]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_gc.c
Update bcachefs sources to a8b3ce7599 fixup! bcachefs: Eliminate more PAGE_SIZE uses
[bcachefs-tools-debian] / libbcachefs / btree_gc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  * Copyright (C) 2014 Datera Inc.
5  */
6
7 #include "bcachefs.h"
8 #include "alloc_background.h"
9 #include "alloc_foreground.h"
10 #include "bkey_methods.h"
11 #include "bkey_buf.h"
12 #include "btree_locking.h"
13 #include "btree_update_interior.h"
14 #include "btree_io.h"
15 #include "btree_gc.h"
16 #include "buckets.h"
17 #include "clock.h"
18 #include "debug.h"
19 #include "ec.h"
20 #include "error.h"
21 #include "extents.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "recovery.h"
26 #include "replicas.h"
27 #include "super-io.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/preempt.h>
34 #include <linux/rcupdate.h>
35 #include <linux/sched/task.h>
36 #include <trace/events/bcachefs.h>
37
38 static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
39 {
40         preempt_disable();
41         write_seqcount_begin(&c->gc_pos_lock);
42         c->gc_pos = new_pos;
43         write_seqcount_end(&c->gc_pos_lock);
44         preempt_enable();
45 }
46
47 static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
48 {
49         BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
50         __gc_pos_set(c, new_pos);
51 }
52
53 /*
54  * Missing: if an interior btree node is empty, we need to do something -
55  * perhaps just kill it
56  */
57 static int bch2_gc_check_topology(struct bch_fs *c,
58                                   struct btree *b,
59                                   struct bkey_buf *prev,
60                                   struct bkey_buf cur,
61                                   bool is_last)
62 {
63         struct bpos node_start  = b->data->min_key;
64         struct bpos node_end    = b->data->max_key;
65         struct bpos expected_start = bkey_deleted(&prev->k->k)
66                 ? node_start
67                 : bpos_successor(prev->k->k.p);
68         char buf1[200], buf2[200];
69         bool update_min = false;
70         bool update_max = false;
71         int ret = 0;
72
73         if (cur.k->k.type == KEY_TYPE_btree_ptr_v2) {
74                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(cur.k);
75
76                 if (bkey_deleted(&prev->k->k)) {
77                         struct printbuf out = PBUF(buf1);
78                         pr_buf(&out, "start of node: ");
79                         bch2_bpos_to_text(&out, node_start);
80                 } else {
81                         bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(prev->k));
82                 }
83
84                 if (fsck_err_on(bpos_cmp(expected_start, bp->v.min_key), c,
85                                 "btree node with incorrect min_key at btree %s level %u:\n"
86                                 "  prev %s\n"
87                                 "  cur %s",
88                                 bch2_btree_ids[b->c.btree_id], b->c.level,
89                                 buf1,
90                                 (bch2_bkey_val_to_text(&PBUF(buf2), c, bkey_i_to_s_c(cur.k)), buf2)))
91                         update_min = true;
92         }
93
94         if (fsck_err_on(is_last &&
95                         bpos_cmp(cur.k->k.p, node_end), c,
96                         "btree node with incorrect max_key at btree %s level %u:\n"
97                         "  %s\n"
98                         "  expected %s",
99                         bch2_btree_ids[b->c.btree_id], b->c.level,
100                         (bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(cur.k)), buf1),
101                         (bch2_bpos_to_text(&PBUF(buf2), node_end), buf2)))
102                 update_max = true;
103
104         bch2_bkey_buf_copy(prev, c, cur.k);
105
106         if (update_min || update_max) {
107                 struct bkey_i *new;
108                 struct bkey_i_btree_ptr_v2 *bp = NULL;
109                 struct btree *n;
110
111                 if (update_max) {
112                         ret = bch2_journal_key_delete(c, b->c.btree_id,
113                                                       b->c.level, cur.k->k.p);
114                         if (ret)
115                                 return ret;
116                 }
117
118                 new = kmalloc(bkey_bytes(&cur.k->k), GFP_KERNEL);
119                 if (!new) {
120                         bch_err(c, "%s: error allocating new key", __func__);
121                         return -ENOMEM;
122                 }
123
124                 bkey_copy(new, cur.k);
125
126                 if (new->k.type == KEY_TYPE_btree_ptr_v2)
127                         bp = bkey_i_to_btree_ptr_v2(new);
128
129                 if (update_min)
130                         bp->v.min_key = expected_start;
131                 if (update_max)
132                         new->k.p = node_end;
133                 if (bp)
134                         SET_BTREE_PTR_RANGE_UPDATED(&bp->v, true);
135
136                 ret = bch2_journal_key_insert(c, b->c.btree_id, b->c.level, new);
137                 if (ret) {
138                         kfree(new);
139                         return ret;
140                 }
141
142                 n = bch2_btree_node_get_noiter(c, cur.k, b->c.btree_id,
143                                                b->c.level - 1, true);
144                 if (n) {
145                         mutex_lock(&c->btree_cache.lock);
146                         bch2_btree_node_hash_remove(&c->btree_cache, n);
147
148                         bkey_copy(&n->key, new);
149                         if (update_min)
150                                 n->data->min_key = expected_start;
151                         if (update_max)
152                                 n->data->max_key = node_end;
153
154                         ret = __bch2_btree_node_hash_insert(&c->btree_cache, n);
155                         BUG_ON(ret);
156                         mutex_unlock(&c->btree_cache.lock);
157                         six_unlock_read(&n->c.lock);
158                 }
159         }
160 fsck_err:
161         return ret;
162 }
163
164 static int bch2_check_fix_ptrs(struct bch_fs *c, enum btree_id btree_id,
165                                unsigned level, bool is_root,
166                                struct bkey_s_c *k)
167 {
168         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(*k);
169         const union bch_extent_entry *entry;
170         struct extent_ptr_decoded p = { 0 };
171         bool do_update = false;
172         int ret = 0;
173
174         bkey_for_each_ptr_decode(k->k, ptrs, p, entry) {
175                 struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
176                 struct bucket *g = PTR_BUCKET(ca, &p.ptr, true);
177                 struct bucket *g2 = PTR_BUCKET(ca, &p.ptr, false);
178
179                 if (fsck_err_on(!g->gen_valid, c,
180                                 "bucket %u:%zu data type %s ptr gen %u missing in alloc btree",
181                                 p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
182                                 bch2_data_types[ptr_data_type(k->k, &p.ptr)],
183                                 p.ptr.gen)) {
184                         if (p.ptr.cached) {
185                                 g2->_mark.gen   = g->_mark.gen          = p.ptr.gen;
186                                 g2->gen_valid   = g->gen_valid          = true;
187                                 set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags);
188                         } else {
189                                 do_update = true;
190                         }
191                 }
192
193                 if (fsck_err_on(gen_cmp(p.ptr.gen, g->mark.gen) > 0, c,
194                                 "bucket %u:%zu data type %s ptr gen in the future: %u > %u",
195                                 p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
196                                 bch2_data_types[ptr_data_type(k->k, &p.ptr)],
197                                 p.ptr.gen, g->mark.gen)) {
198                         if (p.ptr.cached) {
199                                 g2->_mark.gen   = g->_mark.gen  = p.ptr.gen;
200                                 g2->gen_valid   = g->gen_valid  = true;
201                                 g2->_mark.data_type             = 0;
202                                 g2->_mark.dirty_sectors         = 0;
