]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_cache.c
Update bcachefs sources to 24c6361e20 bcachefs: Fix a trans path overflow in bch2_btr...
[bcachefs-tools-debian] / libbcachefs / btree_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "btree_cache.h"
6 #include "btree_io.h"
7 #include "btree_iter.h"
8 #include "btree_locking.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12
13 #include <linux/prefetch.h>
14 #include <linux/sched/mm.h>
15 #include <trace/events/bcachefs.h>
16
17 const char * const bch2_btree_node_flags[] = {
18 #define x(f)    #f,
19         BTREE_FLAGS()
20 #undef x
21         NULL
22 };
23
24 void bch2_recalc_btree_reserve(struct bch_fs *c)
25 {
26         unsigned i, reserve = 16;
27
28         if (!c->btree_roots[0].b)
29                 reserve += 8;
30
31         for (i = 0; i < BTREE_ID_NR; i++)
32                 if (c->btree_roots[i].b)
33                         reserve += min_t(unsigned, 1,
34                                          c->btree_roots[i].b->c.level) * 8;
35
36         c->btree_cache.reserve = reserve;
37 }
38
39 static inline unsigned btree_cache_can_free(struct btree_cache *bc)
40 {
41         return max_t(int, 0, bc->used - bc->reserve);
42 }
43
44 static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
45 {
46         if (b->c.lock.readers)
47                 list_move(&b->list, &bc->freed_pcpu);
48         else
49                 list_move(&b->list, &bc->freed_nonpcpu);
50 }
51
52 static void btree_node_data_free(struct bch_fs *c, struct btree *b)
53 {
54         struct btree_cache *bc = &c->btree_cache;
55
56         EBUG_ON(btree_node_write_in_flight(b));
57
58         kvpfree(b->data, btree_bytes(c));
59         b->data = NULL;
60 #ifdef __KERNEL__
61         vfree(b->aux_data);
62 #else
63         munmap(b->aux_data, btree_aux_data_bytes(b));
64 #endif
65         b->aux_data = NULL;
66
67         bc->used--;
68
69         btree_node_to_freedlist(bc, b);
70 }
71
72 static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
73                                    const void *obj)
74 {
75         const struct btree *b = obj;
76         const u64 *v = arg->key;
77
78         return b->hash_val == *v ? 0 : 1;
79 }
80
81 static const struct rhashtable_params bch_btree_cache_params = {
82         .head_offset    = offsetof(struct btree, hash),
83         .key_offset     = offsetof(struct btree, hash_val),
84         .key_len        = sizeof(u64),
85         .obj_cmpfn      = bch2_btree_cache_cmp_fn,
86 };
87
88 static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
89 {
90         BUG_ON(b->data || b->aux_data);
91
92         b->data = kvpmalloc(btree_bytes(c), gfp);
93         if (!b->data)
94                 return -ENOMEM;
95 #ifdef __KERNEL__
96         b->aux_data = vmalloc_exec(btree_aux_data_bytes(b), gfp);
97 #else
98         b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
99                            PROT_READ|PROT_WRITE|PROT_EXEC,
100                            MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
101         if (b->aux_data == MAP_FAILED)
102                 b->aux_data = NULL;
103 #endif
104         if (!b->aux_data) {
105                 kvpfree(b->data, btree_bytes(c));
106                 b->data = NULL;
107                 return -ENOMEM;
108         }
109
110         return 0;
111 }
112
113 static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
114 {
115         struct btree *b = kzalloc(sizeof(struct btree), gfp);
116         if (!b)
117                 return NULL;
118
119         bkey_btree_ptr_init(&b->key);
120         __six_lock_init(&b->c.lock, "b->c.lock", &bch2_btree_node_lock_key);
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122         lockdep_set_no_check_recursion(&b->c.lock.dep_map);
123 #endif
124         INIT_LIST_HEAD(&b->list);
125         INIT_LIST_HEAD(&b->write_blocked);
126         b->byte_order = ilog2(btree_bytes(c));
127         return b;
128 }
129
130 struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
131 {
132         struct btree_cache *bc = &c->btree_cache;
133         struct btree *b = __btree_node_mem_alloc(c, GFP_KERNEL);
134         if (!b)
135                 return NULL;
136
137         if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
138                 kfree(b);
139                 return NULL;
140         }
141
142         bc->used++;
143         list_add(&b->list, &bc->freeable);
144         return b;
145 }
146
147 /* Btree in memory cache - hash table */
148
149 void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
150 {
151         int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
152         BUG_ON(ret);
153
154         /* Cause future lookups for this node to fail: */
155         b->hash_val = 0;
156 }
157
