]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_gc.c
e8c1e752a25d63ec7fc32c5982d3ad3e32bc1f9c
[bcachefs-tools-debian] / libbcachefs / btree_gc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  * Copyright (C) 2014 Datera Inc.
5  */
6
7 #include "bcachefs.h"
8 #include "alloc_background.h"
9 #include "alloc_foreground.h"
10 #include "bkey_methods.h"
11 #include "bkey_on_stack.h"
12 #include "btree_locking.h"
13 #include "btree_update_interior.h"
14 #include "btree_io.h"
15 #include "btree_gc.h"
16 #include "buckets.h"
17 #include "clock.h"
18 #include "debug.h"
19 #include "ec.h"
20 #include "error.h"
21 #include "extents.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "recovery.h"
26 #include "replicas.h"
27 #include "super-io.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/preempt.h>
34 #include <linux/rcupdate.h>
35 #include <linux/sched/task.h>
36 #include <trace/events/bcachefs.h>
37
38 static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
39 {
40         preempt_disable();
41         write_seqcount_begin(&c->gc_pos_lock);
42         c->gc_pos = new_pos;
43         write_seqcount_end(&c->gc_pos_lock);
44         preempt_enable();
45 }
46
47 static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
48 {
49         BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
50         __gc_pos_set(c, new_pos);
51 }
52
53 static int bch2_gc_check_topology(struct bch_fs *c,
54                                   struct bkey_s_c k,
55                                   struct bpos *expected_start,
56                                   struct bpos expected_end,
57                                   bool is_last)
58 {
59         int ret = 0;
60
61         if (k.k->type == KEY_TYPE_btree_ptr_v2) {
62                 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
63
64                 if (fsck_err_on(bkey_cmp(*expected_start, bp.v->min_key), c,
65                                 "btree node with incorrect min_key: got %llu:%llu, should be %llu:%llu",
66                                 bp.v->min_key.inode,
67                                 bp.v->min_key.offset,
68                                 expected_start->inode,
69                                 expected_start->offset)) {
70                         BUG();
71                 }
72         }
73
74         *expected_start = bkey_cmp(k.k->p, POS_MAX)
75                 ? bkey_successor(k.k->p)
76                 : k.k->p;
77
78         if (fsck_err_on(is_last &&
79                         bkey_cmp(k.k->p, expected_end), c,
80                         "btree node with incorrect max_key: got %llu:%llu, should be %llu:%llu",
81                         k.k->p.inode,
82                         k.k->p.offset,
83                         expected_end.inode,
84                         expected_end.offset)) {
85                 BUG();
86         }
87 fsck_err:
88         return ret;
89 }
90
91 /* marking of btree keys/nodes: */
92
93 static int bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k,
94                             u8 *max_stale, bool initial)
95 {
96         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
97         const struct bch_extent_ptr *ptr;
98         unsigned flags =
99                 BTREE_TRIGGER_GC|
100                 (initial ? BTREE_TRIGGER_NOATOMIC : 0);
101         int ret = 0;
102
103         if (initial) {
104                 BUG_ON(journal_seq_verify(c) &&
105                        k.k->version.lo > journal_cur_seq(&c->journal));
106
107                 /* XXX change to fsck check */
108                 if (fsck_err_on(k.k->version.lo > atomic64_read(&c->key_version), c,
109                                 "key version number higher than recorded: %llu > %llu",
110                                 k.k->version.lo,
111                                 atomic64_read(&c->key_version)))
112                         atomic64_set(&c->key_version, k.k->version.lo);
113
114                 if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) ||
115                     fsck_err_on(!bch2_bkey_replicas_marked(c, k), c,
116                                 "superblock not marked as containing replicas (type %u)",
117                                 k.k->type)) {
118                         ret = bch2_mark_bkey_replicas(c, k);
119                         if (ret)
120                                 return ret;
121                 }
122
123                 bkey_for_each_ptr(ptrs, ptr) {
124                         struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
125                         struct bucket *g = PTR_BUCKET(ca, ptr, true);
126                         struct bucket *g2 = PTR_BUCKET(ca, ptr, false);
127
128                         if (mustfix_fsck_err_on(!g->gen_valid, c,
129                                         "bucket %u:%zu data type %s ptr gen %u missing in alloc btree",
130                                         ptr->dev, PTR_BUCKET_NR(ca, ptr),
131                                         bch2_data_types[ptr_data_type(k.k, ptr)],
132                                         ptr->gen)) {
133                                 g2->_mark.gen   = g->_mark.gen          = ptr->gen;
134                                 g2->gen_valid   = g->gen_valid          = true;
135                         }
136
137                         if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c,
138                                         "bucket %u:%zu data type %s ptr gen in the future: %u > %u",
139                                         ptr->dev, PTR_BUCKET_NR(ca, ptr),
140                                         bch2_data_types[ptr_data_type(k.k, ptr)],
141                                         ptr->gen, g->mark.gen)) {
142                                 g2->_mark.gen   = g->_mark.gen          = ptr->gen;
143                                 g2->gen_valid   = g->gen_valid          = true;
144                                 g2->_mark.data_type             = 0;
145                                 g2->_mark.dirty_sectors         = 0;
146                                 g2->_mark.cached_sectors        = 0;
147                                 set_bit(BCH_FS_FIXED_GENS, &c->flags);
148                         }
149                 }
150         }
151
152         bkey_for_each_ptr(ptrs, ptr) {
153                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
154                 struct bucket *g = PTR_BUCKET(ca, ptr, true);
155
156                 if (gen_after(g->oldest_gen, ptr->gen))
157                         g->oldest_gen = ptr->gen;
158
159                 *max_stale = max(*max_stale, ptr_stale(ca, ptr));
160         }
161
162         bch2_mark_key(c, k, 0, k.k->size, NULL, 0, flags);
163 fsck_err:
164         return ret;
165 }
166
167 static int btree_gc_mark_node(struct bch_fs *c, struct btree *b, u8 *max_stale,
168                               bool initial)
169 {
170         struct bpos next_node_start = b->data->min_key;
171         struct btree_node_iter iter;
172         struct bkey unpacked;
173         struct bkey_s_c k;
174         int ret = 0;
175
176         *max_stale = 0;
177
178         if (!btree_node_type_needs_gc(btree_node_type(b)))
179                 return 0;
180
181         bch2_btree_node_iter_init_from_start(&iter, b);
182
183         while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) {
184                 bch2_bkey_debugcheck(c, b, k);
