]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_cache.c
Update bcachefs sources to fbb669e9de bcachefs: Kill btree_node_iter_large
[bcachefs-tools-debian] / libbcachefs / btree_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_io.h"
6 #include "btree_iter.h"
7 #include "btree_locking.h"
8 #include "debug.h"
9
10 #include <linux/prefetch.h>
11 #include <linux/sched/mm.h>
12 #include <trace/events/bcachefs.h>
13
14 const char * const bch2_btree_ids[] = {
15 #define x(kwd, val, name) name,
16         BCH_BTREE_IDS()
17 #undef x
18         NULL
19 };
20
21 void bch2_recalc_btree_reserve(struct bch_fs *c)
22 {
23         unsigned i, reserve = 16;
24
25         if (!c->btree_roots[0].b)
26                 reserve += 8;
27
28         for (i = 0; i < BTREE_ID_NR; i++)
29                 if (c->btree_roots[i].b)
30                         reserve += min_t(unsigned, 1,
31                                          c->btree_roots[i].b->level) * 8;
32
33         c->btree_cache.reserve = reserve;
34 }
35
36 static inline unsigned btree_cache_can_free(struct btree_cache *bc)
37 {
38         return max_t(int, 0, bc->used - bc->reserve);
39 }
40
41 static void __btree_node_data_free(struct bch_fs *c, struct btree *b)
42 {
43         EBUG_ON(btree_node_write_in_flight(b));
44
45         kvpfree(b->data, btree_bytes(c));
46         b->data = NULL;
47         bch2_btree_keys_free(b);
48 }
49
50 static void btree_node_data_free(struct bch_fs *c, struct btree *b)
51 {
52         struct btree_cache *bc = &c->btree_cache;
53
54         __btree_node_data_free(c, b);
55         bc->used--;
56         list_move(&b->list, &bc->freed);
57 }
58
59 static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
60                                    const void *obj)
61 {
62         const struct btree *b = obj;
63         const u64 *v = arg->key;
64
65         return PTR_HASH(&b->key) == *v ? 0 : 1;
66 }
67
68 static const struct rhashtable_params bch_btree_cache_params = {
69         .head_offset    = offsetof(struct btree, hash),
70         .key_offset     = offsetof(struct btree, key.v),
71         .key_len        = sizeof(struct bch_extent_ptr),
72         .obj_cmpfn      = bch2_btree_cache_cmp_fn,
73 };
74
75 static void btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
76 {
77         struct btree_cache *bc = &c->btree_cache;
78
79         b->data = kvpmalloc(btree_bytes(c), gfp);
80         if (!b->data)
81                 goto err;
82
83         if (bch2_btree_keys_alloc(b, btree_page_order(c), gfp))
84                 goto err;
85
86         bc->used++;
87         list_move(&b->list, &bc->freeable);
88         return;
89 err:
90         kvpfree(b->data, btree_bytes(c));
91         b->data = NULL;
92         list_move(&b->list, &bc->freed);
93 }
94
95 static struct btree *btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
96 {
97         struct btree *b = kzalloc(sizeof(struct btree), gfp);
98         if (!b)
99                 return NULL;
100
101         bkey_btree_ptr_init(&b->key);
102         six_lock_init(&b->lock);
103         INIT_LIST_HEAD(&b->list);
104         INIT_LIST_HEAD(&b->write_blocked);
105
106         btree_node_data_alloc(c, b, gfp);
107         return b->data ? b : NULL;
108 }
109
110 /* Btree in memory cache - hash table */
111
112 void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
113 {
114         rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
115
116         /* Cause future lookups for this node to fail: */
117         PTR_HASH(&b->key) = 0;
118 }
119
120 int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
121 {
122         return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
123                                              bch_btree_cache_params);
124 }
125
126 int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
127                                 unsigned level, enum btree_id id)
128 {
129         int ret;
130
131         b->level        = level;
132         b->btree_id     = id;
133
134         mutex_lock(&bc->lock);
135         ret = __bch2_btree_node_hash_insert(bc, b);
136         if (!ret)
137                 list_add(&b->list, &bc->live);
