]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_gc.c
update bcache sources
[bcachefs-tools-debian] / libbcachefs / btree_gc.c
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  * Copyright (C) 2014 Datera Inc.
4  */
5
6 #include "bcachefs.h"
7 #include "alloc.h"
8 #include "bkey_methods.h"
9 #include "btree_locking.h"
10 #include "btree_update.h"
11 #include "btree_io.h"
12 #include "btree_gc.h"
13 #include "buckets.h"
14 #include "clock.h"
15 #include "debug.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "keylist.h"
20 #include "move.h"
21 #include "super-io.h"
22
23 #include <linux/slab.h>
24 #include <linux/bitops.h>
25 #include <linux/freezer.h>
26 #include <linux/kthread.h>
27 #include <linux/rcupdate.h>
28 #include <trace/events/bcachefs.h>
29
30 struct range_checks {
31         struct range_level {
32                 struct bpos     min;
33                 struct bpos     max;
34         }                       l[BTREE_MAX_DEPTH];
35         unsigned                depth;
36 };
37
38 static void btree_node_range_checks_init(struct range_checks *r, unsigned depth)
39 {
40         unsigned i;
41
42         for (i = 0; i < BTREE_MAX_DEPTH; i++)
43                 r->l[i].min = r->l[i].max = POS_MIN;
44         r->depth = depth;
45 }
46
47 static void btree_node_range_checks(struct bch_fs *c, struct btree *b,
48                                     struct range_checks *r)
49 {
50         struct range_level *l = &r->l[b->level];
51
52         struct bpos expected_min = bkey_cmp(l->min, l->max)
53                 ? btree_type_successor(b->btree_id, l->max)
54                 : l->max;
55
56         bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c,
57                 "btree node has incorrect min key: %llu:%llu != %llu:%llu",
58                 b->data->min_key.inode,
59                 b->data->min_key.offset,
60                 expected_min.inode,
61                 expected_min.offset);
62
63         l->max = b->data->max_key;
64
65         if (b->level > r->depth) {
66                 l = &r->l[b->level - 1];
67
68                 bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c,
69                         "btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu",
70                         b->data->min_key.inode,
71                         b->data->min_key.offset,
72                         l->min.inode,
73                         l->min.offset);
74
75                 bch2_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c,
76                         "btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu",
77                         b->data->max_key.inode,
78                         b->data->max_key.offset,
79                         l->max.inode,
80                         l->max.offset);
81
82                 if (bkey_cmp(b->data->max_key, POS_MAX))
83                         l->min = l->max =
84                                 btree_type_successor(b->btree_id,
85                                                      b->data->max_key);
86         }
87 }
88
89 u8 bch2_btree_key_recalc_oldest_gen(struct bch_fs *c, struct bkey_s_c k)
90 {
91         const struct bch_extent_ptr *ptr;
92         u8 max_stale = 0;
93
94         if (bkey_extent_is_data(k.k)) {
95                 struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
96
97                 extent_for_each_ptr(e, ptr) {
98                         struct bch_dev *ca = c->devs[ptr->dev];
99                         size_t b = PTR_BUCKET_NR(ca, ptr);
100
101                         if (__gen_after(ca->oldest_gens[b], ptr->gen))
102                                 ca->oldest_gens[b] = ptr->gen;
103
104                         max_stale = max(max_stale, ptr_stale(ca, ptr));
105                 }
106         }
107
108         return max_stale;
109 }
110
111 /*
112  * For runtime mark and sweep:
113  */
114 static u8 bch2_btree_mark_key(struct bch_fs *c, enum bkey_type type,
115                              struct bkey_s_c k)
116 {
117         switch (type) {
118         case BKEY_TYPE_BTREE:
119                 bch2_gc_mark_key(c, k, c->sb.btree_node_size, true);
120                 return 0;
121         case BKEY_TYPE_EXTENTS:
122                 bch2_gc_mark_key(c, k, k.k->size, false);
123                 return bch2_btree_key_recalc_oldest_gen(c, k);
124         default:
125                 BUG();
126         }
127 }
128
129 u8 bch2_btree_mark_key_initial(struct bch_fs *c, enum bkey_type type,