185
186                 ret = bch2_gc_mark_key(c, k, max_stale, initial);
187                 if (ret)
188                         break;
189
190                 bch2_btree_node_iter_advance(&iter, b);
191
192                 if (b->c.level) {
193                         ret = bch2_gc_check_topology(c, k,
194                                         &next_node_start,
195                                         b->data->max_key,
196                                         bch2_btree_node_iter_end(&iter));
197                         if (ret)
198                                 break;
199                 }
200         }
201
202         return ret;
203 }
204
205 static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id,
206                          bool initial, bool metadata_only)
207 {
208         struct btree_trans trans;
209         struct btree_iter *iter;
210         struct btree *b;
211         unsigned depth = metadata_only                  ? 1
212                 : expensive_debug_checks(c)             ? 0
213                 : !btree_node_type_needs_gc(btree_id)   ? 1
214                 : 0;
215         u8 max_stale = 0;
216         int ret = 0;
217
218         bch2_trans_init(&trans, c, 0, 0);
219
220         gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));
221
222         __for_each_btree_node(&trans, iter, btree_id, POS_MIN,
223                               0, depth, BTREE_ITER_PREFETCH, b) {
224                 bch2_verify_btree_nr_keys(b);
225
226                 gc_pos_set(c, gc_pos_btree_node(b));
227
228                 ret = btree_gc_mark_node(c, b, &max_stale, initial);
229                 if (ret)
230                         break;
231
232                 if (!initial) {
233                         if (max_stale > 64)
234                                 bch2_btree_node_rewrite(c, iter,
235                                                 b->data->keys.seq,
236                                                 BTREE_INSERT_USE_RESERVE|
237                                                 BTREE_INSERT_NOWAIT|
238                                                 BTREE_INSERT_GC_LOCK_HELD);
239                         else if (!btree_gc_rewrite_disabled(c) &&
240                                  (btree_gc_always_rewrite(c) || max_stale > 16))
241                                 bch2_btree_node_rewrite(c, iter,
242                                                 b->data->keys.seq,
243                                                 BTREE_INSERT_NOWAIT|
244                                                 BTREE_INSERT_GC_LOCK_HELD);
245                 }
246
247                 bch2_trans_cond_resched(&trans);
248         }
249         ret = bch2_trans_exit(&trans) ?: ret;
250         if (ret)
251                 return ret;
252
253         mutex_lock(&c->btree_root_lock);
254         b = c->btree_roots[btree_id].b;
255         if (!btree_node_fake(b))
256                 ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key),
257                                        &max_stale, initial);
258         gc_pos_set(c, gc_pos_btree_root(b->c.btree_id));
259         mutex_unlock(&c->btree_root_lock);
260
261         return ret;
262 }
263
264 static int bch2_gc_btree_init_recurse(struct bch_fs *c, struct btree *b,
265                                       struct journal_keys *journal_keys,
266                                       unsigned target_depth)
267 {
268         struct btree_and_journal_iter iter;
269         struct bkey_s_c k;
270         struct bpos next_node_start = b->data->min_key;
271         u8 max_stale = 0;
272         int ret = 0;
273
274         bch2_btree_and_journal_iter_init_node_iter(&iter, journal_keys, b);
275
276         while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
277                 bch2_bkey_debugcheck(c, b, k);
278
279                 BUG_ON(bkey_cmp(k.k->p, b->data->min_key) < 0);
280                 BUG_ON(bkey_cmp(k.k->p, b->data->max_key) > 0);
281
282                 ret = bch2_gc_mark_key(c, k, &max_stale, true);
283                 if (ret)
284                         break;
285
286                 if (b->c.level) {
287                         struct btree *child;
288                         BKEY_PADDED(k) tmp;
289
290                         bkey_reassemble(&tmp.k, k);
291                         k = bkey_i_to_s_c(&tmp.k);
292
293                         bch2_btree_and_journal_iter_advance(&iter);
294
295                         ret = bch2_gc_check_topology(c, k,
296                                         &next_node_start,
297                                         b->data->max_key,
298                                         !bch2_btree_and_journal_iter_peek(&iter).k);
299                         if (ret)
300                                 break;
301
302                         if (b->c.level > target_depth) {
303                                 child = bch2_btree_node_get_noiter(c, &tmp.k,
304                                                         b->c.btree_id, b->c.level - 1);
305                                 ret = PTR_ERR_OR_ZERO(child);
306                                 if (ret)
307                                         break;
308
309                                 ret = bch2_gc_btree_init_recurse(c, child,
310                                                 journal_keys, target_depth);
311                                 six_unlock_read(&child->c.lock);
312
313                                 if (ret)
314                                         break;
315                         }
316                 } else {
317                         bch2_btree_and_journal_iter_advance(&iter);
318                 }
319         }
320
321         return ret;
322 }
323
324 static int bch2_gc_btree_init(struct bch_fs *c,
325                               struct journal_keys *journal_keys,
326                               enum btree_id btree_id,
327                               bool metadata_only)
328 {
329         struct btree *b;
330         unsigned target_depth = metadata_only           ? 1
331                 : expensive_debug_checks(c)             ? 0
332                 : !btree_node_type_needs_gc(btree_id)   ? 1
333                 : 0;
334         u8 max_stale = 0;
335         int ret = 0;
336
337         b = c->btree_roots[btree_id].b;
338
339         if (btree_node_fake(b))
340                 return 0;
341
342         six_lock_read(&b->c.lock, NULL, NULL);
343         if (fsck_err_on(bkey_cmp(b->data->min_key, POS_MIN), c,
344                         "btree root with incorrect min_key: %llu:%llu",
345                         b->data->min_key.inode,
346                         b->data->min_key.offset)) {
347                 BUG();
348         }
349
350         if (fsck_err_on(bkey_cmp(b->data->max_key, POS_MAX), c,
351                         "btree root with incorrect min_key: %llu:%llu",
352                         b->data->max_key.inode,
353                         b->data->max_key.offset)) {
354                 BUG();
355         }
356
357         if (b->c.level >= target_depth)
358                 ret = bch2_gc_btree_init_recurse(c, b,
359                                         journal_keys, target_depth);
360
361         if (!ret)
362                 ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key),
363                                        &max_stale, true);
364 fsck_err:
