]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_io.c
1aa942290e836ef3ccdcfb7db61706a4eb72a4f7
[bcachefs-tools-debian] / libbcachefs / btree_io.c
1
2 #include "bcachefs.h"
3 #include "bkey_methods.h"
4 #include "btree_cache.h"
5 #include "btree_io.h"
6 #include "btree_iter.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "buckets.h"
11 #include "checksum.h"
12 #include "debug.h"
13 #include "error.h"
14 #include "extents.h"
15 #include "io.h"
16 #include "journal_reclaim.h"
17 #include "journal_seq_blacklist.h"
18 #include "super-io.h"
19
20 #include <trace/events/bcachefs.h>
21
22 /* btree_node_iter_large: */
23
24 #define btree_node_iter_cmp_heap(h, _l, _r)                             \
25         __btree_node_iter_cmp((iter)->is_extents, b,                    \
26                                __btree_node_offset_to_key(b, (_l).k),   \
27                                __btree_node_offset_to_key(b, (_r).k))
28
29 void bch2_btree_node_iter_large_push(struct btree_node_iter_large *iter,
30                                      struct btree *b,
31                                      const struct bkey_packed *k,
32                                      const struct bkey_packed *end)
33 {
34         if (k != end) {
35                 struct btree_node_iter_set n =
36                         ((struct btree_node_iter_set) {
37                                  __btree_node_key_to_offset(b, k),
38                                  __btree_node_key_to_offset(b, end)
39                          });
40
41                 __heap_add(iter, n, btree_node_iter_cmp_heap);
42         }
43 }
44
45 void bch2_btree_node_iter_large_advance(struct btree_node_iter_large *iter,
46                                         struct btree *b)
47 {
48         iter->data->k += __btree_node_offset_to_key(b, iter->data->k)->u64s;
49
50         EBUG_ON(!iter->used);
51         EBUG_ON(iter->data->k > iter->data->end);
52
53         if (iter->data->k == iter->data->end)
54                 heap_del(iter, 0, btree_node_iter_cmp_heap);
55         else
56                 heap_sift_down(iter, 0, btree_node_iter_cmp_heap);
57 }
58
59 static void verify_no_dups(struct btree *b,
60                            struct bkey_packed *start,
61                            struct bkey_packed *end)
62 {
63 #ifdef CONFIG_BCACHEFS_DEBUG
64         struct bkey_packed *k;
65
66         for (k = start; k != end && bkey_next(k) != end; k = bkey_next(k)) {
67                 struct bkey l = bkey_unpack_key(b, k);
68                 struct bkey r = bkey_unpack_key(b, bkey_next(k));
69
70                 BUG_ON(btree_node_is_extents(b)
71                        ? bkey_cmp(l.p, bkey_start_pos(&r)) > 0
72                        : bkey_cmp(l.p, bkey_start_pos(&r)) >= 0);
73                 //BUG_ON(bkey_cmp_packed(&b->format, k, bkey_next(k)) >= 0);
74         }
75 #endif
76 }
77
78 static void clear_needs_whiteout(struct bset *i)
79 {
80         struct bkey_packed *k;
81
82         for (k = i->start; k != vstruct_last(i); k = bkey_next(k))
83                 k->needs_whiteout = false;
84 }
85
86 static void set_needs_whiteout(struct bset *i)
87 {
88         struct bkey_packed *k;
89
90         for (k = i->start; k != vstruct_last(i); k = bkey_next(k))
91                 k->needs_whiteout = true;
92 }
93
94 static void btree_bounce_free(struct bch_fs *c, unsigned order,
95                               bool used_mempool, void *p)
96 {
97         if (used_mempool)
98                 mempool_free(p, &c->btree_bounce_pool);
99         else
100                 vpfree(p, PAGE_SIZE << order);
101 }
102
103 static void *btree_bounce_alloc(struct bch_fs *c, unsigned order,
104                                 bool *used_mempool)
105 {
106         void *p;
107
108         BUG_ON(order > btree_page_order(c));
109
110         *used_mempool = false;
111         p = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, order);
112         if (p)
113                 return p;
114
115         *used_mempool = true;
116         return mempool_alloc(&c->btree_bounce_pool, GFP_NOIO);
117 }
118
119 typedef int (*sort_cmp_fn)(struct btree *,
120                            struct bkey_packed *,
121                            struct bkey_packed *);
122
123 struct sort_iter {
124         struct btree    *b;
125         unsigned                used;
126
127         struct sort_iter_set {
128                 struct bkey_packed *k, *end;
129         } data[MAX_BSETS + 1];
130 };
131