130                                struct bkey_s_c k)
131 {
132         atomic64_set(&c->key_version,
133                      max_t(u64, k.k->version.lo,
134                            atomic64_read(&c->key_version)));
135
136         return bch2_btree_mark_key(c, type, k);
137 }
138
139 static bool btree_gc_mark_node(struct bch_fs *c, struct btree *b)
140 {
141         if (btree_node_has_ptrs(b)) {
142                 struct btree_node_iter iter;
143                 struct bkey unpacked;
144                 struct bkey_s_c k;
145                 u8 stale = 0;
146
147                 for_each_btree_node_key_unpack(b, k, &iter,
148                                                btree_node_is_extents(b),
149                                                &unpacked) {
150                         bch2_bkey_debugcheck(c, b, k);
151                         stale = max(stale, bch2_btree_mark_key(c,
152                                                         btree_node_type(b), k));
153                 }
154
155                 if (btree_gc_rewrite_disabled(c))
156                         return false;
157
158                 if (stale > 10)
159                         return true;
160         }
161
162         if (btree_gc_always_rewrite(c))
163                 return true;
164
165         return false;
166 }
167
168 static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
169 {
170         write_seqcount_begin(&c->gc_pos_lock);
171         c->gc_pos = new_pos;
172         write_seqcount_end(&c->gc_pos_lock);
173 }
174
175 static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
176 {
177         BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
178         __gc_pos_set(c, new_pos);
179 }
180
181 static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id)
182 {
183         struct btree_iter iter;
184         struct btree *b;
185         bool should_rewrite;
186         struct range_checks r;
187         unsigned depth = btree_id == BTREE_ID_EXTENTS ? 0 : 1;
188         int ret;
189
190         /*
191          * if expensive_debug_checks is on, run range_checks on all leaf nodes:
192          */
193         if (expensive_debug_checks(c))
194                 depth = 0;
195
196         btree_node_range_checks_init(&r, depth);
197
198         for_each_btree_node(&iter, c, btree_id, POS_MIN, depth, b) {
199                 btree_node_range_checks(c, b, &r);
200
201                 bch2_verify_btree_nr_keys(b);
202
203                 should_rewrite = btree_gc_mark_node(c, b);
204
205                 gc_pos_set(c, gc_pos_btree_node(b));
206
207                 if (should_rewrite)
208                         bch2_btree_node_rewrite(&iter, b, NULL);
209
210                 bch2_btree_iter_cond_resched(&iter);
211         }
212         ret = bch2_btree_iter_unlock(&iter);
213         if (ret)
214                 return ret;
215
216         mutex_lock(&c->btree_root_lock);
217
218         b = c->btree_roots[btree_id].b;
219         bch2_btree_mark_key(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&b->key));
220         gc_pos_set(c, gc_pos_btree_root(b->btree_id));
221
222         mutex_unlock(&c->btree_root_lock);
223         return 0;
224 }
225
226 static void bch2_mark_allocator_buckets(struct bch_fs *c)
227 {
228         struct bch_dev *ca;
229         struct open_bucket *ob;
230         size_t i, j, iter;
231         unsigned ci;
232
233         for_each_member_device(ca, c, ci) {
234                 spin_lock(&ca->freelist_lock);
235
236                 fifo_for_each_entry(i, &ca->free_inc, iter)
237                         bch2_mark_alloc_bucket(ca, &ca->buckets[i], true);
238
239                 for (j = 0; j < RESERVE_NR; j++)
240                         fifo_for_each_entry(i, &ca->free[j], iter)
241                                 bch2_mark_alloc_bucket(ca, &ca->buckets[i], true);
242
243                 spin_unlock(&ca->freelist_lock);
244         }
245
246         for (ob = c->open_buckets;
247              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
248              ob++) {
249                 const struct bch_extent_ptr *ptr;
250
251                 mutex_lock(&ob->lock);
252                 open_bucket_for_each_ptr(ob, ptr) {
253                         ca = c->devs[ptr->dev];
254                         bch2_mark_alloc_bucket(ca, PTR_BUCKET(ca, ptr), true);
255                 }
256                 mutex_unlock(&ob->lock);
257         }
258 }
259