365         six_unlock_read(&b->c.lock);
366
367         return ret;
368 }
369
370 static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r)
371 {
372         return  (int) btree_id_to_gc_phase(l) -
373                 (int) btree_id_to_gc_phase(r);
374 }
375
376 static int bch2_gc_btrees(struct bch_fs *c, struct journal_keys *journal_keys,
377                           bool initial, bool metadata_only)
378 {
379         enum btree_id ids[BTREE_ID_NR];
380         unsigned i;
381
382         for (i = 0; i < BTREE_ID_NR; i++)
383                 ids[i] = i;
384         bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp);
385
386         for (i = 0; i < BTREE_ID_NR; i++) {
387                 enum btree_id id = ids[i];
388                 int ret = initial
389                         ? bch2_gc_btree_init(c, journal_keys,
390                                              id, metadata_only)
391                         : bch2_gc_btree(c, id, initial, metadata_only);
392                 if (ret)
393                         return ret;
394         }
395
396         return 0;
397 }
398
399 static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
400                                   u64 start, u64 end,
401                                   enum bch_data_type type,
402                                   unsigned flags)
403 {
404         u64 b = sector_to_bucket(ca, start);
405
406         do {
407                 unsigned sectors =
408                         min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
409
410                 bch2_mark_metadata_bucket(c, ca, b, type, sectors,
411                                           gc_phase(GC_PHASE_SB), flags);
412                 b++;
413                 start += sectors;
414         } while (start < end);
415 }
416
417 void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
418                               unsigned flags)
419 {
420         struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
421         unsigned i;
422         u64 b;
423
424         /*
425          * This conditional is kind of gross, but we may be called from the
426          * device add path, before the new device has actually been added to the
427          * running filesystem:
428          */
429         if (c) {
430                 lockdep_assert_held(&c->sb_lock);
431                 percpu_down_read(&c->mark_lock);
432         }
433
434         for (i = 0; i < layout->nr_superblocks; i++) {
435                 u64 offset = le64_to_cpu(layout->sb_offset[i]);
436
437                 if (offset == BCH_SB_SECTOR)
438                         mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
439                                               BCH_DATA_sb, flags);
440
441                 mark_metadata_sectors(c, ca, offset,
442                                       offset + (1 << layout->sb_max_size_bits),
443                                       BCH_DATA_sb, flags);
444         }
445
446         for (i = 0; i < ca->journal.nr; i++) {
447                 b = ca->journal.buckets[i];
448                 bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal,
449                                           ca->mi.bucket_size,
450                                           gc_phase(GC_PHASE_SB), flags);
451         }
452
453         if (c)
454                 percpu_up_read(&c->mark_lock);
455 }
456
457 static void bch2_mark_superblocks(struct bch_fs *c)
458 {
459         struct bch_dev *ca;
460         unsigned i;
461
462         mutex_lock(&c->sb_lock);
463         gc_pos_set(c, gc_phase(GC_PHASE_SB));
464
465         for_each_online_member(ca, c, i)
466                 bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC);
467         mutex_unlock(&c->sb_lock);
468 }
469
470 #if 0
471 /* Also see bch2_pending_btree_node_free_insert_done() */
472 static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
473 {
474         struct btree_update *as;
475         struct pending_btree_node_free *d;
476
477         mutex_lock(&c->btree_interior_update_lock);
478         gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
479
480         for_each_pending_btree_node_free(c, as, d)
481                 if (d->index_update_done)
482                         bch2_mark_key(c, bkey_i_to_s_c(&d->key),
483                                       0, 0, NULL, 0,
484                                       BTREE_TRIGGER_GC);
485
486         mutex_unlock(&c->btree_interior_update_lock);
487 }
488 #endif
489
490 static void bch2_mark_allocator_buckets(struct bch_fs *c)
491 {
492         struct bch_dev *ca;
493         struct open_bucket *ob;
494         size_t i, j, iter;
495         unsigned ci;
496
497         percpu_down_read(&c->mark_lock);
498
499         spin_lock(&c->freelist_lock);
500         gc_pos_set(c, gc_pos_alloc(c, NULL));
501
502         for_each_member_device(ca, c, ci) {
503                 fifo_for_each_entry(i, &ca->free_inc, iter)
504                         bch2_mark_alloc_bucket(c, ca, i, true,
505                                                gc_pos_alloc(c, NULL),
506                                                BTREE_TRIGGER_GC);
507
508
509
510                 for (j = 0; j < RESERVE_NR; j++)
511                         fifo_for_each_entry(i, &ca->free[j], iter)
512                                 bch2_mark_alloc_bucket(c, ca, i, true,
513                                                        gc_pos_alloc(c, NULL),
514                                                        BTREE_TRIGGER_GC);
515         }
516
517         spin_unlock(&c->freelist_lock);
518
519         for (ob = c->open_buckets;
520              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
521              ob++) {
522                 spin_lock(&ob->lock);
523                 if (ob->valid) {
524                         gc_pos_set(c, gc_pos_alloc(c, ob));
525                         ca = bch_dev_bkey_exists(c, ob->ptr.dev);
526                         bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true,
527                                                gc_pos_alloc(c, ob),
528                                                BTREE_TRIGGER_GC);
529                 }
530                 spin_unlock(&ob->lock);
531         }
532
533         percpu_up_read(&c->mark_lock);
534 }
535
536 static void bch2_gc_free(struct bch_fs *c)
537 {
538         struct bch_dev *ca;
539         unsigned i;
540
541         genradix_free(&c->stripes[1]);
542
543         for_each_member_device(ca, c, i) {
544                 kvpfree(rcu_dereference_protected(ca->buckets[1], 1),
545                         sizeof(struct bucket_array) +
546                         ca->mi.nbuckets * sizeof(struct bucket));
547                 ca->buckets[1] = NULL;
548
549                 free_percpu(ca->usage[1]);
550                 ca->usage[1] = NULL;
551         }
552
553         free_percpu(c->usage_gc);
554         c->usage_gc = NULL;
555 }
556
557 static int bch2_gc_done(struct bch_fs *c,
558                         bool initial, bool metadata_only)
559 {
560         struct bch_dev *ca;
561         bool verify = !metadata_only &&
562                 (!initial ||
563                  (c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO)));
564         unsigned i;
565         int ret = 0;
566
567 #define copy_field(_f, _msg, ...)                                       \