158 int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
159 {
160         BUG_ON(b->hash_val);
161         b->hash_val = btree_ptr_hash_val(&b->key);
162
163         return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
164                                              bch_btree_cache_params);
165 }
166
167 int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
168                                 unsigned level, enum btree_id id)
169 {
170         int ret;
171
172         b->c.level      = level;
173         b->c.btree_id   = id;
174
175         mutex_lock(&bc->lock);
176         ret = __bch2_btree_node_hash_insert(bc, b);
177         if (!ret)
178                 list_add(&b->list, &bc->live);
179         mutex_unlock(&bc->lock);
180
181         return ret;
182 }
183
184 __flatten
185 static inline struct btree *btree_cache_find(struct btree_cache *bc,
186                                      const struct bkey_i *k)
187 {
188         u64 v = btree_ptr_hash_val(k);
189
190         return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
191 }
192
193 /*
194  * this version is for btree nodes that have already been freed (we're not
195  * reaping a real btree node)
196  */
197 static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
198 {
199         struct btree_cache *bc = &c->btree_cache;
200         int ret = 0;
201
202         lockdep_assert_held(&bc->lock);
203 wait_on_io:
204         if (b->flags & ((1U << BTREE_NODE_dirty)|
205                         (1U << BTREE_NODE_read_in_flight)|
206                         (1U << BTREE_NODE_write_in_flight))) {
207                 if (!flush)
208                         return -ENOMEM;
209
210                 /* XXX: waiting on IO with btree cache lock held */
211                 bch2_btree_node_wait_on_read(b);
212                 bch2_btree_node_wait_on_write(b);
213         }
214
215         if (!six_trylock_intent(&b->c.lock))
216                 return -ENOMEM;
217
218         if (!six_trylock_write(&b->c.lock))
219                 goto out_unlock_intent;
220
221         /* recheck under lock */
222         if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
223                         (1U << BTREE_NODE_write_in_flight))) {
224                 if (!flush)
225                         goto out_unlock;
226                 six_unlock_write(&b->c.lock);
227                 six_unlock_intent(&b->c.lock);
228                 goto wait_on_io;
229         }
230
231         if (btree_node_noevict(b) ||
232             btree_node_write_blocked(b) ||
233             btree_node_will_make_reachable(b))
234                 goto out_unlock;
235
236         if (btree_node_dirty(b)) {
237                 if (!flush)
238                         goto out_unlock;
239                 /*
240                  * Using the underscore version because we don't want to compact
241                  * bsets after the write, since this node is about to be evicted
242                  * - unless btree verify mode is enabled, since it runs out of
243                  * the post write cleanup:
244                  */
245                 if (bch2_verify_btree_ondisk)
246                         bch2_btree_node_write(c, b, SIX_LOCK_intent, 0);
247                 else
248                         __bch2_btree_node_write(c, b, 0);
249
250                 six_unlock_write(&b->c.lock);
251                 six_unlock_intent(&b->c.lock);
252                 goto wait_on_io;
253         }
254 out:
255         if (b->hash_val && !ret)
256                 trace_and_count(c, btree_cache_reap, c, b);
257         return ret;
258 out_unlock:
259         six_unlock_write(&b->c.lock);
260 out_unlock_intent:
261         six_unlock_intent(&b->c.lock);
262         ret = -ENOMEM;
263         goto out;
264 }
265
266 static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
267 {
268         return __btree_node_reclaim(c, b, false);
269 }
270
271 static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
272 {
273         return __btree_node_reclaim(c, b, true);
274 }
275
276 static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
277                                            struct shrink_control *sc)
278 {
279         struct bch_fs *c = container_of(shrink, struct bch_fs,
280                                         btree_cache.shrink);
281         struct btree_cache *bc = &c->btree_cache;
282         struct btree *b, *t;
283         unsigned long nr = sc->nr_to_scan;
284         unsigned long can_free = 0;
285         unsigned long freed = 0;
286         unsigned long touched = 0;
287         unsigned i, flags;
288         unsigned long ret = SHRINK_STOP;
289         bool trigger_writes = atomic_read(&bc->dirty) + nr >=
290                 bc->used * 3 / 4;
291
292         if (bch2_btree_shrinker_disabled)