203                                 g2->_mark.cached_sectors        = 0;
204                                 set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
205                                 set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags);
206                         } else {
207                                 do_update = true;
208                         }
209                 }
210
211                 if (fsck_err_on(!p.ptr.cached &&
212                                 gen_cmp(p.ptr.gen, g->mark.gen) < 0, c,
213                                 "bucket %u:%zu data type %s stale dirty ptr: %u < %u",
214                                 p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
215                                 bch2_data_types[ptr_data_type(k->k, &p.ptr)],
216                                 p.ptr.gen, g->mark.gen))
217                         do_update = true;
218
219                 if (p.has_ec) {
220                         struct stripe *m = genradix_ptr(&c->stripes[true], p.ec.idx);
221
222                         if (fsck_err_on(!m || !m->alive, c,
223                                         "pointer to nonexistent stripe %llu",
224                                         (u64) p.ec.idx))
225                                 do_update = true;
226
227                         if (fsck_err_on(!bch2_ptr_matches_stripe_m(m, p), c,
228                                         "pointer does not match stripe %llu",
229                                         (u64) p.ec.idx))
230                                 do_update = true;
231                 }
232         }
233
234         if (do_update) {
235                 struct bkey_ptrs ptrs;
236                 union bch_extent_entry *entry;
237                 struct bch_extent_ptr *ptr;
238                 struct bkey_i *new;
239
240                 if (is_root) {
241                         bch_err(c, "cannot update btree roots yet");
242                         return -EINVAL;
243                 }
244
245                 new = kmalloc(bkey_bytes(k->k), GFP_KERNEL);
246                 if (!new) {
247                         bch_err(c, "%s: error allocating new key", __func__);
248                         return -ENOMEM;
249                 }
250
251                 bkey_reassemble(new, *k);
252
253                 bch2_bkey_drop_ptrs(bkey_i_to_s(new), ptr, ({
254                         struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
255                         struct bucket *g = PTR_BUCKET(ca, ptr, true);
256
257                         (ptr->cached &&
258                          (!g->gen_valid || gen_cmp(ptr->gen, g->mark.gen) > 0)) ||
259                         (!ptr->cached &&
260                          gen_cmp(ptr->gen, g->mark.gen) < 0);
261                 }));
262 again:
263                 ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
264                 bkey_extent_entry_for_each(ptrs, entry) {
265                         if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr) {
266                                 struct stripe *m = genradix_ptr(&c->stripes[true],
267                                                                 entry->stripe_ptr.idx);
268                                 union bch_extent_entry *next_ptr;
269
270                                 bkey_extent_entry_for_each_from(ptrs, next_ptr, entry)
271                                         if (extent_entry_type(next_ptr) == BCH_EXTENT_ENTRY_ptr)
272                                                 goto found;
273                                 next_ptr = NULL;
274 found:
275                                 if (!next_ptr) {
276                                         bch_err(c, "aieee, found stripe ptr with no data ptr");
277                                         continue;
278                                 }
279
280                                 if (!m || !m->alive ||
281                                     !__bch2_ptr_matches_stripe(&m->ptrs[entry->stripe_ptr.block],
282                                                                &next_ptr->ptr,
283                                                                m->sectors)) {
284                                         bch2_bkey_extent_entry_drop(new, entry);
285                                         goto again;
286                                 }
287                         }
288                 }
289
290                 ret = bch2_journal_key_insert(c, btree_id, level, new);
291                 if (ret)
292                         kfree(new);
293                 else
294                         *k = bkey_i_to_s_c(new);
295         }
296 fsck_err:
297         return ret;
298 }
299
300 /* marking of btree keys/nodes: */
301
302 static int bch2_gc_mark_key(struct bch_fs *c, enum btree_id btree_id,
303                             unsigned level, bool is_root,
304                             struct bkey_s_c k,
305                             u8 *max_stale, bool initial)
306 {
307         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
308         const struct bch_extent_ptr *ptr;
309         unsigned flags =
310                 BTREE_TRIGGER_GC|
311                 (initial ? BTREE_TRIGGER_NOATOMIC : 0);
312         int ret = 0;
313
314         if (initial) {
315                 BUG_ON(bch2_journal_seq_verify &&
316                        k.k->version.lo > journal_cur_seq(&c->journal));
317
318                 if (fsck_err_on(k.k->version.lo > atomic64_read(&c->key_version), c,
319                                 "key version number higher than recorded: %llu > %llu",
320                                 k.k->version.lo,
321                                 atomic64_read(&c->key_version)))
322                         atomic64_set(&c->key_version, k.k->version.lo);
323
324                 if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) ||
325                     fsck_err_on(!bch2_bkey_replicas_marked(c, k), c,
326                                 "superblock not marked as containing replicas (type %u)",
327                                 k.k->type)) {
328                         ret = bch2_mark_bkey_replicas(c, k);
329                         if (ret) {
330                                 bch_err(c, "error marking bkey replicas: %i", ret);
331                                 goto err;
332                         }
333                 }
334
335                 ret = bch2_check_fix_ptrs(c, btree_id, level, is_root, &k);
336         }
337
338         bkey_for_each_ptr(ptrs, ptr) {
339                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
340                 struct bucket *g = PTR_BUCKET(ca, ptr, true);
341
342                 if (gen_after(g->oldest_gen, ptr->gen))
343                         g->oldest_gen = ptr->gen;
344
345                 *max_stale = max(*max_stale, ptr_stale(ca, ptr));
346         }
347
348         bch2_mark_key(c, k, 0, k.k->size, NULL, 0, flags);
349 fsck_err:
350 err:
351         if (ret)
352                 bch_err(c, "%s: ret %i", __func__, ret);
353         return ret;
354 }
355
356 static int btree_gc_mark_node(struct bch_fs *c, struct btree *b, u8 *max_stale,
357                               bool initial)
358 {
359         struct btree_node_iter iter;
360         struct bkey unpacked;
361         struct bkey_s_c k;
362         struct bkey_buf prev, cur;
363         int ret = 0;
364
365         *max_stale = 0;
366
367         if (!btree_node_type_needs_gc(btree_node_type(b)))
368                 return 0;
369
370         bch2_btree_node_iter_init_from_start(&iter, b);
371         bch2_bkey_buf_init(&prev);
372         bch2_bkey_buf_init(&cur);
373         bkey_init(&prev.k->k);
374
375         while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) {
376                 ret = bch2_gc_mark_key(c, b->c.btree_id, b->c.level, false,
377                                        k, max_stale, initial);
378                 if (ret)
379                         break;
380
381                 bch2_btree_node_iter_advance(&iter, b);
382
383                 if (b->c.level) {
384                         bch2_bkey_buf_reassemble(&cur, c, k);
385
386                         ret = bch2_gc_check_topology(c, b, &prev, cur,
387                                         bch2_btree_node_iter_end(&iter));
388                         if (ret)
389                                 break;
390                 }
391         }
392
393         bch2_bkey_buf_exit(&cur, c);