568         if (dst->_f != src->_f) {                                       \
569                 if (verify)                                             \
570                         fsck_err(c, _msg ": got %llu, should be %llu"   \
571                                 , ##__VA_ARGS__, dst->_f, src->_f);     \
572                 dst->_f = src->_f;                                      \
573                 ret = 1;                                                \
574         }
575 #define copy_stripe_field(_f, _msg, ...)                                \
576         if (dst->_f != src->_f) {                                       \
577                 if (verify)                                             \
578                         fsck_err(c, "stripe %zu has wrong "_msg         \
579                                 ": got %u, should be %u",               \
580                                 dst_iter.pos, ##__VA_ARGS__,            \
581                                 dst->_f, src->_f);                      \
582                 dst->_f = src->_f;                                      \
583                 dst->dirty = true;                                      \
584                 ret = 1;                                                \
585         }
586 #define copy_bucket_field(_f)                                           \
587         if (dst->b[b].mark._f != src->b[b].mark._f) {                   \
588                 if (verify)                                             \
589                         fsck_err(c, "bucket %u:%zu gen %u data type %s has wrong " #_f  \
590                                 ": got %u, should be %u", i, b,         \
591                                 dst->b[b].mark.gen,                     \
592                                 bch2_data_types[dst->b[b].mark.data_type],\
593                                 dst->b[b].mark._f, src->b[b].mark._f);  \
594                 dst->b[b]._mark._f = src->b[b].mark._f;                 \
595                 ret = 1;                                                \
596         }
597 #define copy_dev_field(_f, _msg, ...)                                   \
598         copy_field(_f, "dev %u has wrong " _msg, i, ##__VA_ARGS__)
599 #define copy_fs_field(_f, _msg, ...)                                    \
600         copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__)
601
602         if (!metadata_only) {
603                 struct genradix_iter dst_iter = genradix_iter_init(&c->stripes[0], 0);
604                 struct genradix_iter src_iter = genradix_iter_init(&c->stripes[1], 0);
605                 struct stripe *dst, *src;
606                 unsigned i;
607
608                 c->ec_stripes_heap.used = 0;
609
610                 while ((dst = genradix_iter_peek(&dst_iter, &c->stripes[0])) &&
611                        (src = genradix_iter_peek(&src_iter, &c->stripes[1]))) {
612                         BUG_ON(src_iter.pos != dst_iter.pos);
613
614                         copy_stripe_field(alive,        "alive");
615                         copy_stripe_field(sectors,      "sectors");
616                         copy_stripe_field(algorithm,    "algorithm");
617                         copy_stripe_field(nr_blocks,    "nr_blocks");
618                         copy_stripe_field(nr_redundant, "nr_redundant");
619                         copy_stripe_field(blocks_nonempty,
620                                           "blocks_nonempty");
621
622                         for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++)
623                                 copy_stripe_field(block_sectors[i],
624                                                   "block_sectors[%u]", i);
625
626                         if (dst->alive) {
627                                 spin_lock(&c->ec_stripes_heap_lock);
628                                 bch2_stripes_heap_insert(c, dst, dst_iter.pos);
629                                 spin_unlock(&c->ec_stripes_heap_lock);
630                         }
631
632                         genradix_iter_advance(&dst_iter, &c->stripes[0]);
633                         genradix_iter_advance(&src_iter, &c->stripes[1]);
634                 }
635         }
636
637         for_each_member_device(ca, c, i) {
638                 struct bucket_array *dst = __bucket_array(ca, 0);
639                 struct bucket_array *src = __bucket_array(ca, 1);
640                 size_t b;
641
642                 for (b = 0; b < src->nbuckets; b++) {
643                         copy_bucket_field(gen);
644                         copy_bucket_field(data_type);
645                         copy_bucket_field(owned_by_allocator);
646                         copy_bucket_field(stripe);
647                         copy_bucket_field(dirty_sectors);
648                         copy_bucket_field(cached_sectors);
649
650                         dst->b[b].oldest_gen = src->b[b].oldest_gen;
651                 }
652         };
653
654         bch2_fs_usage_acc_to_base(c, 0);
655         bch2_fs_usage_acc_to_base(c, 1);
656
657         bch2_dev_usage_from_buckets(c);
658
659         {
660                 unsigned nr = fs_usage_u64s(c);
661                 struct bch_fs_usage *dst = c->usage_base;
662                 struct bch_fs_usage *src = (void *)
663                         bch2_acc_percpu_u64s((void *) c->usage_gc, nr);
664
665                 copy_fs_field(hidden,           "hidden");
666                 copy_fs_field(btree,            "btree");
667
668                 if (!metadata_only) {
669                         copy_fs_field(data,     "data");
670                         copy_fs_field(cached,   "cached");
671                         copy_fs_field(reserved, "reserved");
672                         copy_fs_field(nr_inodes,"nr_inodes");
673
674                         for (i = 0; i < BCH_REPLICAS_MAX; i++)
675                                 copy_fs_field(persistent_reserved[i],
676                                               "persistent_reserved[%i]", i);
677                 }
678
679                 for (i = 0; i < c->replicas.nr; i++) {
680                         struct bch_replicas_entry *e =
681                                 cpu_replicas_entry(&c->replicas, i);
682                         char buf[80];
683
684                         if (metadata_only &&
685                             (e->data_type == BCH_DATA_user ||
686                              e->data_type == BCH_DATA_cached))
687                                 continue;
688
689                         bch2_replicas_entry_to_text(&PBUF(buf), e);
690
691                         copy_fs_field(replicas[i], "%s", buf);
692                 }
693         }
694
695 #undef copy_fs_field
696 #undef copy_dev_field
697 #undef copy_bucket_field
698 #undef copy_stripe_field
699 #undef copy_field
700 fsck_err:
701         return ret;
702 }
703
704 static int bch2_gc_start(struct bch_fs *c,
705                          bool metadata_only)
706 {
707         struct bch_dev *ca;
708         unsigned i;
709         int ret;
710
711         BUG_ON(c->usage_gc);
712
713         c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64),
714                                          sizeof(u64), GFP_KERNEL);
715         if (!c->usage_gc) {
716                 bch_err(c, "error allocating c->usage_gc");
717                 return -ENOMEM;
718         }
719
720         for_each_member_device(ca, c, i) {