260 static void mark_metadata_sectors(struct bch_dev *ca, u64 start, u64 end,
261                                   enum bucket_data_type type)
262 {
263         u64 b = start >> ca->bucket_bits;
264
265         do {
266                 bch2_mark_metadata_bucket(ca, ca->buckets + b, type, true);
267                 b++;
268         } while (b < end >> ca->bucket_bits);
269 }
270
271 static void bch2_dev_mark_superblocks(struct bch_dev *ca)
272 {
273         struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
274         unsigned i;
275
276         for (i = 0; i < layout->nr_superblocks; i++) {
277                 if (layout->sb_offset[i] == BCH_SB_SECTOR)
278                         mark_metadata_sectors(ca, 0, BCH_SB_SECTOR,
279                                               BUCKET_SB);
280
281                 mark_metadata_sectors(ca,
282                                       layout->sb_offset[i],
283                                       layout->sb_offset[i] +
284                                       (1 << layout->sb_max_size_bits),
285                                       BUCKET_SB);
286         }
287 }
288
289 /*
290  * Mark non btree metadata - prios, journal
291  */
292 void bch2_mark_dev_metadata(struct bch_fs *c, struct bch_dev *ca)
293 {
294         unsigned i;
295         u64 b;
296
297         lockdep_assert_held(&c->sb_lock);
298
299         bch2_dev_mark_superblocks(ca);
300
301         spin_lock(&c->journal.lock);
302
303         for (i = 0; i < ca->journal.nr; i++) {
304                 b = ca->journal.buckets[i];
305                 bch2_mark_metadata_bucket(ca, ca->buckets + b,
306                                          BUCKET_JOURNAL, true);
307         }
308
309         spin_unlock(&c->journal.lock);
310
311         spin_lock(&ca->prio_buckets_lock);
312
313         for (i = 0; i < prio_buckets(ca) * 2; i++) {
314                 b = ca->prio_buckets[i];
315                 if (b)
316                         bch2_mark_metadata_bucket(ca, ca->buckets + b,
317                                                  BUCKET_PRIOS, true);
318         }
319
320         spin_unlock(&ca->prio_buckets_lock);
321 }
322
323 static void bch2_mark_metadata(struct bch_fs *c)
324 {
325         struct bch_dev *ca;
326         unsigned i;
327
328         mutex_lock(&c->sb_lock);
329         gc_pos_set(c, gc_phase(GC_PHASE_SB_METADATA));
330
331         for_each_online_member(ca, c, i)
332                 bch2_mark_dev_metadata(c, ca);
333         mutex_unlock(&c->sb_lock);
334 }
335
336 /* Also see bch2_pending_btree_node_free_insert_done() */
337 static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
338 {
339         struct bch_fs_usage stats = { 0 };
340         struct btree_interior_update *as;
341         struct pending_btree_node_free *d;
342
343         mutex_lock(&c->btree_interior_update_lock);
344         gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
345
346         for_each_pending_btree_node_free(c, as, d)
347                 if (d->index_update_done)
348                         __bch2_gc_mark_key(c, bkey_i_to_s_c(&d->key),
349                                           c->sb.btree_node_size, true,
350                                           &stats);
351         /*
352          * Don't apply stats - pending deletes aren't tracked in
353          * bch_alloc_stats:
354          */
355
356         mutex_unlock(&c->btree_interior_update_lock);
357 }
358
359 /**
360  * bch_gc - recompute bucket marks and oldest_gen, rewrite btree nodes
361  */
362 void bch2_gc(struct bch_fs *c)
363 {
364         struct bch_dev *ca;
365         struct bucket *g;
366         struct bucket_mark new;
367         u64 start_time = local_clock();
368         unsigned i;
369         int cpu;
370
371         /*
372          * Walk _all_ references to buckets, and recompute them:
373          *
374          * Order matters here:
375          *  - Concurrent GC relies on the fact that we have a total ordering for
376          *    everything that GC walks - see  gc_will_visit_node(),
377          *    gc_will_visit_root()
378          *
379          *  - also, references move around in the course of index updates and
380          *    various other crap: everything needs to agree on the ordering
381          *    references are allowed to move around in - e.g., we're allowed to
382          *    start with a reference owned by an open_bucket (the allocator) and
383          *    move it to the btree, but not the reverse.