394         bch2_bkey_buf_exit(&prev, c);
395         return ret;
396 }
397
398 static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id,
399                          bool initial)
400 {
401         struct btree_trans trans;
402         struct btree_iter *iter;
403         struct btree *b;
404         unsigned depth = bch2_expensive_debug_checks    ? 0
405                 : !btree_node_type_needs_gc(btree_id)   ? 1
406                 : 0;
407         u8 max_stale = 0;
408         int ret = 0;
409
410         bch2_trans_init(&trans, c, 0, 0);
411
412         gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));
413
414         __for_each_btree_node(&trans, iter, btree_id, POS_MIN,
415                               0, depth, BTREE_ITER_PREFETCH, b) {
416                 bch2_verify_btree_nr_keys(b);
417
418                 gc_pos_set(c, gc_pos_btree_node(b));
419
420                 ret = btree_gc_mark_node(c, b, &max_stale, initial);
421                 if (ret)
422                         break;
423
424                 if (!initial) {
425                         if (max_stale > 64)
426                                 bch2_btree_node_rewrite(c, iter,
427                                                 b->data->keys.seq,
428                                                 BTREE_INSERT_NOWAIT|
429                                                 BTREE_INSERT_GC_LOCK_HELD);
430                         else if (!bch2_btree_gc_rewrite_disabled &&
431                                  (bch2_btree_gc_always_rewrite || max_stale > 16))
432                                 bch2_btree_node_rewrite(c, iter,
433                                                 b->data->keys.seq,
434                                                 BTREE_INSERT_NOWAIT|
435                                                 BTREE_INSERT_GC_LOCK_HELD);
436                 }
437
438                 bch2_trans_cond_resched(&trans);
439         }
440         bch2_trans_iter_put(&trans, iter);
441
442         ret = bch2_trans_exit(&trans) ?: ret;
443         if (ret)
444                 return ret;
445
446         mutex_lock(&c->btree_root_lock);
447         b = c->btree_roots[btree_id].b;
448         if (!btree_node_fake(b))
449                 ret = bch2_gc_mark_key(c, b->c.btree_id, b->c.level, true,
450                                        bkey_i_to_s_c(&b->key),
451                                        &max_stale, initial);
452         gc_pos_set(c, gc_pos_btree_root(b->c.btree_id));
453         mutex_unlock(&c->btree_root_lock);
454
455         return ret;
456 }
457
458 static int bch2_gc_btree_init_recurse(struct bch_fs *c, struct btree *b,
459                                       unsigned target_depth)
460 {
461         struct btree_and_journal_iter iter;
462         struct bkey_s_c k;
463         struct bkey_buf cur, prev;
464         u8 max_stale = 0;
465         int ret = 0;
466
467         bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
468         bch2_bkey_buf_init(&prev);
469         bch2_bkey_buf_init(&cur);
470         bkey_init(&prev.k->k);
471
472         while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
473                 BUG_ON(bpos_cmp(k.k->p, b->data->min_key) < 0);
474                 BUG_ON(bpos_cmp(k.k->p, b->data->max_key) > 0);
475
476                 ret = bch2_gc_mark_key(c, b->c.btree_id, b->c.level, false,
477                                        k, &max_stale, true);
478                 if (ret) {
479                         bch_err(c, "%s: error %i from bch2_gc_mark_key", __func__, ret);
480                         break;
481                 }
482
483                 if (b->c.level) {
484                         bch2_bkey_buf_reassemble(&cur, c, k);
485                         k = bkey_i_to_s_c(cur.k);
486
487                         bch2_btree_and_journal_iter_advance(&iter);
488
489                         ret = bch2_gc_check_topology(c, b,
490                                         &prev, cur,
491                                         !bch2_btree_and_journal_iter_peek(&iter).k);
492                         if (ret)
493                                 break;
494                 } else {
495                         bch2_btree_and_journal_iter_advance(&iter);
496                 }
497         }
498
499         if (b->c.level > target_depth) {
500                 bch2_btree_and_journal_iter_exit(&iter);
501                 bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
502
503                 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
504                         struct btree *child;
505
506                         bch2_bkey_buf_reassemble(&cur, c, k);
507                         bch2_btree_and_journal_iter_advance(&iter);
508
509                         child = bch2_btree_node_get_noiter(c, cur.k,
510                                                 b->c.btree_id, b->c.level - 1,
511                                                 false);
512                         ret = PTR_ERR_OR_ZERO(child);
513
514                         if (fsck_err_on(ret == -EIO, c,
515                                         "unreadable btree node")) {
516                                 ret = bch2_journal_key_delete(c, b->c.btree_id,
517                                                               b->c.level, cur.k->k.p);
518                                 if (ret)
519                                         return ret;
520
521                                 set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
522                                 continue;
523                         }
524
525                         if (ret) {
526                                 bch_err(c, "%s: error %i getting btree node",
527                                         __func__, ret);
528                                 break;
529                         }
530
531                         ret = bch2_gc_btree_init_recurse(c, child,
532                                                          target_depth);
533                         six_unlock_read(&child->c.lock);
534
535                         if (ret)
536                                 break;
537                 }
538         }
539 fsck_err:
540         bch2_bkey_buf_exit(&cur, c);
541         bch2_bkey_buf_exit(&prev, c);
542         bch2_btree_and_journal_iter_exit(&iter);
543         return ret;
544 }
545
546 static int bch2_gc_btree_init(struct bch_fs *c,
547                               enum btree_id btree_id)
548 {
549         struct btree *b;
550         unsigned target_depth = bch2_expensive_debug_checks     ? 0
551                 : !btree_node_type_needs_gc(btree_id)           ? 1
552                 : 0;
553         u8 max_stale = 0;
554         char buf[100];
555         int ret = 0;
556
557         b = c->btree_roots[btree_id].b;
558
559         if (btree_node_fake(b))
560                 return 0;
561
562         six_lock_read(&b->c.lock, NULL, NULL);
563         if (fsck_err_on(bpos_cmp(b->data->min_key, POS_MIN), c,
564                         "btree root with incorrect min_key: %s",
565                         (bch2_bpos_to_text(&PBUF(buf), b->data->min_key), buf))) {
566                 BUG();
567         }
568
569         if (fsck_err_on(bpos_cmp(b->data->max_key, POS_MAX), c,
570                         "btree root with incorrect max_key: %s",
571                         (bch2_bpos_to_text(&PBUF(buf), b->data->max_key), buf))) {
572                 BUG();
573         }
574
575         if (b->c.level >= target_depth)
576                 ret = bch2_gc_btree_init_recurse(c, b, target_depth);
577
578         if (!ret)
579                 ret = bch2_gc_mark_key(c, b->c.btree_id, b->c.level, true,
580                                        bkey_i_to_s_c(&b->key),
581                                        &max_stale, true);
582 fsck_err:
583         six_unlock_read(&b->c.lock);
584
585         if (ret)
586                 bch_err(c, "%s: ret %i", __func__, ret);
587         return ret;
588 }
589
590 static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r)
591 {
592         return  (int) btree_id_to_gc_phase(l) -
593                 (int) btree_id_to_gc_phase(r);
594 }
595
596 static int bch2_gc_btrees(struct bch_fs *c, bool initial)
597 {
598         enum btree_id ids[BTREE_ID_NR];
599         unsigned i;
600
601         for (i = 0; i < BTREE_ID_NR; i++)
602                 ids[i] = i;
603         bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp);
604
605         for (i = 0; i < BTREE_ID_NR; i++) {