132 static void sort_iter_init(struct sort_iter *iter, struct btree *b)
133 {
134         memset(iter, 0, sizeof(*iter));
135         iter->b = b;
136 }
137
138 static inline void __sort_iter_sift(struct sort_iter *iter,
139                                     unsigned from,
140                                     sort_cmp_fn cmp)
141 {
142         unsigned i;
143
144         for (i = from;
145              i + 1 < iter->used &&
146              cmp(iter->b, iter->data[i].k, iter->data[i + 1].k) > 0;
147              i++)
148                 swap(iter->data[i], iter->data[i + 1]);
149 }
150
151 static inline void sort_iter_sift(struct sort_iter *iter, sort_cmp_fn cmp)
152 {
153
154         __sort_iter_sift(iter, 0, cmp);
155 }
156
157 static inline void sort_iter_sort(struct sort_iter *iter, sort_cmp_fn cmp)
158 {
159         unsigned i = iter->used;
160
161         while (i--)
162                 __sort_iter_sift(iter, i, cmp);
163 }
164
165 static void sort_iter_add(struct sort_iter *iter,
166                           struct bkey_packed *k,
167                           struct bkey_packed *end)
168 {
169         BUG_ON(iter->used >= ARRAY_SIZE(iter->data));
170
171         if (k != end)
172                 iter->data[iter->used++] = (struct sort_iter_set) { k, end };
173 }
174
175 static inline struct bkey_packed *sort_iter_peek(struct sort_iter *iter)
176 {
177         return iter->used ? iter->data->k : NULL;
178 }
179
180 static inline void sort_iter_advance(struct sort_iter *iter, sort_cmp_fn cmp)
181 {
182         iter->data->k = bkey_next(iter->data->k);
183
184         BUG_ON(iter->data->k > iter->data->end);
185
186         if (iter->data->k == iter->data->end)
187                 array_remove_item(iter->data, iter->used, 0);
188         else
189                 sort_iter_sift(iter, cmp);
190 }
191
192 static inline struct bkey_packed *sort_iter_next(struct sort_iter *iter,
193                                                  sort_cmp_fn cmp)
194 {
195         struct bkey_packed *ret = sort_iter_peek(iter);
196
197         if (ret)
198                 sort_iter_advance(iter, cmp);
199
200         return ret;
201 }
202
203 static inline int sort_key_whiteouts_cmp(struct btree *b,
204                                          struct bkey_packed *l,
205                                          struct bkey_packed *r)
206 {
207         return bkey_cmp_packed(b, l, r);
208 }
209
210 static unsigned sort_key_whiteouts(struct bkey_packed *dst,
211                                    struct sort_iter *iter)
212 {
213         struct bkey_packed *in, *out = dst;
214
215         sort_iter_sort(iter, sort_key_whiteouts_cmp);
216
217         while ((in = sort_iter_next(iter, sort_key_whiteouts_cmp))) {
218                 bkey_copy(out, in);
219                 out = bkey_next(out);
220         }
221
222         return (u64 *) out - (u64 *) dst;
223 }
224
225 static inline int sort_extent_whiteouts_cmp(struct btree *b,
226                                             struct bkey_packed *l,
227                                             struct bkey_packed *r)
228 {
229         struct bkey ul = bkey_unpack_key(b, l);
230         struct bkey ur = bkey_unpack_key(b, r);
231
232         return bkey_cmp(bkey_start_pos(&ul), bkey_start_pos(&ur));
233 }
234
235 static unsigned sort_extent_whiteouts(struct bkey_packed *dst,
236                                       struct sort_iter *iter)
237 {
238         const struct bkey_format *f = &iter->b->format;
239         struct bkey_packed *in, *out = dst;
240         struct bkey_i l, r;
241         bool prev = false, l_packed = false;
242         u64 max_packed_size     = bkey_field_max(f, BKEY_FIELD_SIZE);
243         u64 max_packed_offset   = bkey_field_max(f, BKEY_FIELD_OFFSET);
244         u64 new_size;
245
246         max_packed_size = min_t(u64, max_packed_size, KEY_SIZE_MAX);
247
248         sort_iter_sort(iter, sort_extent_whiteouts_cmp);
249
250         while ((in = sort_iter_next(iter, sort_extent_whiteouts_cmp))) {
251                 EBUG_ON(bkeyp_val_u64s(f, in));
252                 EBUG_ON(in->type != KEY_TYPE_DISCARD);
253
254                 r.k = bkey_unpack_key(iter->b, in);
255
256                 if (prev &&
257                     bkey_cmp(l.k.p, bkey_start_pos(&r.k)) >= 0) {
258                         if (bkey_cmp(l.k.p, r.k.p) >= 0)
259                                 continue;
260
261                         new_size = l_packed
262                                 ? min(max_packed_size, max_packed_offset -