384          *
385          *    This is necessary to ensure that gc doesn't miss references that
386          *    move around - if references move backwards in the ordering GC
387          *    uses, GC could skip past them
388          */
389
390         if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
391                 return;
392
393         trace_gc_start(c);
394
395         /*
396          * Do this before taking gc_lock - bch2_disk_reservation_get() blocks on
397          * gc_lock if sectors_available goes to 0:
398          */
399         bch2_recalc_sectors_available(c);
400
401         down_write(&c->gc_lock);
402
403         lg_global_lock(&c->usage_lock);
404
405         /*
406          * Indicates to buckets code that gc is now in progress - done under
407          * usage_lock to avoid racing with bch2_mark_key():
408          */
409         __gc_pos_set(c, GC_POS_MIN);
410
411         /* Save a copy of the existing bucket stats while we recompute them: */
412         for_each_member_device(ca, c, i) {
413                 ca->usage_cached = __bch2_dev_usage_read(ca);
414                 for_each_possible_cpu(cpu) {
415                         struct bch_dev_usage *p =
416                                 per_cpu_ptr(ca->usage_percpu, cpu);
417                         memset(p, 0, sizeof(*p));
418                 }
419         }
420
421         c->usage_cached = __bch2_fs_usage_read(c);
422         for_each_possible_cpu(cpu) {
423                 struct bch_fs_usage *p =
424                         per_cpu_ptr(c->usage_percpu, cpu);
425
426                 memset(p->s, 0, sizeof(p->s));
427                 p->persistent_reserved = 0;
428         }
429
430         lg_global_unlock(&c->usage_lock);
431
432         /* Clear bucket marks: */
433         for_each_member_device(ca, c, i)
434                 for_each_bucket(g, ca) {
435                         bucket_cmpxchg(g, new, ({
436                                 new.owned_by_allocator  = 0;
437                                 new.data_type           = 0;
438                                 new.cached_sectors      = 0;
439                                 new.dirty_sectors       = 0;
440                         }));
441                         ca->oldest_gens[g - ca->buckets] = new.gen;
442                 }
443
444         /* Walk allocator's references: */
445         bch2_mark_allocator_buckets(c);
446
447         /* Walk btree: */
448         while (c->gc_pos.phase < (int) BTREE_ID_NR) {
449                 int ret = c->btree_roots[c->gc_pos.phase].b
450                         ? bch2_gc_btree(c, (int) c->gc_pos.phase)
451                         : 0;
452
453                 if (ret) {
454                         bch_err(c, "btree gc failed: %d", ret);
455                         set_bit(BCH_FS_GC_FAILURE, &c->flags);
456                         up_write(&c->gc_lock);
457                         return;
458                 }
459
460                 gc_pos_set(c, gc_phase(c->gc_pos.phase + 1));
461         }
462
463         bch2_mark_metadata(c);
464         bch2_mark_pending_btree_node_frees(c);
465
466         for_each_member_device(ca, c, i)
467                 atomic_long_set(&ca->saturated_count, 0);
468
469         /* Indicates that gc is no longer in progress: */
470         gc_pos_set(c, gc_phase(GC_PHASE_DONE));
471
472         up_write(&c->gc_lock);
473         trace_gc_end(c);
474         bch2_time_stats_update(&c->btree_gc_time, start_time);
475
476         /*
477          * Wake up allocator in case it was waiting for buckets
478          * because of not being able to inc gens
479          */
480         for_each_member_device(ca, c, i)
481                 bch2_wake_allocator(ca);
482 }
483
484 /* Btree coalescing */
485
486 static void recalc_packed_keys(struct btree *b)
487 {