606                 enum btree_id id = ids[i];
607                 int ret = initial
608                         ? bch2_gc_btree_init(c, id)
609                         : bch2_gc_btree(c, id, initial);
610                 if (ret) {
611                         bch_err(c, "%s: ret %i", __func__, ret);
612                         return ret;
613                 }
614         }
615
616         return 0;
617 }
618
619 static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
620                                   u64 start, u64 end,
621                                   enum bch_data_type type,
622                                   unsigned flags)
623 {
624         u64 b = sector_to_bucket(ca, start);
625
626         do {
627                 unsigned sectors =
628                         min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
629
630                 bch2_mark_metadata_bucket(c, ca, b, type, sectors,
631                                           gc_phase(GC_PHASE_SB), flags);
632                 b++;
633                 start += sectors;
634         } while (start < end);
635 }
636
637 void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
638                               unsigned flags)
639 {
640         struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
641         unsigned i;
642         u64 b;
643
644         /*
645          * This conditional is kind of gross, but we may be called from the
646          * device add path, before the new device has actually been added to the
647          * running filesystem:
648          */
649         if (c) {
650                 lockdep_assert_held(&c->sb_lock);
651                 percpu_down_read(&c->mark_lock);
652         }
653
654         for (i = 0; i < layout->nr_superblocks; i++) {
655                 u64 offset = le64_to_cpu(layout->sb_offset[i]);
656
657                 if (offset == BCH_SB_SECTOR)
658                         mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
659                                               BCH_DATA_sb, flags);
660
661                 mark_metadata_sectors(c, ca, offset,
662                                       offset + (1 << layout->sb_max_size_bits),
663                                       BCH_DATA_sb, flags);
664         }
665
666         for (i = 0; i < ca->journal.nr; i++) {
667                 b = ca->journal.buckets[i];
668                 bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal,
669                                           ca->mi.bucket_size,
670                                           gc_phase(GC_PHASE_SB), flags);
671         }
672
673         if (c)
674                 percpu_up_read(&c->mark_lock);
675 }
676
677 static void bch2_mark_superblocks(struct bch_fs *c)
678 {
679         struct bch_dev *ca;
680         unsigned i;
681
682         mutex_lock(&c->sb_lock);
683         gc_pos_set(c, gc_phase(GC_PHASE_SB));
684
685         for_each_online_member(ca, c, i)
686                 bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC);
687         mutex_unlock(&c->sb_lock);
688 }
689
690 #if 0
691 /* Also see bch2_pending_btree_node_free_insert_done() */
692 static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
693 {
694         struct btree_update *as;
695         struct pending_btree_node_free *d;
696
697         mutex_lock(&c->btree_interior_update_lock);
698         gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
699
700         for_each_pending_btree_node_free(c, as, d)
701                 if (d->index_update_done)
702                         bch2_mark_key(c, bkey_i_to_s_c(&d->key),
703                                       0, 0, NULL, 0,
704                                       BTREE_TRIGGER_GC);
705
706         mutex_unlock(&c->btree_interior_update_lock);
707 }
708 #endif
709
710 static void bch2_mark_allocator_buckets(struct bch_fs *c)
711 {
712         struct bch_dev *ca;
713         struct open_bucket *ob;
714         size_t i, j, iter;
715         unsigned ci;
716
717         percpu_down_read(&c->mark_lock);
718
719         spin_lock(&c->freelist_lock);
720         gc_pos_set(c, gc_pos_alloc(c, NULL));
721
722         for_each_member_device(ca, c, ci) {
723                 fifo_for_each_entry(i, &ca->free_inc, iter)
724                         bch2_mark_alloc_bucket(c, ca, i, true,
725                                                gc_pos_alloc(c, NULL),
726                                                BTREE_TRIGGER_GC);
727
728
729
730                 for (j = 0; j < RESERVE_NR; j++)
731                         fifo_for_each_entry(i, &ca->free[j], iter)
732                                 bch2_mark_alloc_bucket(c, ca, i, true,
733                                                        gc_pos_alloc(c, NULL),
734                                                        BTREE_TRIGGER_GC);
735         }
736
737         spin_unlock(&c->freelist_lock);
738
739         for (ob = c->open_buckets;
740              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
741              ob++) {
742                 spin_lock(&ob->lock);
743                 if (ob->valid) {
744                         gc_pos_set(c, gc_pos_alloc(c, ob));
745                         ca = bch_dev_bkey_exists(c, ob->ptr.dev);
746                         bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true,
747                                                gc_pos_alloc(c, ob),
748                                                BTREE_TRIGGER_GC);
749                 }
750                 spin_unlock(&ob->lock);
751         }
752
753         percpu_up_read(&c->mark_lock);
754 }
755
756 static void bch2_gc_free(struct bch_fs *c)
757 {
758         struct bch_dev *ca;
759         unsigned i;
760
761         genradix_free(&c->stripes[1]);
762
763         for_each_member_device(ca, c, i) {
764                 kvpfree(rcu_dereference_protected(ca->buckets[1], 1),
765                         sizeof(struct bucket_array) +
766                         ca->mi.nbuckets * sizeof(struct bucket));
767                 ca->buckets[1] = NULL;
768
769                 free_percpu(ca->usage_gc);
770                 ca->usage_gc = NULL;
771         }
772
773         free_percpu(c->usage_gc);
774         c->usage_gc = NULL;
775 }
776
777 static int bch2_gc_done(struct bch_fs *c,
778                         bool initial)
779 {
780         struct bch_dev *ca;
781         bool verify = (!initial ||
782                        (c->sb.compat & (1ULL << BCH_COMPAT_alloc_info)));
783         unsigned i, dev;
784         int ret = 0;
785
786 #define copy_field(_f, _msg, ...)                                       \
787         if (dst->_f != src->_f) {                                       \
788                 if (verify)                                             \
789                         fsck_err(c, _msg ": got %llu, should be %llu"   \
790                                 , ##__VA_ARGS__, dst->_f, src->_f);     \
791                 dst->_f = src->_f;                                      \
792                 set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags);            \
793         }
794 #define copy_stripe_field(_f, _msg, ...)                                \
795         if (dst->_f != src->_f) {                                       \
796                 if (verify)                                             \
797                         fsck_err(c, "stripe %zu has wrong "_msg         \
798                                 ": got %u, should be %u",               \
799                                 iter.pos, ##__VA_ARGS__,                \
800                                 dst->_f, src->_f);                      \
801                 dst->_f = src->_f;                                      \
802                 set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags);            \
803         }
804 #define copy_bucket_field(_f)                                           \
805         if (dst->b[b].mark._f != src->b[b].mark._f) {                   \
806                 if (verify)                                             \
807                         fsck_err(c, "bucket %u:%zu gen %u data type %s has wrong " #_f  \
808                                 ": got %u, should be %u", i, b,         \
809                                 dst->b[b].mark.gen,                     \
810                                 bch2_data_types[dst->b[b].mark.data_type],\
811                                 dst->b[b].mark._f, src->b[b].mark._f);  \