263                                       bkey_start_offset(&l.k))
264                                 : KEY_SIZE_MAX;
265
266                         new_size = min(new_size, r.k.p.offset -
267                                        bkey_start_offset(&l.k));
268
269                         BUG_ON(new_size < l.k.size);
270
271                         bch2_key_resize(&l.k, new_size);
272
273                         if (bkey_cmp(l.k.p, r.k.p) >= 0)
274                                 continue;
275
276                         bch2_cut_front(l.k.p, &r);
277                 }
278
279                 if (prev) {
280                         if (!bch2_bkey_pack(out, &l, f)) {
281                                 BUG_ON(l_packed);
282                                 bkey_copy(out, &l);
283                         }
284                         out = bkey_next(out);
285                 }
286
287                 l = r;
288                 prev = true;
289                 l_packed = bkey_packed(in);
290         }
291
292         if (prev) {
293                 if (!bch2_bkey_pack(out, &l, f)) {
294                         BUG_ON(l_packed);
295                         bkey_copy(out, &l);
296                 }
297                 out = bkey_next(out);
298         }
299
300         return (u64 *) out - (u64 *) dst;
301 }
302
303 static unsigned should_compact_bset(struct btree *b, struct bset_tree *t,
304                                     bool compacting,
305                                     enum compact_mode mode)
306 {
307         unsigned bset_u64s = le16_to_cpu(bset(b, t)->u64s);
308         unsigned dead_u64s = bset_u64s - b->nr.bset_u64s[t - b->set];
309
310         if (mode == COMPACT_LAZY) {
311                 if (should_compact_bset_lazy(b, t) ||
312                     (compacting && bset_unwritten(b, bset(b, t))))
313                         return dead_u64s;
314         } else {
315                 if (bset_written(b, bset(b, t)))
316                         return dead_u64s;
317         }
318
319         return 0;
320 }
321
322 bool __bch2_compact_whiteouts(struct bch_fs *c, struct btree *b,
323                              enum compact_mode mode)
324 {
325         const struct bkey_format *f = &b->format;
326         struct bset_tree *t;
327         struct bkey_packed *whiteouts = NULL;
328         struct bkey_packed *u_start, *u_pos;
329         struct sort_iter sort_iter;
330         unsigned order, whiteout_u64s = 0, u64s;
331         bool used_mempool, compacting = false;
332
333         for_each_bset(b, t)
334                 whiteout_u64s += should_compact_bset(b, t,
335                                         whiteout_u64s != 0, mode);
336
337         if (!whiteout_u64s)
338                 return false;
339
340         sort_iter_init(&sort_iter, b);
341
342         whiteout_u64s += b->whiteout_u64s;
343         order = get_order(whiteout_u64s * sizeof(u64));
344
345         whiteouts = btree_bounce_alloc(c, order, &used_mempool);
346         u_start = u_pos = whiteouts;
347
348         memcpy_u64s(u_pos, unwritten_whiteouts_start(c, b),
349                     b->whiteout_u64s);
350         u_pos = (void *) u_pos + b->whiteout_u64s * sizeof(u64);
351
352         sort_iter_add(&sort_iter, u_start, u_pos);
353
354         for_each_bset(b, t) {
355                 struct bset *i = bset(b, t);
356                 struct bkey_packed *k, *n, *out, *start, *end;
357                 struct btree_node_entry *src = NULL, *dst = NULL;
358
359                 if (t != b->set && bset_unwritten(b, i)) {
360                         src = container_of(i, struct btree_node_entry, keys);
361                         dst = max(write_block(b),
362                                   (void *) btree_bkey_last(b, t -1));
363                 }
364
365                 if (!should_compact_bset(b, t, compacting, mode)) {
366                         if (src != dst) {
367                                 memmove(dst, src, sizeof(*src) +
368                                         le16_to_cpu(src->keys.u64s) *
369                                         sizeof(u64));
370                                 i = &dst->keys;
371                                 set_btree_bset(b, t, i);
372                         }
373                         continue;
374                 }
375
376                 compacting = true;
377                 u_start = u_pos;
378                 start = i->start;
379                 end = vstruct_last(i);
380
381                 if (src != dst) {
