
777 static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
778 {
779         struct printbuf buf = PRINTBUF;
780
781         if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations)
782                 return;
783
784         prt_printf(&buf,
785                "btree node header doesn't match ptr\n"
786                "btree %s level %u\n"
787                "ptr: ",
788                bch2_btree_id_str(b->c.btree_id), b->c.level);
789         bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
790
791         prt_printf(&buf, "\nheader: btree %s level %llu\n"
792                "min ",
793                bch2_btree_id_str(BTREE_NODE_ID(b->data)),
794                BTREE_NODE_LEVEL(b->data));
795         bch2_bpos_to_text(&buf, b->data->min_key);
796
797         prt_printf(&buf, "\nmax ");
798         bch2_bpos_to_text(&buf, b->data->max_key);
799
800         bch2_fs_inconsistent(c, "%s", buf.buf);
801         printbuf_exit(&buf);
802 }
803
804 static inline void btree_check_header(struct bch_fs *c, struct btree *b)
805 {
806         if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
807             b->c.level != BTREE_NODE_LEVEL(b->data) ||
808             !bpos_eq(b->data->max_key, b->key.k.p) ||
809             (b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
810              !bpos_eq(b->data->min_key,
811                       bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
812                 btree_bad_header(c, b);
813 }
814
815 static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
816                                            const struct bkey_i *k, unsigned level,
817                                            enum six_lock_type lock_type,
818                                            unsigned long trace_ip)
819 {
820         struct bch_fs *c = trans->c;
821         struct btree_cache *bc = &c->btree_cache;
822         struct btree *b;
823         struct bset_tree *t;
824         bool need_relock = false;
825         int ret;
826
827         EBUG_ON(level >= BTREE_MAX_DEPTH);
828 retry:
829         b = btree_cache_find(bc, k);
830         if (unlikely(!b)) {
831                 /*
832                  * We must have the parent locked to call bch2_btree_node_fill(),
833                  * else we could read in a btree node from disk that's been
834                  * freed:
835                  */
836                 b = bch2_btree_node_fill(trans, path, k, path->btree_id,
837                                          level, lock_type, true);
838                 need_relock = true;
839
840                 /* We raced and found the btree node in the cache */
841                 if (!b)
842                         goto retry;
843
844                 if (IS_ERR(b))
845                         return b;
846         } else {
847                 if (btree_node_read_locked(path, level + 1))
848                         btree_node_unlock(trans, path, level + 1);
849
850                 ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
851                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
852                         return ERR_PTR(ret);
853
854                 BUG_ON(ret);
855
856                 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
857                              b->c.level != level ||
858                              race_fault())) {
859                         six_unlock_type(&b->c.lock, lock_type);
860                         if (bch2_btree_node_relock(trans, path, level + 1))
861                                 goto retry;
862
863                         trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
864                         return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
865                 }
866
867                 /* avoid atomic set bit if it's not needed: */
868                 if (!btree_node_accessed(b))
869                         set_btree_node_accessed(b);
870         }
871
872         if (unlikely(btree_node_read_in_flight(b))) {
873                 u32 seq = six_lock_seq(&b->c.lock);
874
875                 six_unlock_type(&b->c.lock, lock_type);
876                 bch2_trans_unlock(trans);
877                 need_relock = true;
878
879                 bch2_btree_node_wait_on_read(b);
880
881                 /*
882                  * should_be_locked is not set on this path yet, so we need to
883                  * relock it specifically:
884                  */
885                 if (!six_relock_type(&b->c.lock, lock_type, seq))
886                         goto retry;
887         }
888
889         if (unlikely(need_relock)) {
890                 ret = bch2_trans_relock(trans) ?:
891                         bch2_btree_path_relock_intent(trans, path);
892                 if (ret) {
893                         six_unlock_type(&b->c.lock, lock_type);
894                         return ERR_PTR(ret);
895                 }
896         }
897
898         prefetch(b->aux_data);
899
900         for_each_bset(b, t) {
901                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
902
903                 prefetch(p + L1_CACHE_BYTES * 0);
904                 prefetch(p + L1_CACHE_BYTES * 1);
905                 prefetch(p + L1_CACHE_BYTES * 2);
906         }
907
908         if (unlikely(btree_node_read_error(b))) {
909                 six_unlock_type(&b->c.lock, lock_type);
910                 return ERR_PTR(-EIO);
911         }
912
913         EBUG_ON(b->c.btree_id != path->btree_id);
914         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
915         btree_check_header(c, b);
916
917         return b;
918 }
919
920 /**
921  * bch2_btree_node_get - find a btree node in the cache and lock it, reading it
922  * in from disk if necessary.