488         struct bkey_packed *k;
489
490         memset(&b->nr, 0, sizeof(b->nr));
491
492         BUG_ON(b->nsets != 1);
493
494         for (k =  btree_bkey_first(b, b->set);
495              k != btree_bkey_last(b, b->set);
496              k = bkey_next(k))
497                 btree_keys_account_key_add(&b->nr, 0, k);
498 }
499
500 static void bch2_coalesce_nodes(struct btree *old_nodes[GC_MERGE_NODES],
501                                 struct btree_iter *iter)
502 {
503         struct btree *parent = iter->nodes[old_nodes[0]->level + 1];
504         struct bch_fs *c = iter->c;
505         unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
506         unsigned blocks = btree_blocks(c) * 2 / 3;
507         struct btree *new_nodes[GC_MERGE_NODES];
508         struct btree_interior_update *as;
509         struct btree_reserve *res;
510         struct keylist keylist;
511         struct bkey_format_state format_state;
512         struct bkey_format new_format;
513
514         memset(new_nodes, 0, sizeof(new_nodes));
515         bch2_keylist_init(&keylist, NULL, 0);
516
517         /* Count keys that are not deleted */
518         for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
519                 u64s += old_nodes[i]->nr.live_u64s;
520
521         nr_old_nodes = nr_new_nodes = i;
522
523         /* Check if all keys in @old_nodes could fit in one fewer node */
524         if (nr_old_nodes <= 1 ||
525             __vstruct_blocks(struct btree_node, c->block_bits,
526                              DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
527                 return;
528
529         res = bch2_btree_reserve_get(c, parent, nr_old_nodes,
530                                     BTREE_INSERT_NOFAIL|
531                                     BTREE_INSERT_USE_RESERVE,
532                                     NULL);
533         if (IS_ERR(res)) {
534                 trace_btree_gc_coalesce_fail(c,
535                                 BTREE_GC_COALESCE_FAIL_RESERVE_GET);
536                 return;
537         }
538
539         if (bch2_keylist_realloc(&keylist, NULL, 0,
540                         (BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) {
541                 trace_btree_gc_coalesce_fail(c,
542                                 BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
543                 goto out;
544         }
545
546         /* Find a format that all keys in @old_nodes can pack into */
547         bch2_bkey_format_init(&format_state);
548
549         for (i = 0; i < nr_old_nodes; i++)
550                 __bch2_btree_calc_format(&format_state, old_nodes[i]);
551
552         new_format = bch2_bkey_format_done(&format_state);
553
554         /* Check if repacking would make any nodes too big to fit */
555         for (i = 0; i < nr_old_nodes; i++)
556                 if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) {
557                         trace_btree_gc_coalesce_fail(c,
558                                         BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
559                         goto out;
560                 }
561
562         trace_btree_gc_coalesce(c, parent, nr_old_nodes);
563
564         as = bch2_btree_interior_update_alloc(c);
565
566         for (i = 0; i < nr_old_nodes; i++)
567                 bch2_btree_interior_update_will_free_node(c, as, old_nodes[i]);
568
569         /* Repack everything with @new_format and sort down to one bset */
570         for (i = 0; i < nr_old_nodes; i++)
571                 new_nodes[i] =
572                         __bch2_btree_node_alloc_replacement(c, old_nodes[i],
573                                                             new_format, res);
574
575         /*
576          * Conceptually we concatenate the nodes together and slice them
577          * up at different boundaries.