293                 return SHRINK_STOP;
294
295         mutex_lock(&bc->lock);
296         flags = memalloc_nofs_save();
297
298         /*
299          * It's _really_ critical that we don't free too many btree nodes - we
300          * have to always leave ourselves a reserve. The reserve is how we
301          * guarantee that allocating memory for a new btree node can always
302          * succeed, so that inserting keys into the btree can always succeed and
303          * IO can always make forward progress:
304          */
305         can_free = btree_cache_can_free(bc);
306         nr = min_t(unsigned long, nr, can_free);
307
308         i = 0;
309         list_for_each_entry_safe(b, t, &bc->freeable, list) {
310                 /*
311                  * Leave a few nodes on the freeable list, so that a btree split
312                  * won't have to hit the system allocator:
313                  */
314                 if (++i <= 3)
315                         continue;
316
317                 touched++;
318
319                 if (touched >= nr)
320                         goto out;
321
322                 if (!btree_node_reclaim(c, b)) {
323                         btree_node_data_free(c, b);
324                         six_unlock_write(&b->c.lock);
325                         six_unlock_intent(&b->c.lock);
326                         freed++;
327                 }
328         }
329 restart:
330         list_for_each_entry_safe(b, t, &bc->live, list) {
331                 touched++;
332
333                 if (btree_node_accessed(b)) {
334                         clear_btree_node_accessed(b);
335                 } else if (!btree_node_reclaim(c, b)) {
336                         freed++;
337                         btree_node_data_free(c, b);
338
339                         bch2_btree_node_hash_remove(bc, b);
340                         six_unlock_write(&b->c.lock);
341                         six_unlock_intent(&b->c.lock);
342
343                         if (freed == nr)
344                                 goto out;
345                 } else if (trigger_writes &&
346                            btree_node_dirty(b) &&
347                            !btree_node_will_make_reachable(b) &&
348                            !btree_node_write_blocked(b) &&
349                            six_trylock_read(&b->c.lock)) {
350                         list_move(&bc->live, &b->list);
351                         mutex_unlock(&bc->lock);
352                         __bch2_btree_node_write(c, b, 0);
353                         six_unlock_read(&b->c.lock);
354                         if (touched >= nr)
355                                 goto out_nounlock;
356                         mutex_lock(&bc->lock);
357                         goto restart;
358                 }
359
360                 if (touched >= nr)
361                         break;
362         }
363 out:
364         mutex_unlock(&bc->lock);
365 out_nounlock:
366         ret = freed;
367         memalloc_nofs_restore(flags);
368         trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
369         return ret;
370 }
371
372 static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
373                                             struct shrink_control *sc)
374 {
375         struct bch_fs *c = container_of(shrink, struct bch_fs,
376                                         btree_cache.shrink);
377         struct btree_cache *bc = &c->btree_cache;
378
379         if (bch2_btree_shrinker_disabled)
380                 return 0;
381
382         return btree_cache_can_free(bc);
383 }
384
385 static void bch2_btree_cache_shrinker_to_text(struct printbuf *out, struct shrinker *shrink)
386 {
387         struct bch_fs *c = container_of(shrink, struct bch_fs,
388                                         btree_cache.shrink);
389
390         bch2_btree_cache_to_text(out, c);
391 }
392
393 void bch2_fs_btree_cache_exit(struct bch_fs *c)
394 {
395         struct btree_cache *bc = &c->btree_cache;
396         struct btree *b;
397         unsigned i, flags;
398
399         if (bc->shrink.list.next)
400                 unregister_shrinker(&bc->shrink);
401
402         /* vfree() can allocate memory: */
403         flags = memalloc_nofs_save();
404         mutex_lock(&bc->lock);
405
406         if (c->verify_data)
407                 list_move(&c->verify_data->list, &bc->live);
408
409         kvpfree(c->verify_ondisk, btree_bytes(c));
410
411         for (i = 0; i < BTREE_ID_NR; i++)
412                 if (c->btree_roots[i].b)
413                         list_add(&c->btree_roots[i].b->list, &bc->live);
414
415         list_splice(&bc->freeable, &bc->live);
416
417         while (!list_empty(&bc->live)) {
418                 b = list_first_entry(&bc->live, struct btree, list);