382                         memmove(dst, src, sizeof(*src));
383                         i = &dst->keys;
384                         set_btree_bset(b, t, i);
385                 }
386
387                 out = i->start;
388
389                 for (k = start; k != end; k = n) {
390                         n = bkey_next(k);
391
392                         if (bkey_deleted(k) && btree_node_is_extents(b))
393                                 continue;
394
395                         if (bkey_whiteout(k) && !k->needs_whiteout)
396                                 continue;
397
398                         if (bkey_whiteout(k)) {
399                                 unreserve_whiteout(b, t, k);
400                                 memcpy_u64s(u_pos, k, bkeyp_key_u64s(f, k));
401                                 set_bkeyp_val_u64s(f, u_pos, 0);
402                                 u_pos = bkey_next(u_pos);
403                         } else if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) {
404                                 bkey_copy(out, k);
405                                 out = bkey_next(out);
406                         }
407                 }
408
409                 sort_iter_add(&sort_iter, u_start, u_pos);
410
411                 if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) {
412                         i->u64s = cpu_to_le16((u64 *) out - i->_data);
413                         set_btree_bset_end(b, t);
414                         bch2_bset_set_no_aux_tree(b, t);
415                 }
416         }
417
418         b->whiteout_u64s = (u64 *) u_pos - (u64 *) whiteouts;
419
420         BUG_ON((void *) unwritten_whiteouts_start(c, b) <
421                (void *) btree_bkey_last(b, bset_tree_last(b)));
422
423         u64s = btree_node_is_extents(b)
424                 ? sort_extent_whiteouts(unwritten_whiteouts_start(c, b),
425                                         &sort_iter)
426                 : sort_key_whiteouts(unwritten_whiteouts_start(c, b),
427                                      &sort_iter);
428
429         BUG_ON(u64s > b->whiteout_u64s);
430         BUG_ON(u64s != b->whiteout_u64s && !btree_node_is_extents(b));
431         BUG_ON(u_pos != whiteouts && !u64s);
432
433         if (u64s != b->whiteout_u64s) {
434                 void *src = unwritten_whiteouts_start(c, b);
435
436                 b->whiteout_u64s = u64s;
437                 memmove_u64s_up(unwritten_whiteouts_start(c, b), src, u64s);
438         }
439
440         verify_no_dups(b,
441                        unwritten_whiteouts_start(c, b),
442                        unwritten_whiteouts_end(c, b));
443
444         btree_bounce_free(c, order, used_mempool, whiteouts);
445
446         if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK)
447                 bch2_btree_build_aux_trees(b);
448
449         bch_btree_keys_u64s_remaining(c, b);
450         bch2_verify_btree_nr_keys(b);
451
452         return true;
453 }
454
455 static bool bch2_drop_whiteouts(struct btree *b)
456 {
457         struct bset_tree *t;
458         bool ret = false;
459
460         for_each_bset(b, t) {
461                 struct bset *i = bset(b, t);
462                 struct bkey_packed *k, *n, *out, *start, *end;
463
464                 if (!should_compact_bset(b, t, true, COMPACT_WRITTEN))
465                         continue;
466
467                 start   = btree_bkey_first(b, t);
468                 end     = btree_bkey_last(b, t);
469
470                 if (bset_unwritten(b, i) &&
471                     t != b->set) {
472                         struct bset *dst =
473                                max_t(struct bset *, write_block(b),
474                                      (void *) btree_bkey_last(b, t -1));
475
476                         memmove(dst, i, sizeof(struct bset));
477                         i = dst;
478                         set_btree_bset(b, t, i);
479                 }
480
481                 out = i->start;
482
483                 for (k = start; k != end; k = n) {
484                         n = bkey_next(k);
485
486                         if (!bkey_whiteout(k)) {
487                                 bkey_copy(out, k);
488                                 out = bkey_next(out);
489                         }
490                 }
491
492                 i->u64s = cpu_to_le16((u64 *) out - i->_data);
493                 bch2_bset_set_no_aux_tree(b, t);
494                 ret = true;
495         }
496
497         bch2_verify_btree_nr_keys(b);