812                 dst->b[b]._mark._f = src->b[b].mark._f;                 \
813                 set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags);            \
814         }
815 #define copy_dev_field(_f, _msg, ...)                                   \
816         copy_field(_f, "dev %u has wrong " _msg, i, ##__VA_ARGS__)
817 #define copy_fs_field(_f, _msg, ...)                                    \
818         copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__)
819
820         {
821                 struct genradix_iter iter = genradix_iter_init(&c->stripes[1], 0);
822                 struct stripe *dst, *src;
823
824                 while ((src = genradix_iter_peek(&iter, &c->stripes[1]))) {
825                         dst = genradix_ptr_alloc(&c->stripes[0], iter.pos, GFP_KERNEL);
826
827                         if (dst->alive          != src->alive ||
828                             dst->sectors        != src->sectors ||
829                             dst->algorithm      != src->algorithm ||
830                             dst->nr_blocks      != src->nr_blocks ||
831                             dst->nr_redundant   != src->nr_redundant) {
832                                 bch_err(c, "unexpected stripe inconsistency at bch2_gc_done, confused");
833                                 ret = -EINVAL;
834                                 goto fsck_err;
835                         }
836
837                         for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++)
838                                 copy_stripe_field(block_sectors[i],
839                                                   "block_sectors[%u]", i);
840
841                         dst->blocks_nonempty = 0;
842                         for (i = 0; i < dst->nr_blocks; i++)
843                                 dst->blocks_nonempty += dst->block_sectors[i] != 0;
844
845                         genradix_iter_advance(&iter, &c->stripes[1]);
846                 }
847         }
848
849         for (i = 0; i < ARRAY_SIZE(c->usage); i++)
850                 bch2_fs_usage_acc_to_base(c, i);
851
852         for_each_member_device(ca, c, dev) {
853                 struct bucket_array *dst = __bucket_array(ca, 0);
854                 struct bucket_array *src = __bucket_array(ca, 1);
855                 size_t b;
856
857                 for (b = 0; b < src->nbuckets; b++) {
858                         copy_bucket_field(gen);
859                         copy_bucket_field(data_type);
860                         copy_bucket_field(owned_by_allocator);
861                         copy_bucket_field(stripe);
862                         copy_bucket_field(dirty_sectors);
863                         copy_bucket_field(cached_sectors);
864
865                         dst->b[b].oldest_gen = src->b[b].oldest_gen;
866                 }
867
868                 {
869                         struct bch_dev_usage *dst = ca->usage_base;
870                         struct bch_dev_usage *src = (void *)
871                                 bch2_acc_percpu_u64s((void *) ca->usage_gc,
872                                                      dev_usage_u64s());
873
874                         copy_dev_field(buckets_ec,              "buckets_ec");
875                         copy_dev_field(buckets_unavailable,     "buckets_unavailable");
876
877                         for (i = 0; i < BCH_DATA_NR; i++) {
878                                 copy_dev_field(d[i].buckets,    "%s buckets", bch2_data_types[i]);
879                                 copy_dev_field(d[i].sectors,    "%s sectors", bch2_data_types[i]);
880                                 copy_dev_field(d[i].fragmented, "%s fragmented", bch2_data_types[i]);
881                         }
882                 }
883         };
884
885         {
886                 unsigned nr = fs_usage_u64s(c);
887                 struct bch_fs_usage *dst = c->usage_base;
888                 struct bch_fs_usage *src = (void *)
889                         bch2_acc_percpu_u64s((void *) c->usage_gc, nr);
890
891                 copy_fs_field(hidden,           "hidden");
892                 copy_fs_field(btree,            "btree");
893                 copy_fs_field(data,     "data");
894                 copy_fs_field(cached,   "cached");
895                 copy_fs_field(reserved, "reserved");
896                 copy_fs_field(nr_inodes,"nr_inodes");
897
898                 for (i = 0; i < BCH_REPLICAS_MAX; i++)
899                         copy_fs_field(persistent_reserved[i],
900                                       "persistent_reserved[%i]", i);
901
902                 for (i = 0; i < c->replicas.nr; i++) {
903                         struct bch_replicas_entry *e =
904                                 cpu_replicas_entry(&c->replicas, i);
905                         char buf[80];
906
907                         bch2_replicas_entry_to_text(&PBUF(buf), e);
908
909                         copy_fs_field(replicas[i], "%s", buf);
910                 }
911         }
912
913 #undef copy_fs_field
914 #undef copy_dev_field
915 #undef copy_bucket_field
916 #undef copy_stripe_field
917 #undef copy_field
918 fsck_err:
919         if (ret)
920                 bch_err(c, "%s: ret %i", __func__, ret);
921         return ret;
922 }
923
924 static int bch2_gc_start(struct bch_fs *c)
925 {
926         struct bch_dev *ca;
927         unsigned i;
928         int ret;
929
930         BUG_ON(c->usage_gc);
931
932         c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64),
933                                          sizeof(u64), GFP_KERNEL);
934         if (!c->usage_gc) {
935                 bch_err(c, "error allocating c->usage_gc");
936                 return -ENOMEM;
937         }
938
939         for_each_member_device(ca, c, i) {
940                 BUG_ON(ca->buckets[1]);
941                 BUG_ON(ca->usage_gc);
942
943                 ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) +
944                                 ca->mi.nbuckets * sizeof(struct bucket),
945                                 GFP_KERNEL|__GFP_ZERO);
946                 if (!ca->buckets[1]) {
947                         percpu_ref_put(&ca->ref);
948                         bch_err(c, "error allocating ca->buckets[gc]");
949                         return -ENOMEM;
950                 }
951
952                 ca->usage_gc = alloc_percpu(struct bch_dev_usage);
953                 if (!ca->usage_gc) {
954                         bch_err(c, "error allocating ca->usage_gc");
955                         percpu_ref_put(&ca->ref);
956                         return -ENOMEM;
957                 }
958         }
959
960         ret = bch2_ec_mem_alloc(c, true);
961         if (ret) {
962                 bch_err(c, "error allocating ec gc mem");
963                 return ret;
964         }
965
966         percpu_down_write(&c->mark_lock);
967
968         /*
969          * indicate to stripe code that we need to allocate for the gc stripes
970          * radix tree, too
971          */
972         gc_pos_set(c, gc_phase(GC_PHASE_START));
973
974         for_each_member_device(ca, c, i) {
975                 struct bucket_array *dst = __bucket_array(ca, 1);
976                 struct bucket_array *src = __bucket_array(ca, 0);
977                 size_t b;
978
979                 dst->first_bucket       = src->first_bucket;
980                 dst->nbuckets           = src->nbuckets;
981
982                 for (b = 0; b < src->nbuckets; b++) {
983                         struct bucket *d = &dst->b[b];
984                         struct bucket *s = &src->b[b];
985
986                         d->_mark.gen = dst->b[b].oldest_gen = s->mark.gen;
987                         d->gen_valid = s->gen_valid;
988                 }
989         };
990
991         percpu_up_write(&c->mark_lock);
992
993         return 0;
994 }
995
996 /**
997  * bch2_gc - walk _all_ references to buckets, and recompute them:
998  *
999  * Order matters here:
1000  *  - Concurrent GC relies on the fact that we have a total ordering for
1001  *    everything that GC walks - see  gc_will_visit_node(),
1002  *    gc_will_visit_root()
1003  *
1004  *  - also, references move around in the course of index updates and
1005  *    various other crap: everything needs to agree on the ordering
1006  *    references are allowed to move around in - e.g., we're allowed to
1007  *    start with a reference owned by an open_bucket (the allocator) and
1008  *    move it to the btree, but not the reverse.