138         mutex_unlock(&bc->lock);
139
140         return ret;
141 }
142
143 __flatten
144 static inline struct btree *btree_cache_find(struct btree_cache *bc,
145                                      const struct bkey_i *k)
146 {
147         return rhashtable_lookup_fast(&bc->table, &PTR_HASH(k),
148                                       bch_btree_cache_params);
149 }
150
151 /*
152  * this version is for btree nodes that have already been freed (we're not
153  * reaping a real btree node)
154  */
155 static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
156 {
157         struct btree_cache *bc = &c->btree_cache;
158         int ret = 0;
159
160         lockdep_assert_held(&bc->lock);
161
162         if (!six_trylock_intent(&b->lock))
163                 return -ENOMEM;
164
165         if (!six_trylock_write(&b->lock))
166                 goto out_unlock_intent;
167
168         if (btree_node_noevict(b))
169                 goto out_unlock;
170
171         if (!btree_node_may_write(b))
172                 goto out_unlock;
173
174         if (btree_node_dirty(b) &&
175             test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags))
176                 goto out_unlock;
177
178         if (btree_node_dirty(b) ||
179             btree_node_write_in_flight(b) ||
180             btree_node_read_in_flight(b)) {
181                 if (!flush)
182                         goto out_unlock;
183
184                 wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
185                                TASK_UNINTERRUPTIBLE);
186
187                 /*
188                  * Using the underscore version because we don't want to compact
189                  * bsets after the write, since this node is about to be evicted
190                  * - unless btree verify mode is enabled, since it runs out of
191                  * the post write cleanup:
192                  */
193                 if (verify_btree_ondisk(c))
194                         bch2_btree_node_write(c, b, SIX_LOCK_intent);
195                 else
196                         __bch2_btree_node_write(c, b, SIX_LOCK_read);
197
198                 /* wait for any in flight btree write */
199                 btree_node_wait_on_io(b);
200         }
201 out:
202         if (PTR_HASH(&b->key) && !ret)
203                 trace_btree_node_reap(c, b);
204         return ret;
205 out_unlock:
206         six_unlock_write(&b->lock);
207 out_unlock_intent:
208         six_unlock_intent(&b->lock);
209         ret = -ENOMEM;
210         goto out;
211 }
212
213 static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
214 {
215         return __btree_node_reclaim(c, b, false);
216 }
217
218 static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
219 {
220         return __btree_node_reclaim(c, b, true);
221 }
222
223 static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
224                                            struct shrink_control *sc)
225 {
226         struct bch_fs *c = container_of(shrink, struct bch_fs,
227                                         btree_cache.shrink);
228         struct btree_cache *bc = &c->btree_cache;
229         struct btree *b, *t;
230         unsigned long nr = sc->nr_to_scan;
231         unsigned long can_free;
232         unsigned long touched = 0;
233         unsigned long freed = 0;
234         unsigned i;
235
236         if (btree_shrinker_disabled(c))
237                 return SHRINK_STOP;
238
239         /* Return -1 if we can't do anything right now */
240         if (sc->gfp_mask & __GFP_IO)
241                 mutex_lock(&bc->lock);
242         else if (!mutex_trylock(&bc->lock))
243                 return -1;
244
245         /*
246          * It's _really_ critical that we don't free too many btree nodes - we
247          * have to always leave ourselves a reserve. The reserve is how we
248          * guarantee that allocating memory for a new btree node can always
249          * succeed, so that inserting keys into the btree can always succeed and
250          * IO can always make forward progress:
251          */
252         nr /= btree_pages(c);
253         can_free = btree_cache_can_free(bc);