498
499         return ret;
500 }
501
502 static inline int sort_keys_cmp(struct btree *b,
503                                 struct bkey_packed *l,
504                                 struct bkey_packed *r)
505 {
506         return bkey_cmp_packed(b, l, r) ?:
507                 (int) bkey_whiteout(r) - (int) bkey_whiteout(l) ?:
508                 (int) l->needs_whiteout - (int) r->needs_whiteout;
509 }
510
511 static unsigned sort_keys(struct bkey_packed *dst,
512                           struct sort_iter *iter,
513                           bool filter_whiteouts)
514 {
515         const struct bkey_format *f = &iter->b->format;
516         struct bkey_packed *in, *next, *out = dst;
517
518         sort_iter_sort(iter, sort_keys_cmp);
519
520         while ((in = sort_iter_next(iter, sort_keys_cmp))) {
521                 if (bkey_whiteout(in) &&
522                     (filter_whiteouts || !in->needs_whiteout))
523                         continue;
524
525                 if (bkey_whiteout(in) &&
526                     (next = sort_iter_peek(iter)) &&
527                     !bkey_cmp_packed(iter->b, in, next)) {
528                         BUG_ON(in->needs_whiteout &&
529                                next->needs_whiteout);
530                         /*
531                          * XXX racy, called with read lock from write path
532                          *
533                          * leads to spurious BUG_ON() in bkey_unpack_key() in
534                          * debug mode
535                          */
536                         next->needs_whiteout |= in->needs_whiteout;
537                         continue;
538                 }
539
540                 if (bkey_whiteout(in)) {
541                         memcpy_u64s(out, in, bkeyp_key_u64s(f, in));
542                         set_bkeyp_val_u64s(f, out, 0);
543                 } else {
544                         bkey_copy(out, in);
545                 }
546                 out = bkey_next(out);
547         }
548
549         return (u64 *) out - (u64 *) dst;
550 }
551
552 static inline int sort_extents_cmp(struct btree *b,
553                                    struct bkey_packed *l,
554                                    struct bkey_packed *r)
555 {
556         return bkey_cmp_packed(b, l, r) ?:
557                 (int) bkey_deleted(l) - (int) bkey_deleted(r);
558 }
559
560 static unsigned sort_extents(struct bkey_packed *dst,
561                              struct sort_iter *iter,
562                              bool filter_whiteouts)
563 {
564         struct bkey_packed *in, *out = dst;
565
566         sort_iter_sort(iter, sort_extents_cmp);
567
568         while ((in = sort_iter_next(iter, sort_extents_cmp))) {
569                 if (bkey_deleted(in))
570                         continue;
571
572                 if (bkey_whiteout(in) &&
573                     (filter_whiteouts || !in->needs_whiteout))
574                         continue;
575
576                 bkey_copy(out, in);
577                 out = bkey_next(out);
578         }
579
580         return (u64 *) out - (u64 *) dst;
581 }
582
583 static void btree_node_sort(struct bch_fs *c, struct btree *b,
584                             struct btree_iter *iter,
585                             unsigned start_idx,
586                             unsigned end_idx,
587                             bool filter_whiteouts)
588 {
589         struct btree_node *out;
590         struct sort_iter sort_iter;
591         struct bset_tree *t;
592         struct bset *start_bset = bset(b, &b->set[start_idx]);
593         bool used_mempool = false;
594         u64 start_time, seq = 0;
595         unsigned i, u64s = 0, order, shift = end_idx - start_idx - 1;
596         bool sorting_entire_node = start_idx == 0 &&
597                 end_idx == b->nsets;
598
599         sort_iter_init(&sort_iter, b);
600
601         for (t = b->set + start_idx;
602              t < b->set + end_idx;
603              t++) {
604                 u64s += le16_to_cpu(bset(b, t)->u64s);
605                 sort_iter_add(&sort_iter,
606                               btree_bkey_first(b, t),
607                               btree_bkey_last(b, t));
608         }
609
610         order = sorting_entire_node
611                 ? btree_page_order(c)
612                 : get_order(__vstruct_bytes(struct btree_node, u64s));
613
614         out = btree_bounce_alloc(c, order, &used_mempool);
615
616         start_time = local_clock();
617