923  *
924  * @trans:      btree transaction object
925  * @path:       btree_path being traversed
926  * @k:          pointer to btree node (generally KEY_TYPE_btree_ptr_v2)
927  * @level:      level of btree node being looked up (0 == leaf node)
928  * @lock_type:  SIX_LOCK_read or SIX_LOCK_intent
929  * @trace_ip:   ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek())
930  *
931  * The btree node will have either a read or a write lock held, depending on
932  * the @write parameter.
933  *
934  * Returns: btree node or ERR_PTR()
935  */
936 struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
937                                   const struct bkey_i *k, unsigned level,
938                                   enum six_lock_type lock_type,
939                                   unsigned long trace_ip)
940 {
941         struct bch_fs *c = trans->c;
942         struct btree *b;
943         struct bset_tree *t;
944         int ret;
945
946         EBUG_ON(level >= BTREE_MAX_DEPTH);
947
948         b = btree_node_mem_ptr(k);
949
950         /*
951          * Check b->hash_val _before_ calling btree_node_lock() - this might not
952          * be the node we want anymore, and trying to lock the wrong node could
953          * cause an unneccessary transaction restart:
954          */
955         if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
956                      !b ||
957                      b->hash_val != btree_ptr_hash_val(k)))
958                 return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
959
960         if (btree_node_read_locked(path, level + 1))
961                 btree_node_unlock(trans, path, level + 1);
962
963         ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
964         if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
965                 return ERR_PTR(ret);
966
967         BUG_ON(ret);
968
969         if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
970                      b->c.level != level ||
971                      race_fault())) {
972                 six_unlock_type(&b->c.lock, lock_type);
973                 if (bch2_btree_node_relock(trans, path, level + 1))
974                         return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
975
976                 trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
977                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
978         }
979
980         if (unlikely(btree_node_read_in_flight(b))) {
981                 six_unlock_type(&b->c.lock, lock_type);
982                 return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
983         }
984
985         prefetch(b->aux_data);
986
987         for_each_bset(b, t) {
988                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
989
990                 prefetch(p + L1_CACHE_BYTES * 0);
991                 prefetch(p + L1_CACHE_BYTES * 1);
992                 prefetch(p + L1_CACHE_BYTES * 2);
993         }
994
995         /* avoid atomic set bit if it's not needed: */
996         if (!btree_node_accessed(b))
997                 set_btree_node_accessed(b);
998
999         if (unlikely(btree_node_read_error(b))) {
1000                 six_unlock_type(&b->c.lock, lock_type);
1001                 return ERR_PTR(-EIO);
1002         }
1003
1004         EBUG_ON(b->c.btree_id != path->btree_id);
1005         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1006         btree_check_header(c, b);
1007
1008         return b;
1009 }
1010
1011 struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
1012                                          const struct bkey_i *k,
1013                                          enum btree_id btree_id,
1014                                          unsigned level,
1015                                          bool nofill)
1016 {
1017         struct bch_fs *c = trans->c;
1018         struct btree_cache *bc = &c->btree_cache;
1019         struct btree *b;
1020         struct bset_tree *t;
1021         int ret;
1022
1023         EBUG_ON(level >= BTREE_MAX_DEPTH);
1024
1025         if (c->opts.btree_node_mem_ptr_optimization) {
1026                 b = btree_node_mem_ptr(k);
1027                 if (b)
1028                         goto lock_node;
1029         }
1030 retry:
1031         b = btree_cache_find(bc, k);
1032         if (unlikely(!b)) {
1033                 if (nofill)
1034                         goto out;
1035
1036                 b = bch2_btree_node_fill(trans, NULL, k, btree_id,
1037                                          level, SIX_LOCK_read, true);
1038
1039                 /* We raced and found the btree node in the cache */
1040                 if (!b)
1041                         goto retry;
1042
1043                 if (IS_ERR(b) &&
1044                     !bch2_btree_cache_cannibalize_lock(trans, NULL))
1045                         goto retry;
1046
1047                 if (IS_ERR(b))
1048                         goto out;
1049         } else {
1050 lock_node:
1051                 ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
1052                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1053                         return ERR_PTR(ret);
1054
1055                 BUG_ON(ret);
1056
1057                 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1058                              b->c.btree_id != btree_id ||
1059                              b->c.level != level)) {
1060                         six_unlock_read(&b->c.lock);
1061                         goto retry;
1062                 }
1063         }
1064