578          */
579         for (i = nr_new_nodes - 1; i > 0; --i) {
580                 struct btree *n1 = new_nodes[i];
581                 struct btree *n2 = new_nodes[i - 1];
582
583                 struct bset *s1 = btree_bset_first(n1);
584                 struct bset *s2 = btree_bset_first(n2);
585                 struct bkey_packed *k, *last = NULL;
586
587                 /* Calculate how many keys from @n2 we could fit inside @n1 */
588                 u64s = 0;
589
590                 for (k = s2->start;
591                      k < vstruct_last(s2) &&
592                      vstruct_blocks_plus(n1->data, c->block_bits,
593                                          u64s + k->u64s) <= blocks;
594                      k = bkey_next(k)) {
595                         last = k;
596                         u64s += k->u64s;
597                 }
598
599                 if (u64s == le16_to_cpu(s2->u64s)) {
600                         /* n2 fits entirely in n1 */
601                         n1->key.k.p = n1->data->max_key = n2->data->max_key;
602
603                         memcpy_u64s(vstruct_last(s1),
604                                     s2->start,
605                                     le16_to_cpu(s2->u64s));
606                         le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
607
608                         set_btree_bset_end(n1, n1->set);
609
610                         six_unlock_write(&n2->lock);
611                         bch2_btree_node_free_never_inserted(c, n2);
612                         six_unlock_intent(&n2->lock);
613
614                         memmove(new_nodes + i - 1,
615                                 new_nodes + i,
616                                 sizeof(new_nodes[0]) * (nr_new_nodes - i));
617                         new_nodes[--nr_new_nodes] = NULL;
618                 } else if (u64s) {
619                         /* move part of n2 into n1 */
620                         n1->key.k.p = n1->data->max_key =
621                                 bkey_unpack_pos(n1, last);
622
623                         n2->data->min_key =
624                                 btree_type_successor(iter->btree_id,
625                                                      n1->data->max_key);
626
627                         memcpy_u64s(vstruct_last(s1),
628                                     s2->start, u64s);
629                         le16_add_cpu(&s1->u64s, u64s);
630
631                         memmove(s2->start,
632                                 vstruct_idx(s2, u64s),
633                                 (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
634                         s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
635
636                         set_btree_bset_end(n1, n1->set);
637                         set_btree_bset_end(n2, n2->set);
638                 }
639         }
640
641         for (i = 0; i < nr_new_nodes; i++) {
642                 struct btree *n = new_nodes[i];
643
644                 recalc_packed_keys(n);
645                 btree_node_reset_sib_u64s(n);
646
647                 bch2_btree_build_aux_trees(n);
648                 six_unlock_write(&n->lock);
649
650                 bch2_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
651         }
652
653         /*
654          * The keys for the old nodes get deleted. We don't want to insert keys
655          * that compare equal to the keys for the new nodes we'll also be
656          * inserting - we can't because keys on a keylist must be strictly
657          * greater than the previous keys, and we also don't need to since the
658          * key for the new node will serve the same purpose (overwriting the key
659          * for the old node).
660          */
661         for (i = 0; i < nr_old_nodes; i++) {
662                 struct bkey_i delete;
663                 unsigned j;
664
665                 for (j = 0; j < nr_new_nodes; j++)
666                         if (!bkey_cmp(old_nodes[i]->key.k.p,
667                                       new_nodes[j]->key.k.p))
668                                 goto next;
669
670                 bkey_init(&delete.k);
671                 delete.k.p = old_nodes[i]->key.k.p;
672                 bch2_keylist_add_in_order(&keylist, &delete);
673 next:
674                 i = i;
675         }
676
677         /*
678          * Keys for the new nodes get inserted: bch2_btree_insert_keys() only
679          * does the lookup once and thus expects the keys to be in sorted order
680          * so we have to make sure the new keys are correctly ordered with
681          * respect to the deleted keys added in the previous loop
682          */
683         for (i = 0; i < nr_new_nodes; i++)
684                 bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key);
685
686         /* Insert the newly coalesced nodes */
687         bch2_btree_insert_node(parent, iter, &keylist, res, as);
688
689         BUG_ON(!bch2_keylist_empty(&keylist));
690
691         BUG_ON(iter->nodes[old_nodes[0]->level] != old_nodes[0]);
692
693         BUG_ON(!bch2_btree_iter_node_replace(iter, new_nodes[0]));
694
695         for (i = 0; i < nr_new_nodes; i++)
696                 bch2_btree_open_bucket_put(c, new_nodes[i]);
697
698         /* Free the old nodes and update our sliding window */
699         for (i = 0; i < nr_old_nodes; i++) {
700                 bch2_btree_node_free_inmem(iter, old_nodes[i]);
701                 six_unlock_intent(&old_nodes[i]->lock);
702
703                 /*
704                  * the index update might have triggered a split, in which case
705                  * the nodes we coalesced - the new nodes we just created -
706                  * might not be sibling nodes anymore - don't add them to the
707                  * sliding window (except the first):
708                  */
709                 if (!i) {
710                         old_nodes[i] = new_nodes[i];
711                 } else {
712                         old_nodes[i] = NULL;
713                         if (new_nodes[i])
714                                 six_unlock_intent(&new_nodes[i]->lock);
715                 }
716         }
717 out:
718         bch2_keylist_free(&keylist, NULL);
719         bch2_btree_reserve_put(c, res);
720 }
721
722 static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
723 {
724         struct btree_iter iter;
725         struct btree *b;
726         unsigned i;
727
728         /* Sliding window of adjacent btree nodes */
729         struct btree *merge[GC_MERGE_NODES];
730         u32 lock_seq[GC_MERGE_NODES];
731
732         /*
733          * XXX: We don't have a good way of positively matching on sibling nodes
734          * that have the same parent - this code works by handling the cases
735          * where they might not have the same parent, and is thus fragile. Ugh.