254         nr = min_t(unsigned long, nr, can_free);
255
256         i = 0;
257         list_for_each_entry_safe(b, t, &bc->freeable, list) {
258                 touched++;
259
260                 if (freed >= nr)
261                         break;
262
263                 if (++i > 3 &&
264                     !btree_node_reclaim(c, b)) {
265                         btree_node_data_free(c, b);
266                         six_unlock_write(&b->lock);
267                         six_unlock_intent(&b->lock);
268                         freed++;
269                 }
270         }
271 restart:
272         list_for_each_entry_safe(b, t, &bc->live, list) {
273                 touched++;
274
275                 if (freed >= nr) {
276                         /* Save position */
277                         if (&t->list != &bc->live)
278                                 list_move_tail(&bc->live, &t->list);
279                         break;
280                 }
281
282                 if (!btree_node_accessed(b) &&
283                     !btree_node_reclaim(c, b)) {
284                         /* can't call bch2_btree_node_hash_remove under lock  */
285                         freed++;
286                         if (&t->list != &bc->live)
287                                 list_move_tail(&bc->live, &t->list);
288
289                         btree_node_data_free(c, b);
290                         mutex_unlock(&bc->lock);
291
292                         bch2_btree_node_hash_remove(bc, b);
293                         six_unlock_write(&b->lock);
294                         six_unlock_intent(&b->lock);
295
296                         if (freed >= nr)
297                                 goto out;
298
299                         if (sc->gfp_mask & __GFP_IO)
300                                 mutex_lock(&bc->lock);
301                         else if (!mutex_trylock(&bc->lock))
302                                 goto out;
303                         goto restart;
304                 } else
305                         clear_btree_node_accessed(b);
306         }
307
308         mutex_unlock(&bc->lock);
309 out:
310         return (unsigned long) freed * btree_pages(c);
311 }
312
313 static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
314                                             struct shrink_control *sc)
315 {
316         struct bch_fs *c = container_of(shrink, struct bch_fs,
317                                         btree_cache.shrink);
318         struct btree_cache *bc = &c->btree_cache;
319
320         if (btree_shrinker_disabled(c))
321                 return 0;
322
323         return btree_cache_can_free(bc) * btree_pages(c);
324 }
325
326 void bch2_fs_btree_cache_exit(struct bch_fs *c)
327 {
328         struct btree_cache *bc = &c->btree_cache;
329         struct btree *b;
330         unsigned i;
331
332         if (bc->shrink.list.next)
333                 unregister_shrinker(&bc->shrink);
334
335         mutex_lock(&bc->lock);
336
337 #ifdef CONFIG_BCACHEFS_DEBUG
338         if (c->verify_data)
339                 list_move(&c->verify_data->list, &bc->live);
340
341         kvpfree(c->verify_ondisk, btree_bytes(c));
342 #endif
343
344         for (i = 0; i < BTREE_ID_NR; i++)
345                 if (c->btree_roots[i].b)
346                         list_add(&c->btree_roots[i].b->list, &bc->live);
347
348         list_splice(&bc->freeable, &bc->live);
349
350         while (!list_empty(&bc->live)) {
351                 b = list_first_entry(&bc->live, struct btree, list);
352
353                 BUG_ON(btree_node_read_in_flight(b) ||
354                        btree_node_write_in_flight(b));
355
356                 if (btree_node_dirty(b))
357                         bch2_btree_complete_write(c, b, btree_current_write(b));
358                 clear_btree_node_dirty(b);
359
360                 btree_node_data_free(c, b);
361         }
362
363         while (!list_empty(&bc->freed)) {
364                 b = list_first_entry(&bc->freed, struct btree, list);
365                 list_del(&b->list);
366                 kfree(b);
367         }
368
369         mutex_unlock(&bc->lock);
370
371         if (bc->table_init_done)