1065         /* XXX: waiting on IO with btree locks held: */
1066         __bch2_btree_node_wait_on_read(b);
1067
1068         prefetch(b->aux_data);
1069
1070         for_each_bset(b, t) {
1071                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
1072
1073                 prefetch(p + L1_CACHE_BYTES * 0);
1074                 prefetch(p + L1_CACHE_BYTES * 1);
1075                 prefetch(p + L1_CACHE_BYTES * 2);
1076         }
1077
1078         /* avoid atomic set bit if it's not needed: */
1079         if (!btree_node_accessed(b))
1080                 set_btree_node_accessed(b);
1081
1082         if (unlikely(btree_node_read_error(b))) {
1083                 six_unlock_read(&b->c.lock);
1084                 b = ERR_PTR(-EIO);
1085                 goto out;
1086         }
1087
1088         EBUG_ON(b->c.btree_id != btree_id);
1089         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1090         btree_check_header(c, b);
1091 out:
1092         bch2_btree_cache_cannibalize_unlock(trans);
1093         return b;
1094 }
1095
1096 int bch2_btree_node_prefetch(struct btree_trans *trans,
1097                              struct btree_path *path,
1098                              const struct bkey_i *k,
1099                              enum btree_id btree_id, unsigned level)
1100 {
1101         struct bch_fs *c = trans->c;
1102         struct btree_cache *bc = &c->btree_cache;
1103         struct btree *b;
1104
1105         BUG_ON(trans && !btree_node_locked(path, level + 1));
1106         BUG_ON(level >= BTREE_MAX_DEPTH);
1107
1108         b = btree_cache_find(bc, k);
1109         if (b)
1110                 return 0;
1111
1112         b = bch2_btree_node_fill(trans, path, k, btree_id,
1113                                  level, SIX_LOCK_read, false);
1114         return PTR_ERR_OR_ZERO(b);
1115 }
1116
1117 void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
1118 {
1119         struct bch_fs *c = trans->c;
1120         struct btree_cache *bc = &c->btree_cache;
1121         struct btree *b;
1122
1123         b = btree_cache_find(bc, k);
1124         if (!b)
1125                 return;
1126 wait_on_io:
1127         /* not allowed to wait on io with btree locks held: */
1128
1129         /* XXX we're called from btree_gc which will be holding other btree
1130          * nodes locked
1131          */
1132         __bch2_btree_node_wait_on_read(b);
1133         __bch2_btree_node_wait_on_write(b);
1134
1135         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
1136         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
1137
1138         if (btree_node_dirty(b)) {
1139                 __bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
1140                 six_unlock_write(&b->c.lock);
1141                 six_unlock_intent(&b->c.lock);
1142                 goto wait_on_io;
1143         }
1144
1145         BUG_ON(btree_node_dirty(b));
1146
1147         mutex_lock(&bc->lock);
1148         btree_node_data_free(c, b);
1149         bch2_btree_node_hash_remove(bc, b);
1150         mutex_unlock(&bc->lock);
1151
1152         six_unlock_write(&b->c.lock);
1153         six_unlock_intent(&b->c.lock);
1154 }
1155
1156 const char *bch2_btree_id_str(enum btree_id btree)
1157 {
1158         return btree < BTREE_ID_NR ? __bch2_btree_ids[btree] : "(unknown)";
1159 }
1160
1161 void bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1162 {
1163         prt_printf(out, "%s level %u/%u\n  ",
1164                bch2_btree_id_str(b->c.btree_id),
1165                b->c.level,
1166                bch2_btree_id_root(c, b->c.btree_id)->level);
1167         bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1168 }
1169
1170 void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1171 {
1172         struct bset_stats stats;
1173
1174         memset(&stats, 0, sizeof(stats));
1175
1176         bch2_btree_keys_stats(b, &stats);
1177
1178         prt_printf(out, "l %u ", b->c.level);
1179         bch2_bpos_to_text(out, b->data->min_key);
1180         prt_printf(out, " - ");
1181         bch2_bpos_to_text(out, b->data->max_key);
1182         prt_printf(out, ":\n"
1183                "    ptrs: ");
1184         bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1185         prt_newline(out);
1186
1187         prt_printf(out,
1188                "    format: ");
1189         bch2_bkey_format_to_text(out, &b->format);
1190
1191         prt_printf(out,
1192                "    unpack fn len: %u\n"
1193                "    bytes used %zu/%zu (%zu%% full)\n"
1194                "    sib u64s: %u, %u (merge threshold %u)\n"
1195                "    nr packed keys %u\n"
1196                "    nr unpacked keys %u\n"
1197                "    floats %zu\n"
1198                "    failed unpacked %zu\n",
1199                b->unpack_fn_len,
1200                b->nr.live_u64s * sizeof(u64),
1201                btree_bytes(c) - sizeof(struct btree_node),
1202                b->nr.live_u64s * 100 / btree_max_u64s(c),
1203                b->sib_u64s[0],
1204                b->sib_u64s[1],
1205                c->btree_foreground_merge_threshold,
1206                b->nr.packed_keys,
1207                b->nr.unpacked_keys,
1208                stats.floats,
1209                stats.failed);
1210 }
1211
1212 void bch2_btree_cache_to_text(struct printbuf *out, const struct bch_fs *c)
1213 {
1214         prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
1215         prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
1216         prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
1217 }