1009  *
1010  *    This is necessary to ensure that gc doesn't miss references that
1011  *    move around - if references move backwards in the ordering GC
1012  *    uses, GC could skip past them
1013  */
1014 int bch2_gc(struct bch_fs *c, bool initial)
1015 {
1016         struct bch_dev *ca;
1017         u64 start_time = local_clock();
1018         unsigned i, iter = 0;
1019         int ret;
1020
1021         lockdep_assert_held(&c->state_lock);
1022         trace_gc_start(c);
1023
1024         down_write(&c->gc_lock);
1025
1026         /* flush interior btree updates: */
1027         closure_wait_event(&c->btree_interior_update_wait,
1028                            !bch2_btree_interior_updates_nr_pending(c));
1029 again:
1030         ret = bch2_gc_start(c);
1031         if (ret)
1032                 goto out;
1033
1034         bch2_mark_superblocks(c);
1035
1036         ret = bch2_gc_btrees(c, initial);
1037         if (ret)
1038                 goto out;
1039
1040 #if 0
1041         bch2_mark_pending_btree_node_frees(c);
1042 #endif
1043         bch2_mark_allocator_buckets(c);
1044
1045         c->gc_count++;
1046
1047         if (test_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags) ||
1048             (!iter && bch2_test_restart_gc)) {
1049                 /*
1050                  * XXX: make sure gens we fixed got saved
1051                  */
1052                 if (iter++ <= 2) {
1053                         bch_info(c, "Second GC pass needed, restarting:");
1054                         clear_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
1055                         __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
1056
1057                         percpu_down_write(&c->mark_lock);
1058                         bch2_gc_free(c);
1059                         percpu_up_write(&c->mark_lock);
1060                         /* flush fsck errors, reset counters */
1061                         bch2_flush_fsck_errs(c);
1062
1063                         goto again;
1064                 }
1065
1066                 bch_info(c, "Unable to fix bucket gens, looping");
1067                 ret = -EINVAL;
1068         }
1069 out:
1070         if (!ret) {
1071                 bch2_journal_block(&c->journal);
1072
1073                 percpu_down_write(&c->mark_lock);
1074                 ret = bch2_gc_done(c, initial);
1075
1076                 bch2_journal_unblock(&c->journal);
1077         } else {
1078                 percpu_down_write(&c->mark_lock);
1079         }
1080
1081         /* Indicates that gc is no longer in progress: */
1082         __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
1083
1084         bch2_gc_free(c);
1085         percpu_up_write(&c->mark_lock);
1086
1087         up_write(&c->gc_lock);
1088
1089         trace_gc_end(c);
1090         bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);
1091
1092         /*
1093          * Wake up allocator in case it was waiting for buckets
1094          * because of not being able to inc gens
1095          */
1096         for_each_member_device(ca, c, i)
1097                 bch2_wake_allocator(ca);
1098
1099         /*
1100          * At startup, allocations can happen directly instead of via the
1101          * allocator thread - issue wakeup in case they blocked on gc_lock:
1102          */
1103         closure_wake_up(&c->freelist_wait);
1104         return ret;
1105 }
1106
1107 static bool gc_btree_gens_key(struct bch_fs *c, struct bkey_s_c k)
1108 {
1109         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1110         const struct bch_extent_ptr *ptr;
1111
1112         percpu_down_read(&c->mark_lock);
1113         bkey_for_each_ptr(ptrs, ptr) {
1114                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
1115                 struct bucket *g = PTR_BUCKET(ca, ptr, false);
1116
1117                 if (gen_after(g->mark.gen, ptr->gen) > 16) {
1118                         percpu_up_read(&c->mark_lock);
1119                         return true;
1120                 }
1121         }
1122
1123         bkey_for_each_ptr(ptrs, ptr) {
1124                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
1125                 struct bucket *g = PTR_BUCKET(ca, ptr, false);
1126
1127                 if (gen_after(g->gc_gen, ptr->gen))
1128                         g->gc_gen = ptr->gen;
1129         }
1130         percpu_up_read(&c->mark_lock);
1131
1132         return false;
1133 }
1134
1135 /*
1136  * For recalculating oldest gen, we only need to walk keys in leaf nodes; btree
1137  * node pointers currently never have cached pointers that can become stale:
1138  */
1139 static int bch2_gc_btree_gens(struct bch_fs *c, enum btree_id btree_id)
1140 {
1141         struct btree_trans trans;
1142         struct btree_iter *iter;
1143         struct bkey_s_c k;
1144         struct bkey_buf sk;
1145         int ret = 0;
1146
1147         bch2_bkey_buf_init(&sk);
1148         bch2_trans_init(&trans, c, 0, 0);
1149
1150         iter = bch2_trans_get_iter(&trans, btree_id, POS_MIN,
1151                                    BTREE_ITER_PREFETCH|
1152                                    BTREE_ITER_NOT_EXTENTS|
1153                                    BTREE_ITER_ALL_SNAPSHOTS);
1154
1155         while ((k = bch2_btree_iter_peek(iter)).k &&
1156                !(ret = bkey_err(k))) {
1157                 if (gc_btree_gens_key(c, k)) {
1158                         bch2_bkey_buf_reassemble(&sk, c, k);
1159                         bch2_extent_normalize(c, bkey_i_to_s(sk.k));
1160
1161                         bch2_trans_update(&trans, iter, sk.k, 0);
1162
1163                         ret = bch2_trans_commit(&trans, NULL, NULL,
1164                                                 BTREE_INSERT_NOFAIL);
1165                         if (ret == -EINTR)
1166                                 continue;
1167                         if (ret) {
1168                                 break;
1169                         }
1170                 }
1171
1172                 bch2_btree_iter_advance(iter);
1173         }
1174         bch2_trans_iter_put(&trans, iter);
1175
1176         bch2_trans_exit(&trans);
1177         bch2_bkey_buf_exit(&sk, c);
1178
1179         return ret;
1180 }
1181
1182 int bch2_gc_gens(struct bch_fs *c)
1183 {
1184         struct bch_dev *ca;
1185         struct bucket_array *buckets;
1186         struct bucket *g;
1187         unsigned i;
1188         int ret;
1189
1190         /*
1191          * Ideally we would be using state_lock and not gc_lock here, but that
1192          * introduces a deadlock in the RO path - we currently take the state
1193          * lock at the start of going RO, thus the gc thread may get stuck:
1194          */
1195         down_read(&c->gc_lock);
1196
1197         for_each_member_device(ca, c, i) {
1198                 down_read(&ca->bucket_lock);
1199                 buckets = bucket_array(ca);
1200
1201                 for_each_bucket(g, buckets)
1202                         g->gc_gen = g->mark.gen;
1203                 up_read(&ca->bucket_lock);
1204         }
1205
1206         for (i = 0; i < BTREE_ID_NR; i++)
1207                 if ((1 << i) & BTREE_ID_HAS_PTRS) {
1208                         ret = bch2_gc_btree_gens(c, i);
1209                         if (ret) {
1210                                 bch_err(c, "error recalculating oldest_gen: %i", ret);
1211                                 goto err;
1212                         }
1213                 }
1214
1215         for_each_member_device(ca, c, i) {
1216                 down_read(&ca->bucket_lock);
1217                 buckets = bucket_array(ca);
1218
1219                 for_each_bucket(g, buckets)
1220                         g->oldest_gen = g->gc_gen;
1221                 up_read(&ca->bucket_lock);
1222         }
1223