372                 rhashtable_destroy(&bc->table);
373 }
374
375 int bch2_fs_btree_cache_init(struct bch_fs *c)
376 {
377         struct btree_cache *bc = &c->btree_cache;
378         unsigned i;
379         int ret = 0;
380
381         pr_verbose_init(c->opts, "");
382
383         ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
384         if (ret)
385                 goto out;
386
387         bc->table_init_done = true;
388
389         bch2_recalc_btree_reserve(c);
390
391         for (i = 0; i < bc->reserve; i++)
392                 if (!btree_node_mem_alloc(c, GFP_KERNEL)) {
393                         ret = -ENOMEM;
394                         goto out;
395                 }
396
397         list_splice_init(&bc->live, &bc->freeable);
398
399 #ifdef CONFIG_BCACHEFS_DEBUG
400         mutex_init(&c->verify_lock);
401
402         c->verify_ondisk = kvpmalloc(btree_bytes(c), GFP_KERNEL);
403         if (!c->verify_ondisk) {
404                 ret = -ENOMEM;
405                 goto out;
406         }
407
408         c->verify_data = btree_node_mem_alloc(c, GFP_KERNEL);
409         if (!c->verify_data) {
410                 ret = -ENOMEM;
411                 goto out;
412         }
413
414         list_del_init(&c->verify_data->list);
415 #endif
416
417         bc->shrink.count_objects        = bch2_btree_cache_count;
418         bc->shrink.scan_objects         = bch2_btree_cache_scan;
419         bc->shrink.seeks                = 4;
420         bc->shrink.batch                = btree_pages(c) * 2;
421         register_shrinker(&bc->shrink);
422 out:
423         pr_verbose_init(c->opts, "ret %i", ret);
424         return ret;
425 }
426
427 void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
428 {
429         mutex_init(&bc->lock);
430         INIT_LIST_HEAD(&bc->live);
431         INIT_LIST_HEAD(&bc->freeable);
432         INIT_LIST_HEAD(&bc->freed);
433 }
434
435 /*
436  * We can only have one thread cannibalizing other cached btree nodes at a time,
437  * or we'll deadlock. We use an open coded mutex to ensure that, which a
438  * cannibalize_bucket() will take. This means every time we unlock the root of
439  * the btree, we need to release this lock if we have it held.
440  */
441 void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
442 {
443         struct btree_cache *bc = &c->btree_cache;
444
445         if (bc->alloc_lock == current) {
446                 trace_btree_node_cannibalize_unlock(c);
447                 bc->alloc_lock = NULL;
448                 closure_wake_up(&bc->alloc_wait);
449         }
450 }
451
452 int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
453 {
454         struct btree_cache *bc = &c->btree_cache;
455         struct task_struct *old;
456
457         old = cmpxchg(&bc->alloc_lock, NULL, current);
458         if (old == NULL || old == current)
459                 goto success;
460
461         if (!cl) {
462                 trace_btree_node_cannibalize_lock_fail(c);
463                 return -ENOMEM;
464         }
465
466         closure_wait(&bc->alloc_wait, cl);
467
468         /* Try again, after adding ourselves to waitlist */
469         old = cmpxchg(&bc->alloc_lock, NULL, current);
470         if (old == NULL || old == current) {
471                 /* We raced */
472                 closure_wake_up(&bc->alloc_wait);
473                 goto success;
474         }
475
476         trace_btree_node_cannibalize_lock_fail(c);
477         return -EAGAIN;
478
479 success:
480         trace_btree_node_cannibalize_lock(c);
481         return 0;
482 }
483
484 static struct btree *btree_node_cannibalize(struct bch_fs *c)
485 {
486         struct btree_cache *bc = &c->btree_cache;
487         struct btree *b;
488
489         list_for_each_entry_reverse(b, &bc->live, list)
490                 if (!btree_node_reclaim(c, b))
491                         return b;
492
493         while (1) {
494                 list_for_each_entry_reverse(b, &bc->live, list)
495                         if (!btree_node_write_and_reclaim(c, b))
496                                 return b;
497
498                 /*
499                  * Rare case: all nodes were intent-locked.