736          *
737          * Perhaps redo this to use multiple linked iterators?
738          */
739         memset(merge, 0, sizeof(merge));
740
741         __for_each_btree_node(&iter, c, btree_id, POS_MIN, 0, b, U8_MAX) {
742                 memmove(merge + 1, merge,
743                         sizeof(merge) - sizeof(merge[0]));
744                 memmove(lock_seq + 1, lock_seq,
745                         sizeof(lock_seq) - sizeof(lock_seq[0]));
746
747                 merge[0] = b;
748
749                 for (i = 1; i < GC_MERGE_NODES; i++) {
750                         if (!merge[i] ||
751                             !six_relock_intent(&merge[i]->lock, lock_seq[i]))
752                                 break;
753
754                         if (merge[i]->level != merge[0]->level) {
755                                 six_unlock_intent(&merge[i]->lock);
756                                 break;
757                         }
758                 }
759                 memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
760
761                 bch2_coalesce_nodes(merge, &iter);
762
763                 for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
764                         lock_seq[i] = merge[i]->lock.state.seq;
765                         six_unlock_intent(&merge[i]->lock);
766                 }
767
768                 lock_seq[0] = merge[0]->lock.state.seq;
769
770                 if (test_bit(BCH_FS_GC_STOPPING, &c->flags)) {
771                         bch2_btree_iter_unlock(&iter);
772                         return -ESHUTDOWN;
773                 }
774
775                 bch2_btree_iter_cond_resched(&iter);
776
777                 /*
778                  * If the parent node wasn't relocked, it might have been split
779                  * and the nodes in our sliding window might not have the same
780                  * parent anymore - blow away the sliding window:
781                  */
782                 if (iter.nodes[iter.level + 1] &&
783                     !btree_node_intent_locked(&iter, iter.level + 1))
784                         memset(merge + 1, 0,
785                                (GC_MERGE_NODES - 1) * sizeof(merge[0]));
786         }
787         return bch2_btree_iter_unlock(&iter);
788 }
789
790 /**
791  * bch_coalesce - coalesce adjacent nodes with low occupancy
792  */
793 void bch2_coalesce(struct bch_fs *c)
794 {
795         u64 start_time;
796         enum btree_id id;
797
798         if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
799                 return;
800
801         down_read(&c->gc_lock);
802         trace_gc_coalesce_start(c);
803         start_time = local_clock();
804
805         for (id = 0; id < BTREE_ID_NR; id++) {
806                 int ret = c->btree_roots[id].b
807                         ? bch2_coalesce_btree(c, id)
808                         : 0;
809
810                 if (ret) {
811                         if (ret != -ESHUTDOWN)
812                                 bch_err(c, "btree coalescing failed: %d", ret);
813                         set_bit(BCH_FS_GC_FAILURE, &c->flags);
814                         return;
815                 }
816         }
817
818         bch2_time_stats_update(&c->btree_coalesce_time, start_time);
819         trace_gc_coalesce_end(c);
820         up_read(&c->gc_lock);
821 }
822
823 static int bch2_gc_thread(void *arg)
824 {
825         struct bch_fs *c = arg;
826         struct io_clock *clock = &c->io_clock[WRITE];
827         unsigned long last = atomic_long_read(&clock->now);
828         unsigned last_kick = atomic_read(&c->kick_gc);
829
830         set_freezable();
831
832         while (1) {
833                 unsigned long next = last + c->capacity / 16;
834
835                 while (atomic_long_read(&clock->now) < next) {
836                         set_current_state(TASK_INTERRUPTIBLE);