721                 BUG_ON(ca->buckets[1]);
722                 BUG_ON(ca->usage[1]);
723
724                 ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) +
725                                 ca->mi.nbuckets * sizeof(struct bucket),
726                                 GFP_KERNEL|__GFP_ZERO);
727                 if (!ca->buckets[1]) {
728                         percpu_ref_put(&ca->ref);
729                         bch_err(c, "error allocating ca->buckets[gc]");
730                         return -ENOMEM;
731                 }
732
733                 ca->usage[1] = alloc_percpu(struct bch_dev_usage);
734                 if (!ca->usage[1]) {
735                         bch_err(c, "error allocating ca->usage[gc]");
736                         percpu_ref_put(&ca->ref);
737                         return -ENOMEM;
738                 }
739         }
740
741         ret = bch2_ec_mem_alloc(c, true);
742         if (ret) {
743                 bch_err(c, "error allocating ec gc mem");
744                 return ret;
745         }
746
747         percpu_down_write(&c->mark_lock);
748
749         /*
750          * indicate to stripe code that we need to allocate for the gc stripes
751          * radix tree, too
752          */
753         gc_pos_set(c, gc_phase(GC_PHASE_START));
754
755         for_each_member_device(ca, c, i) {
756                 struct bucket_array *dst = __bucket_array(ca, 1);
757                 struct bucket_array *src = __bucket_array(ca, 0);
758                 size_t b;
759
760                 dst->first_bucket       = src->first_bucket;
761                 dst->nbuckets           = src->nbuckets;
762
763                 for (b = 0; b < src->nbuckets; b++) {
764                         struct bucket *d = &dst->b[b];
765                         struct bucket *s = &src->b[b];
766
767                         d->_mark.gen = dst->b[b].oldest_gen = s->mark.gen;
768                         d->gen_valid = s->gen_valid;
769
770                         if (metadata_only &&
771                             (s->mark.data_type == BCH_DATA_user ||
772                              s->mark.data_type == BCH_DATA_cached)) {
773                                 d->_mark = s->mark;
774                                 d->_mark.owned_by_allocator = 0;
775                         }
776                 }
777         };
778
779         percpu_up_write(&c->mark_lock);
780
781         return 0;
782 }
783
784 /**
785  * bch2_gc - walk _all_ references to buckets, and recompute them:
786  *
787  * Order matters here:
788  *  - Concurrent GC relies on the fact that we have a total ordering for
789  *    everything that GC walks - see  gc_will_visit_node(),
790  *    gc_will_visit_root()
791  *
792  *  - also, references move around in the course of index updates and
793  *    various other crap: everything needs to agree on the ordering
794  *    references are allowed to move around in - e.g., we're allowed to
795  *    start with a reference owned by an open_bucket (the allocator) and
796  *    move it to the btree, but not the reverse.
797  *
798  *    This is necessary to ensure that gc doesn't miss references that
799  *    move around - if references move backwards in the ordering GC
800  *    uses, GC could skip past them
801  */
802 int bch2_gc(struct bch_fs *c, struct journal_keys *journal_keys,
803             bool initial, bool metadata_only)
804 {
805         struct bch_dev *ca;
806         u64 start_time = local_clock();
807         unsigned i, iter = 0;
808         int ret;
809
810         lockdep_assert_held(&c->state_lock);
811         trace_gc_start(c);
812
813         down_write(&c->gc_lock);
814
815         /* flush interior btree updates: */
816         closure_wait_event(&c->btree_interior_update_wait,
817                            !bch2_btree_interior_updates_nr_pending(c));
818 again:
819         ret = bch2_gc_start(c, metadata_only);
820         if (ret)
821                 goto out;
822
823         bch2_mark_superblocks(c);
824
825         ret = bch2_gc_btrees(c, journal_keys, initial, metadata_only);
826         if (ret)
827                 goto out;
828
829 #if 0
830         bch2_mark_pending_btree_node_frees(c);
831 #endif
832         bch2_mark_allocator_buckets(c);
833
834         c->gc_count++;
835 out:
836         if (!ret &&
837             (test_bit(BCH_FS_FIXED_GENS, &c->flags) ||
838              (!iter && test_restart_gc(c)))) {
839                 /*
840                  * XXX: make sure gens we fixed got saved
841                  */
842                 if (iter++ <= 2) {
843                         bch_info(c, "Fixed gens, restarting mark and sweep:");
844                         clear_bit(BCH_FS_FIXED_GENS, &c->flags);
845                         __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
846
847                         percpu_down_write(&c->mark_lock);
848                         bch2_gc_free(c);
849                         percpu_up_write(&c->mark_lock);
850                         /* flush fsck errors, reset counters */
851                         bch2_flush_fsck_errs(c);
852
853                         goto again;
854                 }
855
856                 bch_info(c, "Unable to fix bucket gens, looping");
857                 ret = -EINVAL;
858         }
859
860         if (!ret) {
861                 bch2_journal_block(&c->journal);
862
863                 percpu_down_write(&c->mark_lock);
864                 ret = bch2_gc_done(c, initial, metadata_only);
865
866                 bch2_journal_unblock(&c->journal);
867         } else {
868                 percpu_down_write(&c->mark_lock);
869         }
870
871         /* Indicates that gc is no longer in progress: */
872         __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
873
874         bch2_gc_free(c);
875         percpu_up_write(&c->mark_lock);
876
877         up_write(&c->gc_lock);
878
879         trace_gc_end(c);
880         bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);
881
882         /*
883          * Wake up allocator in case it was waiting for buckets
884          * because of not being able to inc gens
885          */
886         for_each_member_device(ca, c, i)
887                 bch2_wake_allocator(ca);
888
889         /*
890          * At startup, allocations can happen directly instead of via the
891          * allocator thread - issue wakeup in case they blocked on gc_lock:
892          */
893         closure_wake_up(&c->freelist_wait);
894         return ret;
895 }
896
897 static bool gc_btree_gens_key(struct bch_fs *c, struct bkey_s_c k)
898 {
899         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
900         const struct bch_extent_ptr *ptr;
901
902         percpu_down_read(&c->mark_lock);
903         bkey_for_each_ptr(ptrs, ptr) {
904                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
905                 struct bucket *g = PTR_BUCKET(ca, ptr, false);
906
907                 if (gen_after(g->mark.gen, ptr->gen) > 16) {
908                         percpu_up_read(&c->mark_lock);
909                         return true;
910                 }
911         }
912
913         bkey_for_each_ptr(ptrs, ptr) {
914                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
915                 struct bucket *g = PTR_BUCKET(ca, ptr, false);
916
917                 if (gen_after(g->gc_gen, ptr->gen))