419
420                 BUG_ON(btree_node_read_in_flight(b) ||
421                        btree_node_write_in_flight(b));
422
423                 if (btree_node_dirty(b))
424                         bch2_btree_complete_write(c, b, btree_current_write(b));
425                 clear_btree_node_dirty_acct(c, b);
426
427                 btree_node_data_free(c, b);
428         }
429
430         BUG_ON(atomic_read(&c->btree_cache.dirty));
431
432         list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
433
434         while (!list_empty(&bc->freed_nonpcpu)) {
435                 b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
436                 list_del(&b->list);
437                 six_lock_pcpu_free(&b->c.lock);
438                 kfree(b);
439         }
440
441         mutex_unlock(&bc->lock);
442         memalloc_nofs_restore(flags);
443
444         if (bc->table_init_done)
445                 rhashtable_destroy(&bc->table);
446 }
447
448 int bch2_fs_btree_cache_init(struct bch_fs *c)
449 {
450         struct btree_cache *bc = &c->btree_cache;
451         unsigned i;
452         int ret = 0;
453
454         pr_verbose_init(c->opts, "");
455
456         ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
457         if (ret)
458                 goto out;
459
460         bc->table_init_done = true;
461
462         bch2_recalc_btree_reserve(c);
463
464         for (i = 0; i < bc->reserve; i++)
465                 if (!__bch2_btree_node_mem_alloc(c)) {
466                         ret = -ENOMEM;
467                         goto out;
468                 }
469
470         list_splice_init(&bc->live, &bc->freeable);
471
472         mutex_init(&c->verify_lock);
473
474         bc->shrink.count_objects        = bch2_btree_cache_count;
475         bc->shrink.scan_objects         = bch2_btree_cache_scan;
476         bc->shrink.to_text              = bch2_btree_cache_shrinker_to_text;
477         bc->shrink.seeks                = 4;
478         ret = register_shrinker(&bc->shrink);
479 out:
480         pr_verbose_init(c->opts, "ret %i", ret);
481         return ret;
482 }
483
484 void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
485 {
486         mutex_init(&bc->lock);
487         INIT_LIST_HEAD(&bc->live);
488         INIT_LIST_HEAD(&bc->freeable);
489         INIT_LIST_HEAD(&bc->freed_pcpu);
490         INIT_LIST_HEAD(&bc->freed_nonpcpu);
491 }
492
493 /*
494  * We can only have one thread cannibalizing other cached btree nodes at a time,
495  * or we'll deadlock. We use an open coded mutex to ensure that, which a
496  * cannibalize_bucket() will take. This means every time we unlock the root of
497  * the btree, we need to release this lock if we have it held.
498  */
499 void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
500 {
501         struct btree_cache *bc = &c->btree_cache;
502
503         if (bc->alloc_lock == current) {
504                 trace_and_count(c, btree_cache_cannibalize_unlock, c);
505                 bc->alloc_lock = NULL;
506                 closure_wake_up(&bc->alloc_wait);
507         }
508 }
509
510 int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
511 {
512         struct btree_cache *bc = &c->btree_cache;
513         struct task_struct *old;
514
515         old = cmpxchg(&bc->alloc_lock, NULL, current);
516         if (old == NULL || old == current)
517                 goto success;
518
519         if (!cl) {
520                 trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
521                 return -ENOMEM;
522         }
523
524         closure_wait(&bc->alloc_wait, cl);
525
526         /* Try again, after adding ourselves to waitlist */
527         old = cmpxchg(&bc->alloc_lock, NULL, current);
528         if (old == NULL || old == current) {
529                 /* We raced */
530                 closure_wake_up(&bc->alloc_wait);
531                 goto success;
532         }
533
534         trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
535         return -EAGAIN;
536
537 success:
538         trace_and_count(c, btree_cache_cannibalize_lock, c);
539         return 0;
540 }
541
542 static struct btree *btree_node_cannibalize(struct bch_fs *c)
543 {
544         struct btree_cache *bc = &c->btree_cache;
545         struct btree *b;
546
547         list_for_each_entry_reverse(b, &bc->live, list)
548                 if (!btree_node_reclaim(c, b))
549                         return b;
550
551         while (1) {
552                 list_for_each_entry_reverse(b, &bc->live, list)
553                         if (!btree_node_write_and_reclaim(c, b))
554                                 return b;
555
556                 /*
557                  * Rare case: all nodes were intent-locked.
558                  * Just busy-wait.