500                  * Just busy-wait.
501                  */
502                 WARN_ONCE(1, "btree cache cannibalize failed\n");
503                 cond_resched();
504         }
505 }
506
507 struct btree *bch2_btree_node_mem_alloc(struct bch_fs *c)
508 {
509         struct btree_cache *bc = &c->btree_cache;
510         struct btree *b;
511         u64 start_time = local_clock();
512         unsigned flags;
513
514         flags = memalloc_nofs_save();
515         mutex_lock(&bc->lock);
516
517         /*
518          * btree_free() doesn't free memory; it sticks the node on the end of
519          * the list. Check if there's any freed nodes there:
520          */
521         list_for_each_entry(b, &bc->freeable, list)
522                 if (!btree_node_reclaim(c, b))
523                         goto out_unlock;
524
525         /*
526          * We never free struct btree itself, just the memory that holds the on
527          * disk node. Check the freed list before allocating a new one:
528          */
529         list_for_each_entry(b, &bc->freed, list)
530                 if (!btree_node_reclaim(c, b)) {
531                         btree_node_data_alloc(c, b, __GFP_NOWARN|GFP_NOIO);
532                         if (b->data)
533                                 goto out_unlock;
534
535                         six_unlock_write(&b->lock);
536                         six_unlock_intent(&b->lock);
537                         goto err;
538                 }
539
540         b = btree_node_mem_alloc(c, __GFP_NOWARN|GFP_NOIO);
541         if (!b)
542                 goto err;
543
544         BUG_ON(!six_trylock_intent(&b->lock));
545         BUG_ON(!six_trylock_write(&b->lock));
546 out_unlock:
547         BUG_ON(btree_node_hashed(b));
548         BUG_ON(btree_node_write_in_flight(b));
549
550         list_del_init(&b->list);
551         mutex_unlock(&bc->lock);
552         memalloc_nofs_restore(flags);
553 out:
554         b->flags                = 0;
555         b->written              = 0;
556         b->nsets                = 0;
557         b->sib_u64s[0]          = 0;
558         b->sib_u64s[1]          = 0;
559         b->whiteout_u64s        = 0;
560         bch2_btree_keys_init(b, &c->expensive_debug_checks);
561
562         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
563                                start_time);
564
565         return b;
566 err:
567         /* Try to cannibalize another cached btree node: */
568         if (bc->alloc_lock == current) {
569                 b = btree_node_cannibalize(c);
570                 list_del_init(&b->list);
571                 mutex_unlock(&bc->lock);
572
573                 bch2_btree_node_hash_remove(bc, b);
574
575                 trace_btree_node_cannibalize(c);
576                 goto out;
577         }
578
579         mutex_unlock(&bc->lock);
580         return ERR_PTR(-ENOMEM);
581 }
582
583 /* Slowpath, don't want it inlined into btree_iter_traverse() */
584 static noinline struct btree *bch2_btree_node_fill(struct bch_fs *c,
585                                 struct btree_iter *iter,
586                                 const struct bkey_i *k,
587                                 unsigned level,
588                                 enum six_lock_type lock_type,
589                                 bool sync)
590 {
591         struct btree_cache *bc = &c->btree_cache;
592         struct btree *b;
593
594         /*
595          * Parent node must be locked, else we could read in a btree node that's
596          * been freed:
597          */
598         BUG_ON(!btree_node_locked(iter, level + 1));
599         BUG_ON(level >= BTREE_MAX_DEPTH);
600
601         b = bch2_btree_node_mem_alloc(c);
602         if (IS_ERR(b))
603                 return b;
604
605         bkey_copy(&b->key, k);
606         if (bch2_btree_node_hash_insert(bc, b, level, iter->btree_id)) {
607                 /* raced with another fill: */
608
609                 /* mark as unhashed... */
610                 PTR_HASH(&b->key) = 0;
611
612                 mutex_lock(&bc->lock);
613                 list_add(&b->list, &bc->freeable);
614                 mutex_unlock(&bc->lock);
615
616                 six_unlock_write(&b->lock);
617                 six_unlock_intent(&b->lock);
618                 return NULL;
619         }
620
621         /*
622          * If the btree node wasn't cached, we can't drop our lock on
623          * the parent until after it's added to the cache - because
624          * otherwise we could race with a btree_split() freeing the node
625          * we're trying to lock.