918                         g->gc_gen = ptr->gen;
919         }
920         percpu_up_read(&c->mark_lock);
921
922         return false;
923 }
924
925 /*
926  * For recalculating oldest gen, we only need to walk keys in leaf nodes; btree
927  * node pointers currently never have cached pointers that can become stale:
928  */
929 static int bch2_gc_btree_gens(struct bch_fs *c, enum btree_id btree_id)
930 {
931         struct btree_trans trans;
932         struct btree_iter *iter;
933         struct bkey_s_c k;
934         struct bkey_on_stack sk;
935         int ret = 0;
936
937         bkey_on_stack_init(&sk);
938         bch2_trans_init(&trans, c, 0, 0);
939
940         iter = bch2_trans_get_iter(&trans, btree_id, POS_MIN,
941                                    BTREE_ITER_PREFETCH);
942
943         while ((k = bch2_btree_iter_peek(iter)).k &&
944                !(ret = bkey_err(k))) {
945                 if (gc_btree_gens_key(c, k)) {
946                         bkey_on_stack_reassemble(&sk, c, k);
947                         bch2_extent_normalize(c, bkey_i_to_s(sk.k));
948
949                         bch2_btree_iter_set_pos(iter, bkey_start_pos(&sk.k->k));
950
951                         bch2_trans_update(&trans, iter, sk.k, 0);
952
953                         ret = bch2_trans_commit(&trans, NULL, NULL,
954                                                 BTREE_INSERT_NOFAIL);
955                         if (ret == -EINTR)
956                                 continue;
957                         if (ret) {
958                                 break;
959                         }
960                 }
961
962                 bch2_btree_iter_next(iter);
963         }
964
965         bch2_trans_exit(&trans);
966         bkey_on_stack_exit(&sk, c);
967
968         return ret;
969 }
970
971 int bch2_gc_gens(struct bch_fs *c)
972 {
973         struct bch_dev *ca;
974         struct bucket_array *buckets;
975         struct bucket *g;
976         unsigned i;
977         int ret;
978
979         /*
980          * Ideally we would be using state_lock and not gc_lock here, but that
981          * introduces a deadlock in the RO path - we currently take the state
982          * lock at the start of going RO, thus the gc thread may get stuck:
983          */
984         down_read(&c->gc_lock);
985
986         for_each_member_device(ca, c, i) {
987                 down_read(&ca->bucket_lock);
988                 buckets = bucket_array(ca);
989
990                 for_each_bucket(g, buckets)
991                         g->gc_gen = g->mark.gen;
992                 up_read(&ca->bucket_lock);
993         }
994
995         for (i = 0; i < BTREE_ID_NR; i++)
996                 if (btree_node_type_needs_gc(i)) {
997                         ret = bch2_gc_btree_gens(c, i);
998                         if (ret) {
999                                 bch_err(c, "error recalculating oldest_gen: %i", ret);
1000                                 goto err;
1001                         }
1002                 }
1003
1004         for_each_member_device(ca, c, i) {
1005                 down_read(&ca->bucket_lock);
1006                 buckets = bucket_array(ca);
1007
1008                 for_each_bucket(g, buckets)
1009                         g->oldest_gen = g->gc_gen;
1010                 up_read(&ca->bucket_lock);
1011         }
1012
1013         c->gc_count++;
1014 err:
1015         up_read(&c->gc_lock);
1016         return ret;
1017 }
1018
1019 /* Btree coalescing */
1020
1021 static void recalc_packed_keys(struct btree *b)
1022 {
1023         struct bset *i = btree_bset_first(b);
1024         struct bkey_packed *k;
1025
1026         memset(&b->nr, 0, sizeof(b->nr));
1027
1028         BUG_ON(b->nsets != 1);
1029
1030         vstruct_for_each(i, k)
1031                 btree_keys_account_key_add(&b->nr, 0, k);
1032 }
1033
1034 static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter,
1035                                 struct btree *old_nodes[GC_MERGE_NODES])
1036 {
1037         struct btree *parent = btree_node_parent(iter, old_nodes[0]);
1038         unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
1039         unsigned blocks = btree_blocks(c) * 2 / 3;
1040         struct btree *new_nodes[GC_MERGE_NODES];
1041         struct btree_update *as;
1042         struct keylist keylist;
1043         struct bkey_format_state format_state;
1044         struct bkey_format new_format;
1045
1046         memset(new_nodes, 0, sizeof(new_nodes));
1047         bch2_keylist_init(&keylist, NULL);
1048
1049         /* Count keys that are not deleted */
1050         for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
1051                 u64s += old_nodes[i]->nr.live_u64s;
1052
1053         nr_old_nodes = nr_new_nodes = i;
1054
1055         /* Check if all keys in @old_nodes could fit in one fewer node */
1056         if (nr_old_nodes <= 1 ||
1057             __vstruct_blocks(struct btree_node, c->block_bits,
1058                              DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
1059                 return;
1060
1061         /* Find a format that all keys in @old_nodes can pack into */
1062         bch2_bkey_format_init(&format_state);
1063
1064         for (i = 0; i < nr_old_nodes; i++)
1065                 __bch2_btree_calc_format(&format_state, old_nodes[i]);
1066
1067         new_format = bch2_bkey_format_done(&format_state);
1068
1069         /* Check if repacking would make any nodes too big to fit */
1070         for (i = 0; i < nr_old_nodes; i++)
1071                 if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) {
1072                         trace_btree_gc_coalesce_fail(c,
1073                                         BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
1074                         return;
1075                 }
1076
1077         if (bch2_keylist_realloc(&keylist, NULL, 0,
1078                         (BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) {
1079                 trace_btree_gc_coalesce_fail(c,
1080                                 BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
1081                 return;
1082         }
1083
1084         as = bch2_btree_update_start(iter->trans, iter->btree_id,
1085                         btree_update_reserve_required(c, parent) + nr_old_nodes,
1086                         BTREE_INSERT_NOFAIL|
1087                         BTREE_INSERT_USE_RESERVE,
1088                         NULL);
1089         if (IS_ERR(as)) {
1090                 trace_btree_gc_coalesce_fail(c,
1091                                 BTREE_GC_COALESCE_FAIL_RESERVE_GET);
1092                 bch2_keylist_free(&keylist, NULL);
1093                 return;
1094         }
1095
1096         trace_btree_gc_coalesce(c, old_nodes[0]);
1097
1098         for (i = 0; i < nr_old_nodes; i++)
1099                 bch2_btree_interior_update_will_free_node(as, old_nodes[i]);
1100
1101         /* Repack everything with @new_format and sort down to one bset */
1102         for (i = 0; i < nr_old_nodes; i++)
1103                 new_nodes[i] =
1104                         __bch2_btree_node_alloc_replacement(as, old_nodes[i],
1105                                                             new_format);
1106
1107         /*
1108          * Conceptually we concatenate the nodes together and slice them
1109          * up at different boundaries.