1224         c->gc_count++;
1225 err:
1226         up_read(&c->gc_lock);
1227         return ret;
1228 }
1229
1230 /* Btree coalescing */
1231
1232 static void recalc_packed_keys(struct btree *b)
1233 {
1234         struct bset *i = btree_bset_first(b);
1235         struct bkey_packed *k;
1236
1237         memset(&b->nr, 0, sizeof(b->nr));
1238
1239         BUG_ON(b->nsets != 1);
1240
1241         vstruct_for_each(i, k)
1242                 btree_keys_account_key_add(&b->nr, 0, k);
1243 }
1244
1245 static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter,
1246                                 struct btree *old_nodes[GC_MERGE_NODES])
1247 {
1248         struct btree *parent = btree_node_parent(iter, old_nodes[0]);
1249         unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
1250         unsigned blocks = btree_blocks(c) * 2 / 3;
1251         struct btree *new_nodes[GC_MERGE_NODES];
1252         struct btree_update *as;
1253         struct keylist keylist;
1254         struct bkey_format_state format_state;
1255         struct bkey_format new_format;
1256
1257         memset(new_nodes, 0, sizeof(new_nodes));
1258         bch2_keylist_init(&keylist, NULL);
1259
1260         /* Count keys that are not deleted */
1261         for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
1262                 u64s += old_nodes[i]->nr.live_u64s;
1263
1264         nr_old_nodes = nr_new_nodes = i;
1265
1266         /* Check if all keys in @old_nodes could fit in one fewer node */
1267         if (nr_old_nodes <= 1 ||
1268             __vstruct_blocks(struct btree_node, c->block_bits,
1269                              DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
1270                 return;
1271
1272         /* Find a format that all keys in @old_nodes can pack into */
1273         bch2_bkey_format_init(&format_state);
1274
1275         /*
1276          * XXX: this won't correctly take it account the new min/max keys:
1277          */
1278         for (i = 0; i < nr_old_nodes; i++)
1279                 __bch2_btree_calc_format(&format_state, old_nodes[i]);
1280
1281         new_format = bch2_bkey_format_done(&format_state);
1282
1283         /* Check if repacking would make any nodes too big to fit */
1284         for (i = 0; i < nr_old_nodes; i++)
1285                 if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) {
1286                         trace_btree_gc_coalesce_fail(c,
1287                                         BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
1288                         return;
1289                 }
1290
1291         if (bch2_keylist_realloc(&keylist, NULL, 0,
1292                         BKEY_BTREE_PTR_U64s_MAX * nr_old_nodes)) {
1293                 trace_btree_gc_coalesce_fail(c,
1294                                 BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
1295                 return;
1296         }
1297
1298         as = bch2_btree_update_start(iter, old_nodes[0]->c.level,
1299                         btree_update_reserve_required(c, parent) + nr_old_nodes,
1300                         BTREE_INSERT_NOFAIL|
1301                         BTREE_INSERT_USE_RESERVE);
1302         if (IS_ERR(as)) {
1303                 trace_btree_gc_coalesce_fail(c,
1304                                 BTREE_GC_COALESCE_FAIL_RESERVE_GET);
1305                 bch2_keylist_free(&keylist, NULL);
1306                 return;
1307         }
1308
1309         trace_btree_gc_coalesce(c, old_nodes[0]);
1310
1311         for (i = 0; i < nr_old_nodes; i++)
1312                 bch2_btree_interior_update_will_free_node(as, old_nodes[i]);
1313
1314         /* Repack everything with @new_format and sort down to one bset */
1315         for (i = 0; i < nr_old_nodes; i++)
1316                 new_nodes[i] =
1317                         __bch2_btree_node_alloc_replacement(as, old_nodes[i],
1318                                                             new_format);
1319
1320         /*
1321          * Conceptually we concatenate the nodes together and slice them
1322          * up at different boundaries.
1323          */
1324         for (i = nr_new_nodes - 1; i > 0; --i) {
1325                 struct btree *n1 = new_nodes[i];
1326                 struct btree *n2 = new_nodes[i - 1];
1327
1328                 struct bset *s1 = btree_bset_first(n1);
1329                 struct bset *s2 = btree_bset_first(n2);
1330                 struct bkey_packed *k, *last = NULL;
1331
1332                 /* Calculate how many keys from @n2 we could fit inside @n1 */
1333                 u64s = 0;
1334
1335                 for (k = s2->start;
1336                      k < vstruct_last(s2) &&
1337                      vstruct_blocks_plus(n1->data, c->block_bits,
1338                                          u64s + k->u64s) <= blocks;
1339                      k = bkey_next(k)) {
1340                         last = k;
1341                         u64s += k->u64s;
1342                 }
1343
1344                 if (u64s == le16_to_cpu(s2->u64s)) {
1345                         /* n2 fits entirely in n1 */
1346                         n1->key.k.p = n1->data->max_key = n2->data->max_key;
1347
1348                         memcpy_u64s(vstruct_last(s1),
1349                                     s2->start,
1350                                     le16_to_cpu(s2->u64s));
1351                         le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
1352
1353                         set_btree_bset_end(n1, n1->set);
1354
1355                         six_unlock_write(&n2->c.lock);
1356                         bch2_btree_node_free_never_inserted(c, n2);
1357                         six_unlock_intent(&n2->c.lock);
1358
1359                         memmove(new_nodes + i - 1,
1360                                 new_nodes + i,
1361                                 sizeof(new_nodes[0]) * (nr_new_nodes - i));
1362                         new_nodes[--nr_new_nodes] = NULL;
1363                 } else if (u64s) {
1364                         /* move part of n2 into n1 */
1365                         n1->key.k.p = n1->data->max_key =
1366                                 bkey_unpack_pos(n1, last);
1367
1368                         n2->data->min_key = bpos_successor(n1->data->max_key);
1369
1370                         memcpy_u64s(vstruct_last(s1),
1371                                     s2->start, u64s);
1372                         le16_add_cpu(&s1->u64s, u64s);
1373
1374                         memmove(s2->start,
1375                                 vstruct_idx(s2, u64s),
1376                                 (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
1377                         s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
1378
1379                         set_btree_bset_end(n1, n1->set);
1380                         set_btree_bset_end(n2, n2->set);
1381                 }
1382         }
1383
1384         for (i = 0; i < nr_new_nodes; i++) {
1385                 struct btree *n = new_nodes[i];
1386
1387                 recalc_packed_keys(n);
1388                 btree_node_reset_sib_u64s(n);
1389
1390                 bch2_btree_build_aux_trees(n);
1391
1392                 bch2_btree_update_add_new_node(as, n);
1393                 six_unlock_write(&n->c.lock);
1394
1395                 bch2_btree_node_write(c, n, SIX_LOCK_intent);
1396         }
1397
1398         /*
1399          * The keys for the old nodes get deleted. We don't want to insert keys
1400          * that compare equal to the keys for the new nodes we'll also be
1401          * inserting - we can't because keys on a keylist must be strictly
1402          * greater than the previous keys, and we also don't need to since the
1403          * key for the new node will serve the same purpose (overwriting the key
1404          * for the old node).