559                  */
560                 WARN_ONCE(1, "btree cache cannibalize failed\n");
561                 cond_resched();
562         }
563 }
564
565 struct btree *bch2_btree_node_mem_alloc(struct bch_fs *c, bool pcpu_read_locks)
566 {
567         struct btree_cache *bc = &c->btree_cache;
568         struct list_head *freed = pcpu_read_locks
569                 ? &bc->freed_pcpu
570                 : &bc->freed_nonpcpu;
571         struct btree *b, *b2;
572         u64 start_time = local_clock();
573         unsigned flags;
574
575         flags = memalloc_nofs_save();
576         mutex_lock(&bc->lock);
577
578         /*
579          * We never free struct btree itself, just the memory that holds the on
580          * disk node. Check the freed list before allocating a new one:
581          */
582         list_for_each_entry(b, freed, list)
583                 if (!btree_node_reclaim(c, b)) {
584                         list_del_init(&b->list);
585                         goto got_node;
586                 }
587
588         b = __btree_node_mem_alloc(c, __GFP_NOWARN);
589         if (!b) {
590                 mutex_unlock(&bc->lock);
591                 b = __btree_node_mem_alloc(c, GFP_KERNEL);
592                 if (!b)
593                         goto err;
594                 mutex_lock(&bc->lock);
595         }
596
597         if (pcpu_read_locks)
598                 six_lock_pcpu_alloc(&b->c.lock);
599
600         BUG_ON(!six_trylock_intent(&b->c.lock));
601         BUG_ON(!six_trylock_write(&b->c.lock));
602 got_node:
603
604         /*
605          * btree_free() doesn't free memory; it sticks the node on the end of
606          * the list. Check if there's any freed nodes there:
607          */
608         list_for_each_entry(b2, &bc->freeable, list)
609                 if (!btree_node_reclaim(c, b2)) {
610                         swap(b->data, b2->data);
611                         swap(b->aux_data, b2->aux_data);
612                         btree_node_to_freedlist(bc, b2);
613                         six_unlock_write(&b2->c.lock);
614                         six_unlock_intent(&b2->c.lock);
615                         goto got_mem;
616                 }
617
618         mutex_unlock(&bc->lock);
619
620         if (btree_node_data_alloc(c, b, __GFP_NOWARN|GFP_KERNEL))
621                 goto err;
622
623         mutex_lock(&bc->lock);
624         bc->used++;
625 got_mem:
626         mutex_unlock(&bc->lock);
627
628         BUG_ON(btree_node_hashed(b));
629         BUG_ON(btree_node_dirty(b));
630         BUG_ON(btree_node_write_in_flight(b));
631 out:
632         b->flags                = 0;
633         b->written              = 0;
634         b->nsets                = 0;
635         b->sib_u64s[0]          = 0;
636         b->sib_u64s[1]          = 0;
637         b->whiteout_u64s        = 0;
638         bch2_btree_keys_init(b);
639         set_btree_node_accessed(b);
640
641         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
642                                start_time);
643
644         memalloc_nofs_restore(flags);
645         return b;
646 err:
647         mutex_lock(&bc->lock);
648
649         /* Try to cannibalize another cached btree node: */
650         if (bc->alloc_lock == current) {
651                 b2 = btree_node_cannibalize(c);
652                 bch2_btree_node_hash_remove(bc, b2);
653
654                 if (b) {
655                         swap(b->data, b2->data);
656                         swap(b->aux_data, b2->aux_data);
657                         btree_node_to_freedlist(bc, b2);
658                         six_unlock_write(&b2->c.lock);
659                         six_unlock_intent(&b2->c.lock);
660                 } else {
661                         b = b2;
662                         list_del_init(&b->list);
663                 }
664
665                 mutex_unlock(&bc->lock);
666
667                 trace_and_count(c, btree_cache_cannibalize, c);
668                 goto out;
669         }
670
671         mutex_unlock(&bc->lock);
672         memalloc_nofs_restore(flags);
673         return ERR_PTR(-ENOMEM);
674 }
675
676 /* Slowpath, don't want it inlined into btree_iter_traverse() */
677 static noinline struct btree *bch2_btree_node_fill(struct bch_fs *c,
678                                 struct btree_trans *trans,
679                                 struct btree_path *path,
680                                 const struct bkey_i *k,
681                                 enum btree_id btree_id,
682                                 unsigned level,
683                                 enum six_lock_type lock_type,
684                                 bool sync)
685 {
686         struct btree_cache *bc = &c->btree_cache;
687         struct btree *b;
688         u32 seq;
689
690         BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
691         /*
692          * Parent node must be locked, else we could read in a btree node that's
693          * been freed:
694          */
695         if (trans && !bch2_btree_node_relock(trans, path, level + 1)) {
696                 trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
697                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
698         }
699
700         b = bch2_btree_node_mem_alloc(c, level != 0);
701
702         if (trans && b == ERR_PTR(-ENOMEM)) {
703                 trans->memory_allocation_failure = true;
704                 trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
705                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
706         }
707
708         if (IS_ERR(b))
709                 return b;
710
711         bkey_copy(&b->key, k);
712         if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
713                 /* raced with another fill: */