1110          */
1111         for (i = nr_new_nodes - 1; i > 0; --i) {
1112                 struct btree *n1 = new_nodes[i];
1113                 struct btree *n2 = new_nodes[i - 1];
1114
1115                 struct bset *s1 = btree_bset_first(n1);
1116                 struct bset *s2 = btree_bset_first(n2);
1117                 struct bkey_packed *k, *last = NULL;
1118
1119                 /* Calculate how many keys from @n2 we could fit inside @n1 */
1120                 u64s = 0;
1121
1122                 for (k = s2->start;
1123                      k < vstruct_last(s2) &&
1124                      vstruct_blocks_plus(n1->data, c->block_bits,
1125                                          u64s + k->u64s) <= blocks;
1126                      k = bkey_next_skip_noops(k, vstruct_last(s2))) {
1127                         last = k;
1128                         u64s += k->u64s;
1129                 }
1130
1131                 if (u64s == le16_to_cpu(s2->u64s)) {
1132                         /* n2 fits entirely in n1 */
1133                         n1->key.k.p = n1->data->max_key = n2->data->max_key;
1134
1135                         memcpy_u64s(vstruct_last(s1),
1136                                     s2->start,
1137                                     le16_to_cpu(s2->u64s));
1138                         le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
1139
1140                         set_btree_bset_end(n1, n1->set);
1141
1142                         six_unlock_write(&n2->c.lock);
1143                         bch2_btree_node_free_never_inserted(c, n2);
1144                         six_unlock_intent(&n2->c.lock);
1145
1146                         memmove(new_nodes + i - 1,
1147                                 new_nodes + i,
1148                                 sizeof(new_nodes[0]) * (nr_new_nodes - i));
1149                         new_nodes[--nr_new_nodes] = NULL;
1150                 } else if (u64s) {
1151                         /* move part of n2 into n1 */
1152                         n1->key.k.p = n1->data->max_key =
1153                                 bkey_unpack_pos(n1, last);
1154
1155                         n2->data->min_key = bkey_successor(n1->data->max_key);
1156
1157                         memcpy_u64s(vstruct_last(s1),
1158                                     s2->start, u64s);
1159                         le16_add_cpu(&s1->u64s, u64s);
1160
1161                         memmove(s2->start,
1162                                 vstruct_idx(s2, u64s),
1163                                 (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
1164                         s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
1165
1166                         set_btree_bset_end(n1, n1->set);
1167                         set_btree_bset_end(n2, n2->set);
1168                 }
1169         }
1170
1171         for (i = 0; i < nr_new_nodes; i++) {
1172                 struct btree *n = new_nodes[i];
1173
1174                 recalc_packed_keys(n);
1175                 btree_node_reset_sib_u64s(n);
1176
1177                 bch2_btree_build_aux_trees(n);
1178
1179                 bch2_btree_update_add_new_node(as, n);
1180                 six_unlock_write(&n->c.lock);
1181
1182                 bch2_btree_node_write(c, n, SIX_LOCK_intent);
1183         }
1184
1185         /*
1186          * The keys for the old nodes get deleted. We don't want to insert keys
1187          * that compare equal to the keys for the new nodes we'll also be
1188          * inserting - we can't because keys on a keylist must be strictly
1189          * greater than the previous keys, and we also don't need to since the
1190          * key for the new node will serve the same purpose (overwriting the key
1191          * for the old node).
1192          */
1193         for (i = 0; i < nr_old_nodes; i++) {
1194                 struct bkey_i delete;
1195                 unsigned j;
1196
1197                 for (j = 0; j < nr_new_nodes; j++)
1198                         if (!bkey_cmp(old_nodes[i]->key.k.p,
1199                                       new_nodes[j]->key.k.p))
1200                                 goto next;
1201
1202                 bkey_init(&delete.k);
1203                 delete.k.p = old_nodes[i]->key.k.p;
1204                 bch2_keylist_add_in_order(&keylist, &delete);
1205 next:
1206                 i = i;
1207         }
1208
1209         /*
1210          * Keys for the new nodes get inserted: bch2_btree_insert_keys() only
1211          * does the lookup once and thus expects the keys to be in sorted order
1212          * so we have to make sure the new keys are correctly ordered with
1213          * respect to the deleted keys added in the previous loop
1214          */
1215         for (i = 0; i < nr_new_nodes; i++)
1216                 bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key);
1217
1218         /* Insert the newly coalesced nodes */
1219         bch2_btree_insert_node(as, parent, iter, &keylist, 0);
1220
1221         BUG_ON(!bch2_keylist_empty(&keylist));
1222
1223         BUG_ON(iter->l[old_nodes[0]->c.level].b != old_nodes[0]);
1224
1225         bch2_btree_iter_node_replace(iter, new_nodes[0]);
1226
1227         for (i = 0; i < nr_new_nodes; i++)
1228                 bch2_btree_update_get_open_buckets(as, new_nodes[i]);
1229
1230         /* Free the old nodes and update our sliding window */
1231         for (i = 0; i < nr_old_nodes; i++) {
1232                 bch2_btree_node_free_inmem(c, old_nodes[i], iter);
1233
1234                 /*
1235                  * the index update might have triggered a split, in which case
1236                  * the nodes we coalesced - the new nodes we just created -
1237                  * might not be sibling nodes anymore - don't add them to the
1238                  * sliding window (except the first):
1239                  */
1240                 if (!i) {
1241                         old_nodes[i] = new_nodes[i];
1242                 } else {
1243                         old_nodes[i] = NULL;
1244                 }
1245         }
1246
1247         for (i = 0; i < nr_new_nodes; i++)
1248                 six_unlock_intent(&new_nodes[i]->c.lock);
1249
1250         bch2_btree_update_done(as);
1251         bch2_keylist_free(&keylist, NULL);
1252 }
1253
1254 static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
1255 {
1256         struct btree_trans trans;
1257         struct btree_iter *iter;
1258         struct btree *b;
1259         bool kthread = (current->flags & PF_KTHREAD) != 0;
1260         unsigned i;
1261
1262         /* Sliding window of adjacent btree nodes */
1263         struct btree *merge[GC_MERGE_NODES];
1264         u32 lock_seq[GC_MERGE_NODES];
1265
1266         bch2_trans_init(&trans, c, 0, 0);
1267
1268         /*
1269          * XXX: We don't have a good way of positively matching on sibling nodes
1270          * that have the same parent - this code works by handling the cases
1271          * where they might not have the same parent, and is thus fragile. Ugh.