626          *
627          * But the deadlock described below doesn't exist in this case,
628          * so it's safe to not drop the parent lock until here:
629          */
630         if (btree_node_read_locked(iter, level + 1))
631                 btree_node_unlock(iter, level + 1);
632
633         bch2_btree_node_read(c, b, sync);
634
635         six_unlock_write(&b->lock);
636
637         if (!sync) {
638                 six_unlock_intent(&b->lock);
639                 return NULL;
640         }
641
642         if (lock_type == SIX_LOCK_read)
643                 six_lock_downgrade(&b->lock);
644
645         return b;
646 }
647
648 /**
649  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
650  * in from disk if necessary.
651  *
652  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
653  *
654  * The btree node will have either a read or a write lock held, depending on
655  * the @write parameter.
656  */
657 struct btree *bch2_btree_node_get(struct bch_fs *c, struct btree_iter *iter,
658                                   const struct bkey_i *k, unsigned level,
659                                   enum six_lock_type lock_type)
660 {
661         struct btree_cache *bc = &c->btree_cache;
662         struct btree *b;
663         struct bset_tree *t;
664
665         /*
666          * XXX: locking optimization
667          *
668          * we can make the locking looser here - caller can drop lock on parent
669          * node before locking child node (and potentially blocking): we just
670          * have to have bch2_btree_node_fill() call relock on the parent and
671          * return -EINTR if that fails
672          */
673         EBUG_ON(!btree_node_locked(iter, level + 1));
674         EBUG_ON(level >= BTREE_MAX_DEPTH);
675 retry:
676         b = btree_cache_find(bc, k);
677         if (unlikely(!b)) {
678                 /*
679                  * We must have the parent locked to call bch2_btree_node_fill(),
680                  * else we could read in a btree node from disk that's been
681                  * freed:
682                  */
683                 b = bch2_btree_node_fill(c, iter, k, level, lock_type, true);
684
685                 /* We raced and found the btree node in the cache */
686                 if (!b)
687                         goto retry;
688
689                 if (IS_ERR(b))
690                         return b;
691         } else {
692                 /*
693                  * There's a potential deadlock with splits and insertions into
694                  * interior nodes we have to avoid:
695                  *
696                  * The other thread might be holding an intent lock on the node
697                  * we want, and they want to update its parent node so they're
698                  * going to upgrade their intent lock on the parent node to a
699                  * write lock.
700                  *
701                  * But if we're holding a read lock on the parent, and we're
702                  * trying to get the intent lock they're holding, we deadlock.
703                  *
704                  * So to avoid this we drop the read locks on parent nodes when
705                  * we're starting to take intent locks - and handle the race.
706                  *
707                  * The race is that they might be about to free the node we
708                  * want, and dropping our read lock on the parent node lets them
709                  * update the parent marking the node we want as freed, and then
710                  * free it:
711                  *
712                  * To guard against this, btree nodes are evicted from the cache
713                  * when they're freed - and PTR_HASH() is zeroed out, which we
714                  * check for after we lock the node.