837
838                         if (kthread_should_stop()) {
839                                 __set_current_state(TASK_RUNNING);
840                                 return 0;
841                         }
842
843                         if (atomic_read(&c->kick_gc) != last_kick) {
844                                 __set_current_state(TASK_RUNNING);
845                                 break;
846                         }
847
848                         bch2_io_clock_schedule_timeout(clock, next);
849                         try_to_freeze();
850                 }
851
852                 last = atomic_long_read(&clock->now);
853                 last_kick = atomic_read(&c->kick_gc);
854
855                 bch2_gc(c);
856                 if (!btree_gc_coalesce_disabled(c))
857                         bch2_coalesce(c);
858
859                 debug_check_no_locks_held();
860         }
861
862         return 0;
863 }
864
865 void bch2_gc_thread_stop(struct bch_fs *c)
866 {
867         set_bit(BCH_FS_GC_STOPPING, &c->flags);
868
869         if (c->gc_thread)
870                 kthread_stop(c->gc_thread);
871
872         c->gc_thread = NULL;
873         clear_bit(BCH_FS_GC_STOPPING, &c->flags);
874 }
875
876 int bch2_gc_thread_start(struct bch_fs *c)
877 {
878         struct task_struct *p;
879
880         BUG_ON(c->gc_thread);
881
882         p = kthread_create(bch2_gc_thread, c, "bcache_gc");
883         if (IS_ERR(p))
884                 return PTR_ERR(p);
885
886         c->gc_thread = p;
887         wake_up_process(c->gc_thread);
888         return 0;
889 }
890
891 /* Initial GC computes bucket marks during startup */
892
893 static void bch2_initial_gc_btree(struct bch_fs *c, enum btree_id id)
894 {
895         struct btree_iter iter;
896         struct btree *b;
897         struct range_checks r;
898
899         btree_node_range_checks_init(&r, 0);
900
901         if (!c->btree_roots[id].b)
902                 return;
903
904         /*
905          * We have to hit every btree node before starting journal replay, in
906          * order for the journal seq blacklist machinery to work:
907          */
908         for_each_btree_node(&iter, c, id, POS_MIN, 0, b) {
909                 btree_node_range_checks(c, b, &r);
910
911                 if (btree_node_has_ptrs(b)) {
912                         struct btree_node_iter node_iter;
913                         struct bkey unpacked;
914                         struct bkey_s_c k;
915
916                         for_each_btree_node_key_unpack(b, k, &node_iter,
917                                                        btree_node_is_extents(b),
918                                                        &unpacked)
919                                 bch2_btree_mark_key_initial(c, btree_node_type(b), k);
920                 }
921
922                 bch2_btree_iter_cond_resched(&iter);
923         }
924
925         bch2_btree_iter_unlock(&iter);
926
927         bch2_btree_mark_key(c, BKEY_TYPE_BTREE,
928                            bkey_i_to_s_c(&c->btree_roots[id].b->key));
929 }
930
931 int bch2_initial_gc(struct bch_fs *c, struct list_head *journal)
932 {
933         enum btree_id id;
934
935         for (id = 0; id < BTREE_ID_NR; id++)
936                 bch2_initial_gc_btree(c, id);
937
938         if (journal)
939                 bch2_journal_mark(c, journal);
940
941         bch2_mark_metadata(c);
942
943         /*
944          * Skip past versions that might have possibly been used (as nonces),
945          * but hadn't had their pointers written:
946          */
947         if (c->sb.encryption_type)
948                 atomic64_add(1 << 16, &c->key_version);
949
950         gc_pos_set(c, gc_phase(GC_PHASE_DONE));
951         set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
952
953         return 0;
954 }