714
715                 /* mark as unhashed... */
716                 b->hash_val = 0;
717
718                 mutex_lock(&bc->lock);
719                 list_add(&b->list, &bc->freeable);
720                 mutex_unlock(&bc->lock);
721
722                 six_unlock_write(&b->c.lock);
723                 six_unlock_intent(&b->c.lock);
724                 return NULL;
725         }
726
727         set_btree_node_read_in_flight(b);
728
729         six_unlock_write(&b->c.lock);
730         seq = b->c.lock.state.seq;
731         six_unlock_intent(&b->c.lock);
732
733         /* Unlock before doing IO: */
734         if (trans && sync)
735                 bch2_trans_unlock(trans);
736
737         bch2_btree_node_read(c, b, sync);
738
739         if (!sync)
740                 return NULL;
741
742         if (trans) {
743                 int ret = bch2_trans_relock(trans) ?:
744                         bch2_btree_path_relock_intent(trans, path);
745                 if (ret) {
746                         BUG_ON(!trans->restarted);
747                         return ERR_PTR(ret);
748                 }
749         }
750
751         if (!six_relock_type(&b->c.lock, lock_type, seq)) {
752                 if (trans)
753                         trace_and_count(c, trans_restart_relock_after_fill, trans, _THIS_IP_, path);
754                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill));
755         }
756
757         return b;
758 }
759
760 static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
761 {
762         struct printbuf buf = PRINTBUF;
763
764         if (!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags))
765                 return;
766
767         prt_printf(&buf,
768                "btree node header doesn't match ptr\n"
769                "btree %s level %u\n"
770                "ptr: ",
771                bch2_btree_ids[b->c.btree_id], b->c.level);
772         bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
773
774         prt_printf(&buf, "\nheader: btree %s level %llu\n"
775                "min ",
776                bch2_btree_ids[BTREE_NODE_ID(b->data)],
777                BTREE_NODE_LEVEL(b->data));
778         bch2_bpos_to_text(&buf, b->data->min_key);
779
780         prt_printf(&buf, "\nmax ");
781         bch2_bpos_to_text(&buf, b->data->max_key);
782
783         bch2_fs_inconsistent(c, "%s", buf.buf);
784         printbuf_exit(&buf);
785 }
786
787 static inline void btree_check_header(struct bch_fs *c, struct btree *b)
788 {
789         if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
790             b->c.level != BTREE_NODE_LEVEL(b->data) ||
791             bpos_cmp(b->data->max_key, b->key.k.p) ||
792             (b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
793              bpos_cmp(b->data->min_key,
794                       bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
795                 btree_bad_header(c, b);
796 }
797
798 /**
799  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
800  * in from disk if necessary.
801  *
802  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
803  *
804  * The btree node will have either a read or a write lock held, depending on
805  * the @write parameter.
806  */
807 struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
808                                   const struct bkey_i *k, unsigned level,
809                                   enum six_lock_type lock_type,
810                                   unsigned long trace_ip)
811 {
812         struct bch_fs *c = trans->c;
813         struct btree_cache *bc = &c->btree_cache;
814         struct btree *b;
815         struct bset_tree *t;
816         int ret;
817
818         EBUG_ON(level >= BTREE_MAX_DEPTH);
819
820         b = btree_node_mem_ptr(k);
821
822         /*
823          * Check b->hash_val _before_ calling btree_node_lock() - this might not
824          * be the node we want anymore, and trying to lock the wrong node could
825          * cause an unneccessary transaction restart:
826          */
827         if (likely(c->opts.btree_node_mem_ptr_optimization &&
828                    b &&
829                    b->hash_val == btree_ptr_hash_val(k)))
830                         goto lock_node;
831 retry:
832         b = btree_cache_find(bc, k);
833         if (unlikely(!b)) {
834                 /*
835                  * We must have the parent locked to call bch2_btree_node_fill(),
836                  * else we could read in a btree node from disk that's been
837                  * freed:
838                  */
839                 b = bch2_btree_node_fill(c, trans, path, k, path->btree_id,
840                                          level, lock_type, true);
841
842                 /* We raced and found the btree node in the cache */
843                 if (!b)
844                         goto retry;
845
846                 if (IS_ERR(b))
847                         return b;
848         } else {
849 lock_node:
850                 /*
851                  * There's a potential deadlock with splits and insertions into
852                  * interior nodes we have to avoid:
853                  *
854                  * The other thread might be holding an intent lock on the node
855                  * we want, and they want to update its parent node so they're
856                  * going to upgrade their intent lock on the parent node to a
857                  * write lock.
858                  *
859                  * But if we're holding a read lock on the parent, and we're
860                  * trying to get the intent lock they're holding, we deadlock.
861                  *
862                  * So to avoid this we drop the read locks on parent nodes when
863                  * we're starting to take intent locks - and handle the race.