1405          */
1406         for (i = 0; i < nr_old_nodes; i++) {
1407                 struct bkey_i delete;
1408                 unsigned j;
1409
1410                 for (j = 0; j < nr_new_nodes; j++)
1411                         if (!bpos_cmp(old_nodes[i]->key.k.p,
1412                                       new_nodes[j]->key.k.p))
1413                                 goto next;
1414
1415                 bkey_init(&delete.k);
1416                 delete.k.p = old_nodes[i]->key.k.p;
1417                 bch2_keylist_add_in_order(&keylist, &delete);
1418 next:
1419                 i = i;
1420         }
1421
1422         /*
1423          * Keys for the new nodes get inserted: bch2_btree_insert_keys() only
1424          * does the lookup once and thus expects the keys to be in sorted order
1425          * so we have to make sure the new keys are correctly ordered with
1426          * respect to the deleted keys added in the previous loop
1427          */
1428         for (i = 0; i < nr_new_nodes; i++)
1429                 bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key);
1430
1431         /* Insert the newly coalesced nodes */
1432         bch2_btree_insert_node(as, parent, iter, &keylist, 0);
1433
1434         BUG_ON(!bch2_keylist_empty(&keylist));
1435
1436         BUG_ON(iter->l[old_nodes[0]->c.level].b != old_nodes[0]);
1437
1438         bch2_btree_iter_node_replace(iter, new_nodes[0]);
1439
1440         for (i = 0; i < nr_new_nodes; i++)
1441                 bch2_btree_update_get_open_buckets(as, new_nodes[i]);
1442
1443         /* Free the old nodes and update our sliding window */
1444         for (i = 0; i < nr_old_nodes; i++) {
1445                 bch2_btree_node_free_inmem(c, old_nodes[i], iter);
1446
1447                 /*
1448                  * the index update might have triggered a split, in which case
1449                  * the nodes we coalesced - the new nodes we just created -
1450                  * might not be sibling nodes anymore - don't add them to the
1451                  * sliding window (except the first):
1452                  */
1453                 if (!i) {
1454                         old_nodes[i] = new_nodes[i];
1455                 } else {
1456                         old_nodes[i] = NULL;
1457                 }
1458         }
1459
1460         for (i = 0; i < nr_new_nodes; i++)
1461                 six_unlock_intent(&new_nodes[i]->c.lock);
1462
1463         bch2_btree_update_done(as);
1464         bch2_keylist_free(&keylist, NULL);
1465 }
1466
1467 static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
1468 {
1469         struct btree_trans trans;
1470         struct btree_iter *iter;
1471         struct btree *b;
1472         bool kthread = (current->flags & PF_KTHREAD) != 0;
1473         unsigned i;
1474         int ret = 0;
1475
1476         /* Sliding window of adjacent btree nodes */
1477         struct btree *merge[GC_MERGE_NODES];
1478         u32 lock_seq[GC_MERGE_NODES];
1479
1480         bch2_trans_init(&trans, c, 0, 0);
1481
1482         /*
1483          * XXX: We don't have a good way of positively matching on sibling nodes
1484          * that have the same parent - this code works by handling the cases
1485          * where they might not have the same parent, and is thus fragile. Ugh.
1486          *
1487          * Perhaps redo this to use multiple linked iterators?
1488          */
1489         memset(merge, 0, sizeof(merge));
1490
1491         __for_each_btree_node(&trans, iter, btree_id, POS_MIN,
1492                               BTREE_MAX_DEPTH, 0,
1493                               BTREE_ITER_PREFETCH, b) {
1494                 memmove(merge + 1, merge,
1495                         sizeof(merge) - sizeof(merge[0]));
1496                 memmove(lock_seq + 1, lock_seq,
1497                         sizeof(lock_seq) - sizeof(lock_seq[0]));
1498
1499                 merge[0] = b;
1500
1501                 for (i = 1; i < GC_MERGE_NODES; i++) {
1502                         if (!merge[i] ||
1503                             !six_relock_intent(&merge[i]->c.lock, lock_seq[i]))
1504                                 break;
1505
1506                         if (merge[i]->c.level != merge[0]->c.level) {
1507                                 six_unlock_intent(&merge[i]->c.lock);
1508                                 break;
1509                         }
1510                 }
1511                 memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
1512
1513                 bch2_coalesce_nodes(c, iter, merge);
1514
1515                 for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
1516                         lock_seq[i] = merge[i]->c.lock.state.seq;
1517                         six_unlock_intent(&merge[i]->c.lock);
1518                 }
1519
1520                 lock_seq[0] = merge[0]->c.lock.state.seq;
1521
1522                 if (kthread && kthread_should_stop()) {
1523                         ret = -ESHUTDOWN;
1524                         break;
1525                 }
1526
1527                 bch2_trans_cond_resched(&trans);
1528
1529                 /*
1530                  * If the parent node wasn't relocked, it might have been split
1531                  * and the nodes in our sliding window might not have the same
1532                  * parent anymore - blow away the sliding window:
1533                  */
1534                 if (btree_iter_node(iter, iter->level + 1) &&
1535                     !btree_node_intent_locked(iter, iter->level + 1))
1536                         memset(merge + 1, 0,
1537                                (GC_MERGE_NODES - 1) * sizeof(merge[0]));
1538         }
1539         bch2_trans_iter_put(&trans, iter);
1540
1541         return bch2_trans_exit(&trans) ?: ret;
1542 }
1543
1544 /**
1545  * bch_coalesce - coalesce adjacent nodes with low occupancy
1546  */
1547 void bch2_coalesce(struct bch_fs *c)
1548 {
1549         enum btree_id id;
1550
1551         down_read(&c->gc_lock);
1552         trace_gc_coalesce_start(c);
1553
1554         for (id = 0; id < BTREE_ID_NR; id++) {
1555                 int ret = c->btree_roots[id].b
1556                         ? bch2_coalesce_btree(c, id)
1557                         : 0;
1558
1559                 if (ret) {
1560                         if (ret != -ESHUTDOWN)
1561                                 bch_err(c, "btree coalescing failed: %d", ret);
1562                         return;
1563                 }
1564         }
1565
1566         trace_gc_coalesce_end(c);
1567         up_read(&c->gc_lock);
1568 }
1569
1570 static int bch2_gc_thread(void *arg)
1571 {
1572         struct bch_fs *c = arg;
1573         struct io_clock *clock = &c->io_clock[WRITE];
1574         unsigned long last = atomic64_read(&clock->now);
1575         unsigned last_kick = atomic_read(&c->kick_gc);
1576         int ret;
1577
1578         set_freezable();
1579
1580         while (1) {
1581                 while (1) {
1582                         set_current_state(TASK_INTERRUPTIBLE);
1583
1584                         if (kthread_should_stop()) {
1585                                 __set_current_state(TASK_RUNNING);
1586                                 return 0;
1587                         }
1588
1589                         if (atomic_read(&c->kick_gc) != last_kick)
1590                                 break;
1591
1592                         if (c->btree_gc_periodic) {
1593                                 unsigned long next = last + c->capacity / 16;
1594
1595                                 if (atomic64_read(&clock->now) >= next)
1596                                         break;
1597
1598                                 bch2_io_clock_schedule_timeout(clock, next);
1599                         } else {
1600                                 schedule();
1601                         }
1602
1603                         try_to_freeze();
1604                 }
1605                 __set_current_state(TASK_RUNNING);
1606
1607                 last = atomic64_read(&clock->now);
1608                 last_kick = atomic_read(&c->kick_gc);
1609
1610                 /*
1611                  * Full gc is currently incompatible with btree key cache:
1612                  */
1613 #if 0
1614                 ret = bch2_gc(c, false, false);
1615 #else
1616                 ret = bch2_gc_gens(c);
1617 #endif
1618                 if (ret < 0)
1619                         bch_err(c, "btree gc failed: %i", ret);
1620
1621                 debug_check_no_locks_held();
1622         }
1623
1624         return 0;
1625 }
1626
1627 void bch2_gc_thread_stop(struct bch_fs *c)
1628 {
1629         struct task_struct *p;
1630
1631         p = c->gc_thread;
1632         c->gc_thread = NULL;
1633
1634         if (p) {
1635                 kthread_stop(p);
1636                 put_task_struct(p);
1637         }
1638 }
1639
1640 int bch2_gc_thread_start(struct bch_fs *c)
1641 {
1642         struct task_struct *p;
1643
1644         if (c->gc_thread)
1645                 return 0;
1646
1647         p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name);
1648         if (IS_ERR(p)) {
1649                 bch_err(c, "error creating gc thread: %li", PTR_ERR(p));
1650                 return PTR_ERR(p);
1651         }
1652
1653         get_task_struct(p);
1654         c->gc_thread = p;
1655         wake_up_process(p);
1656         return 0;
1657 }