1272          *
1273          * Perhaps redo this to use multiple linked iterators?
1274          */
1275         memset(merge, 0, sizeof(merge));
1276
1277         __for_each_btree_node(&trans, iter, btree_id, POS_MIN,
1278                               BTREE_MAX_DEPTH, 0,
1279                               BTREE_ITER_PREFETCH, b) {
1280                 memmove(merge + 1, merge,
1281                         sizeof(merge) - sizeof(merge[0]));
1282                 memmove(lock_seq + 1, lock_seq,
1283                         sizeof(lock_seq) - sizeof(lock_seq[0]));
1284
1285                 merge[0] = b;
1286
1287                 for (i = 1; i < GC_MERGE_NODES; i++) {
1288                         if (!merge[i] ||
1289                             !six_relock_intent(&merge[i]->c.lock, lock_seq[i]))
1290                                 break;
1291
1292                         if (merge[i]->c.level != merge[0]->c.level) {
1293                                 six_unlock_intent(&merge[i]->c.lock);
1294                                 break;
1295                         }
1296                 }
1297                 memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
1298
1299                 bch2_coalesce_nodes(c, iter, merge);
1300
1301                 for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
1302                         lock_seq[i] = merge[i]->c.lock.state.seq;
1303                         six_unlock_intent(&merge[i]->c.lock);
1304                 }
1305
1306                 lock_seq[0] = merge[0]->c.lock.state.seq;
1307
1308                 if (kthread && kthread_should_stop()) {
1309                         bch2_trans_exit(&trans);
1310                         return -ESHUTDOWN;
1311                 }
1312
1313                 bch2_trans_cond_resched(&trans);
1314
1315                 /*
1316                  * If the parent node wasn't relocked, it might have been split
1317                  * and the nodes in our sliding window might not have the same
1318                  * parent anymore - blow away the sliding window:
1319                  */
1320                 if (btree_iter_node(iter, iter->level + 1) &&
1321                     !btree_node_intent_locked(iter, iter->level + 1))
1322                         memset(merge + 1, 0,
1323                                (GC_MERGE_NODES - 1) * sizeof(merge[0]));
1324         }
1325         return bch2_trans_exit(&trans);
1326 }
1327
1328 /**
1329  * bch_coalesce - coalesce adjacent nodes with low occupancy
1330  */
1331 void bch2_coalesce(struct bch_fs *c)
1332 {
1333         enum btree_id id;
1334
1335         down_read(&c->gc_lock);
1336         trace_gc_coalesce_start(c);
1337
1338         for (id = 0; id < BTREE_ID_NR; id++) {
1339                 int ret = c->btree_roots[id].b
1340                         ? bch2_coalesce_btree(c, id)
1341                         : 0;
1342
1343                 if (ret) {
1344                         if (ret != -ESHUTDOWN)
1345                                 bch_err(c, "btree coalescing failed: %d", ret);
1346                         return;
1347                 }
1348         }
1349
1350         trace_gc_coalesce_end(c);
1351         up_read(&c->gc_lock);
1352 }
1353
1354 static int bch2_gc_thread(void *arg)
1355 {
1356         struct bch_fs *c = arg;
1357         struct io_clock *clock = &c->io_clock[WRITE];
1358         unsigned long last = atomic_long_read(&clock->now);
1359         unsigned last_kick = atomic_read(&c->kick_gc);
1360         int ret;
1361
1362         set_freezable();
1363
1364         while (1) {
1365                 while (1) {
1366                         set_current_state(TASK_INTERRUPTIBLE);
1367
1368                         if (kthread_should_stop()) {
1369                                 __set_current_state(TASK_RUNNING);
1370                                 return 0;
1371                         }
1372
1373                         if (atomic_read(&c->kick_gc) != last_kick)
1374                                 break;
1375
1376                         if (c->btree_gc_periodic) {
1377                                 unsigned long next = last + c->capacity / 16;
1378
1379                                 if (atomic_long_read(&clock->now) >= next)
1380                                         break;
1381
1382                                 bch2_io_clock_schedule_timeout(clock, next);
1383                         } else {
1384                                 schedule();
1385                         }
1386
1387                         try_to_freeze();
1388                 }
1389                 __set_current_state(TASK_RUNNING);
1390
1391                 last = atomic_long_read(&clock->now);
1392                 last_kick = atomic_read(&c->kick_gc);
1393
1394                 /*
1395                  * Full gc is currently incompatible with btree key cache:
1396                  */
1397 #if 0
1398                 ret = bch2_gc(c, NULL, false, false);
1399 #else
1400                 ret = bch2_gc_gens(c);
1401 #endif
1402                 if (ret < 0)
1403                         bch_err(c, "btree gc failed: %i", ret);
1404
1405                 debug_check_no_locks_held();
1406         }
1407
1408         return 0;
1409 }
1410
1411 void bch2_gc_thread_stop(struct bch_fs *c)
1412 {
1413         struct task_struct *p;
1414
1415         p = c->gc_thread;
1416         c->gc_thread = NULL;
1417
1418         if (p) {
1419                 kthread_stop(p);
1420                 put_task_struct(p);
1421         }
1422 }
1423
1424 int bch2_gc_thread_start(struct bch_fs *c)
1425 {
1426         struct task_struct *p;
1427
1428         BUG_ON(c->gc_thread);
1429
1430         p = kthread_create(bch2_gc_thread, c, "bch_gc");
1431         if (IS_ERR(p))
1432                 return PTR_ERR(p);
1433
1434         get_task_struct(p);
1435         c->gc_thread = p;
1436         wake_up_process(p);
1437         return 0;
1438 }