715                  *
716                  * Then, bch2_btree_node_relock() on the parent will fail - because
717                  * the parent was modified, when the pointer to the node we want
718                  * was removed - and we'll bail out:
719                  */
720                 if (btree_node_read_locked(iter, level + 1))
721                         btree_node_unlock(iter, level + 1);
722
723                 if (!btree_node_lock(b, k->k.p, level, iter, lock_type))
724                         return ERR_PTR(-EINTR);
725
726                 if (unlikely(PTR_HASH(&b->key) != PTR_HASH(k) ||
727                              b->level != level ||
728                              race_fault())) {
729                         six_unlock_type(&b->lock, lock_type);
730                         if (bch2_btree_node_relock(iter, level + 1))
731                                 goto retry;
732
733                         trace_trans_restart_btree_node_reused(iter->trans->ip);
734                         return ERR_PTR(-EINTR);
735                 }
736         }
737
738         wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
739                        TASK_UNINTERRUPTIBLE);
740
741         prefetch(b->aux_data);
742
743         for_each_bset(b, t) {
744                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
745
746                 prefetch(p + L1_CACHE_BYTES * 0);
747                 prefetch(p + L1_CACHE_BYTES * 1);
748                 prefetch(p + L1_CACHE_BYTES * 2);
749         }
750
751         /* avoid atomic set bit if it's not needed: */
752         if (btree_node_accessed(b))
753                 set_btree_node_accessed(b);
754
755         if (unlikely(btree_node_read_error(b))) {
756                 six_unlock_type(&b->lock, lock_type);
757                 return ERR_PTR(-EIO);
758         }
759
760         EBUG_ON(b->btree_id != iter->btree_id ||
761                 BTREE_NODE_LEVEL(b->data) != level ||
762                 bkey_cmp(b->data->max_key, k->k.p));
763
764         return b;
765 }
766
767 struct btree *bch2_btree_node_get_sibling(struct bch_fs *c,
768                                           struct btree_iter *iter,
769                                           struct btree *b,
770                                           enum btree_node_sibling sib)
771 {
772         struct btree_trans *trans = iter->trans;
773         struct btree *parent;
774         struct btree_node_iter node_iter;
775         struct bkey_packed *k;
776         BKEY_PADDED(k) tmp;
777         struct btree *ret = NULL;
778         unsigned level = b->level;
779
780         parent = btree_iter_node(iter, level + 1);
781         if (!parent)
782                 return NULL;
783
784         if (!bch2_btree_node_relock(iter, level + 1)) {
785                 ret = ERR_PTR(-EINTR);
786                 goto out;
787         }
788
789         node_iter = iter->l[parent->level].iter;
790
791         k = bch2_btree_node_iter_peek_all(&node_iter, parent);
792         BUG_ON(bkey_cmp_left_packed(parent, k, &b->key.k.p));
793
794         k = sib == btree_prev_sib
795                 ? bch2_btree_node_iter_prev(&node_iter, parent)
796                 : (bch2_btree_node_iter_advance(&node_iter, parent),
797                    bch2_btree_node_iter_peek(&node_iter, parent));
798         if (!k)
799                 goto out;
800
801         bch2_bkey_unpack(parent, &tmp.k, k);
802
803         ret = bch2_btree_node_get(c, iter, &tmp.k, level,
804                                   SIX_LOCK_intent);
805
806         if (PTR_ERR_OR_ZERO(ret) == -EINTR && !trans->nounlock) {
807                 struct btree_iter *linked;
808
809                 if (!bch2_btree_node_relock(iter, level + 1))
810                         goto out;
811
812                 /*
813                  * We might have got -EINTR because trylock failed, and we're
814                  * holding other locks that would cause us to deadlock:
815                  */
816                 trans_for_each_iter(trans, linked)
817                         if (btree_iter_cmp(iter, linked) < 0)
818                                 __bch2_btree_iter_unlock(linked);