864                  *
865                  * The race is that they might be about to free the node we
866                  * want, and dropping our read lock on the parent node lets them
867                  * update the parent marking the node we want as freed, and then
868                  * free it:
869                  *
870                  * To guard against this, btree nodes are evicted from the cache
871                  * when they're freed - and b->hash_val is zeroed out, which we
872                  * check for after we lock the node.
873                  *
874                  * Then, bch2_btree_node_relock() on the parent will fail - because
875                  * the parent was modified, when the pointer to the node we want
876                  * was removed - and we'll bail out:
877                  */
878                 if (btree_node_read_locked(path, level + 1))
879                         btree_node_unlock(trans, path, level + 1);
880
881                 ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
882                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
883                         return ERR_PTR(ret);
884
885                 BUG_ON(ret);
886
887                 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
888                              b->c.level != level ||
889                              race_fault())) {
890                         six_unlock_type(&b->c.lock, lock_type);
891                         if (bch2_btree_node_relock(trans, path, level + 1))
892                                 goto retry;
893
894                         trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
895                         return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
896                 }
897         }
898
899         if (unlikely(btree_node_read_in_flight(b))) {
900                 u32 seq = b->c.lock.state.seq;
901
902                 six_unlock_type(&b->c.lock, lock_type);
903                 bch2_trans_unlock(trans);
904
905                 bch2_btree_node_wait_on_read(b);
906
907                 /*
908                  * should_be_locked is not set on this path yet, so we need to
909                  * relock it specifically:
910                  */
911                 if (trans) {
912                         int ret = bch2_trans_relock(trans) ?:
913                                 bch2_btree_path_relock_intent(trans, path);
914                         if (ret) {
915                                 BUG_ON(!trans->restarted);
916                                 return ERR_PTR(ret);
917                         }
918                 }
919
920                 if (!six_relock_type(&b->c.lock, lock_type, seq))
921                         goto retry;
922         }
923
924         prefetch(b->aux_data);
925
926         for_each_bset(b, t) {
927                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
928
929                 prefetch(p + L1_CACHE_BYTES * 0);
930                 prefetch(p + L1_CACHE_BYTES * 1);
931                 prefetch(p + L1_CACHE_BYTES * 2);
932         }
933
934         /* avoid atomic set bit if it's not needed: */
935         if (!btree_node_accessed(b))
936                 set_btree_node_accessed(b);
937
938         if (unlikely(btree_node_read_error(b))) {
939                 six_unlock_type(&b->c.lock, lock_type);
940                 return ERR_PTR(-EIO);
941         }
942
943         EBUG_ON(b->c.btree_id != path->btree_id);
944         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
945         btree_check_header(c, b);
946
947         return b;
948 }
949
950 struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
951                                          const struct bkey_i *k,
952                                          enum btree_id btree_id,
953                                          unsigned level,
954                                          bool nofill)
955 {
956         struct bch_fs *c = trans->c;
957         struct btree_cache *bc = &c->btree_cache;
958         struct btree *b;
959         struct bset_tree *t;
960         int ret;
961
962         EBUG_ON(level >= BTREE_MAX_DEPTH);
963
964         if (c->opts.btree_node_mem_ptr_optimization) {
965                 b = btree_node_mem_ptr(k);
966                 if (b)
967                         goto lock_node;
968         }
969 retry:
970         b = btree_cache_find(bc, k);
971         if (unlikely(!b)) {
972                 if (nofill)
973                         goto out;
974
975                 b = bch2_btree_node_fill(c, NULL, NULL, k, btree_id,
976                                          level, SIX_LOCK_read, true);
977
978                 /* We raced and found the btree node in the cache */
979                 if (!b)
980                         goto retry;
981
982                 if (IS_ERR(b) &&
983                     !bch2_btree_cache_cannibalize_lock(c, NULL))
984                         goto retry;
985
986                 if (IS_ERR(b))
987                         goto out;
988         } else {
989 lock_node:
990                 ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read);
991                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
992                         return ERR_PTR(ret);
993
994                 BUG_ON(ret);
995
996                 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
997                              b->c.btree_id != btree_id ||
998                              b->c.level != level)) {