819
820                 if (sib == btree_prev_sib)
821                         btree_node_unlock(iter, level);
822
823                 ret = bch2_btree_node_get(c, iter, &tmp.k, level,
824                                           SIX_LOCK_intent);
825
826                 /*
827                  * before btree_iter_relock() calls btree_iter_verify_locks():
828                  */
829                 if (btree_lock_want(iter, level + 1) == BTREE_NODE_UNLOCKED)
830                         btree_node_unlock(iter, level + 1);
831
832                 if (!bch2_btree_node_relock(iter, level)) {
833                         btree_iter_set_dirty(iter, BTREE_ITER_NEED_RELOCK);
834
835                         if (!IS_ERR(ret)) {
836                                 six_unlock_intent(&ret->lock);
837                                 ret = ERR_PTR(-EINTR);
838                         }
839                 }
840
841                 bch2_trans_relock(trans);
842         }
843 out:
844         if (btree_lock_want(iter, level + 1) == BTREE_NODE_UNLOCKED)
845                 btree_node_unlock(iter, level + 1);
846
847         if (PTR_ERR_OR_ZERO(ret) == -EINTR)
848                 bch2_btree_iter_upgrade(iter, level + 2);
849
850         BUG_ON(!IS_ERR(ret) && !btree_node_locked(iter, level));
851
852         if (!IS_ERR_OR_NULL(ret)) {
853                 struct btree *n1 = ret, *n2 = b;
854
855                 if (sib != btree_prev_sib)
856                         swap(n1, n2);
857
858                 BUG_ON(bkey_cmp(btree_type_successor(n1->btree_id,
859                                                      n1->key.k.p),
860                                 n2->data->min_key));
861         }
862
863         bch2_btree_trans_verify_locks(trans);
864
865         return ret;
866 }
867
868 void bch2_btree_node_prefetch(struct bch_fs *c, struct btree_iter *iter,
869                               const struct bkey_i *k, unsigned level)
870 {
871         struct btree_cache *bc = &c->btree_cache;
872         struct btree *b;
873
874         BUG_ON(!btree_node_locked(iter, level + 1));
875         BUG_ON(level >= BTREE_MAX_DEPTH);
876
877         b = btree_cache_find(bc, k);
878         if (b)
879                 return;
880
881         bch2_btree_node_fill(c, iter, k, level, SIX_LOCK_read, false);
882 }
883
884 void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
885                              struct btree *b)
886 {
887         const struct bkey_format *f = &b->format;
888         struct bset_stats stats;
889
890         memset(&stats, 0, sizeof(stats));
891
892         bch2_btree_keys_stats(b, &stats);
893
894         pr_buf(out,
895                "l %u %llu:%llu - %llu:%llu:\n"
896                "    ptrs: ",
897                b->level,
898                b->data->min_key.inode,
899                b->data->min_key.offset,
900                b->data->max_key.inode,
901                b->data->max_key.offset);
902         bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
903         pr_buf(out, "\n"
904                "    format: u64s %u fields %u %u %u %u %u\n"
905                "    unpack fn len: %u\n"
906                "    bytes used %zu/%zu (%zu%% full)\n"
907                "    sib u64s: %u, %u (merge threshold %zu)\n"
908                "    nr packed keys %u\n"
909                "    nr unpacked keys %u\n"
910                "    floats %zu\n"
911                "    failed unpacked %zu\n",
912                f->key_u64s,
913                f->bits_per_field[0],
914                f->bits_per_field[1],
915                f->bits_per_field[2],
916                f->bits_per_field[3],
917                f->bits_per_field[4],
918                b->unpack_fn_len,
919                b->nr.live_u64s * sizeof(u64),
920                btree_bytes(c) - sizeof(struct btree_node),
921                b->nr.live_u64s * 100 / btree_max_u64s(c),
922                b->sib_u64s[0],
923                b->sib_u64s[1],
924                BTREE_FOREGROUND_MERGE_THRESHOLD(c),
925                b->nr.packed_keys,
926                b->nr.unpacked_keys,
927                stats.floats,
928                stats.failed);
929 }