999                         six_unlock_read(&b->c.lock);
1000                         goto retry;
1001                 }
1002         }
1003
1004         /* XXX: waiting on IO with btree locks held: */
1005         __bch2_btree_node_wait_on_read(b);
1006
1007         prefetch(b->aux_data);
1008
1009         for_each_bset(b, t) {
1010                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
1011
1012                 prefetch(p + L1_CACHE_BYTES * 0);
1013                 prefetch(p + L1_CACHE_BYTES * 1);
1014                 prefetch(p + L1_CACHE_BYTES * 2);
1015         }
1016
1017         /* avoid atomic set bit if it's not needed: */
1018         if (!btree_node_accessed(b))
1019                 set_btree_node_accessed(b);
1020
1021         if (unlikely(btree_node_read_error(b))) {
1022                 six_unlock_read(&b->c.lock);
1023                 b = ERR_PTR(-EIO);
1024                 goto out;
1025         }
1026
1027         EBUG_ON(b->c.btree_id != btree_id);
1028         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1029         btree_check_header(c, b);
1030 out:
1031         bch2_btree_cache_cannibalize_unlock(c);
1032         return b;
1033 }
1034
1035 int bch2_btree_node_prefetch(struct bch_fs *c,
1036                              struct btree_trans *trans,
1037                              struct btree_path *path,
1038                              const struct bkey_i *k,
1039                              enum btree_id btree_id, unsigned level)
1040 {
1041         struct btree_cache *bc = &c->btree_cache;
1042         struct btree *b;
1043
1044         BUG_ON(trans && !btree_node_locked(path, level + 1));
1045         BUG_ON(level >= BTREE_MAX_DEPTH);
1046
1047         b = btree_cache_find(bc, k);
1048         if (b)
1049                 return 0;
1050
1051         b = bch2_btree_node_fill(c, trans, path, k, btree_id,
1052                                  level, SIX_LOCK_read, false);
1053         return PTR_ERR_OR_ZERO(b);
1054 }
1055
1056 void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
1057 {
1058         struct bch_fs *c = trans->c;
1059         struct btree_cache *bc = &c->btree_cache;
1060         struct btree *b;
1061
1062         b = btree_cache_find(bc, k);
1063         if (!b)
1064                 return;
1065 wait_on_io:
1066         /* not allowed to wait on io with btree locks held: */
1067
1068         /* XXX we're called from btree_gc which will be holding other btree
1069          * nodes locked
1070          * */
1071         __bch2_btree_node_wait_on_read(b);
1072         __bch2_btree_node_wait_on_write(b);
1073
1074         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
1075         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
1076
1077         if (btree_node_dirty(b)) {
1078                 __bch2_btree_node_write(c, b, 0);
1079                 six_unlock_write(&b->c.lock);
1080                 six_unlock_intent(&b->c.lock);
1081                 goto wait_on_io;
1082         }
1083
1084         BUG_ON(btree_node_dirty(b));
1085
1086         mutex_lock(&bc->lock);
1087         btree_node_data_free(c, b);
1088         bch2_btree_node_hash_remove(bc, b);
1089         mutex_unlock(&bc->lock);
1090
1091         six_unlock_write(&b->c.lock);
1092         six_unlock_intent(&b->c.lock);
1093 }
1094
1095 void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
1096                              struct btree *b)
1097 {
1098         const struct bkey_format *f = &b->format;
1099         struct bset_stats stats;
1100
1101         memset(&stats, 0, sizeof(stats));
1102
1103         bch2_btree_keys_stats(b, &stats);
1104
1105         prt_printf(out, "l %u ", b->c.level);
1106         bch2_bpos_to_text(out, b->data->min_key);
1107         prt_printf(out, " - ");
1108         bch2_bpos_to_text(out, b->data->max_key);
1109         prt_printf(out, ":\n"
1110                "    ptrs: ");
1111         bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1112
1113         prt_printf(out, "\n"
1114                "    format: u64s %u fields %u %u %u %u %u\n"
1115                "    unpack fn len: %u\n"
1116                "    bytes used %zu/%zu (%zu%% full)\n"
1117                "    sib u64s: %u, %u (merge threshold %u)\n"
1118                "    nr packed keys %u\n"
1119                "    nr unpacked keys %u\n"
1120                "    floats %zu\n"
1121                "    failed unpacked %zu\n",
1122                f->key_u64s,
1123                f->bits_per_field[0],
1124                f->bits_per_field[1],
1125                f->bits_per_field[2],
1126                f->bits_per_field[3],
1127                f->bits_per_field[4],
1128                b->unpack_fn_len,
1129                b->nr.live_u64s * sizeof(u64),
1130                btree_bytes(c) - sizeof(struct btree_node),
1131                b->nr.live_u64s * 100 / btree_max_u64s(c),
1132                b->sib_u64s[0],
1133                b->sib_u64s[1],
1134                c->btree_foreground_merge_threshold,
1135                b->nr.packed_keys,
1136                b->nr.unpacked_keys,
1137                stats.floats,
1138                stats.failed);
1139 }
1140
1141 void bch2_btree_cache_to_text(struct printbuf *out, struct bch_fs *c)
1142 {
1143         prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
1144         prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
1145         prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
1146 }