618         if (btree_node_is_extents(b))
619                 filter_whiteouts = bset_written(b, start_bset);
620
621         u64s = btree_node_is_extents(b)
622                 ? sort_extents(out->keys.start, &sort_iter, filter_whiteouts)
623                 : sort_keys(out->keys.start, &sort_iter, filter_whiteouts);
624
625         out->keys.u64s = cpu_to_le16(u64s);
626
627         BUG_ON(vstruct_end(&out->keys) > (void *) out + (PAGE_SIZE << order));
628
629         if (sorting_entire_node)
630                 bch2_time_stats_update(&c->btree_sort_time, start_time);
631
632         /* Make sure we preserve bset journal_seq: */
633         for (t = b->set + start_idx; t < b->set + end_idx; t++)
634                 seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq));
635         start_bset->journal_seq = cpu_to_le64(seq);
636
637         if (sorting_entire_node) {
638                 unsigned u64s = le16_to_cpu(out->keys.u64s);
639
640                 BUG_ON(order != btree_page_order(c));
641
642                 /*
643                  * Our temporary buffer is the same size as the btree node's
644                  * buffer, we can just swap buffers instead of doing a big
645                  * memcpy()
646                  */
647                 *out = *b->data;
648                 out->keys.u64s = cpu_to_le16(u64s);
649                 swap(out, b->data);
650                 set_btree_bset(b, b->set, &b->data->keys);
651         } else {
652                 start_bset->u64s = out->keys.u64s;
653                 memcpy_u64s(start_bset->start,
654                             out->keys.start,
655                             le16_to_cpu(out->keys.u64s));
656         }
657
658         for (i = start_idx + 1; i < end_idx; i++)
659                 b->nr.bset_u64s[start_idx] +=
660                         b->nr.bset_u64s[i];
661
662         b->nsets -= shift;
663
664         for (i = start_idx + 1; i < b->nsets; i++) {
665                 b->nr.bset_u64s[i]      = b->nr.bset_u64s[i + shift];
666                 b->set[i]               = b->set[i + shift];
667         }
668
669         for (i = b->nsets; i < MAX_BSETS; i++)
670                 b->nr.bset_u64s[i] = 0;
671
672         set_btree_bset_end(b, &b->set[start_idx]);
673         bch2_bset_set_no_aux_tree(b, &b->set[start_idx]);
674
675         btree_bounce_free(c, order, used_mempool, out);
676
677         bch2_verify_btree_nr_keys(b);
678 }
679
680 /* Sort + repack in a new format: */
681 static struct btree_nr_keys sort_repack(struct bset *dst,
682                                         struct btree *src,
683                                         struct btree_node_iter *src_iter,
684                                         struct bkey_format *out_f,
685                                         bool filter_whiteouts)
686 {
687         struct bkey_format *in_f = &src->format;
688         struct bkey_packed *in, *out = vstruct_last(dst);
689         struct btree_nr_keys nr;
690
691         memset(&nr, 0, sizeof(nr));
692
693         while ((in = bch2_btree_node_iter_next_all(src_iter, src))) {
694                 if (filter_whiteouts && bkey_whiteout(in))
695                         continue;
696
697                 if (bch2_bkey_transform(out_f, out, bkey_packed(in)
698                                        ? in_f : &bch2_bkey_format_current, in))
699                         out->format = KEY_FORMAT_LOCAL_BTREE;
700                 else
701                         bch2_bkey_unpack(src, (void *) out, in);
702
703                 btree_keys_account_key_add(&nr, 0, out);
704                 out = bkey_next(out);
705         }
706
707         dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
708         return nr;
709 }
710
711 /* Sort, repack, and merge: */
712 static struct btree_nr_keys sort_repack_merge(struct bch_fs *c,
713                                               struct bset *dst,
714                                               struct btree *src,
715                                               struct btree_node_iter *iter,
716                                               struct bkey_format *out_f,
717                                               bool filter_whiteouts,
718                                               key_filter_fn filter,
719                                               key_merge_fn merge)
720 {
721         struct bkey_packed *k, *prev = NULL, *out;
722         struct btree_nr_keys nr;
723         BKEY_PADDED(k) tmp;
724
725         memset(&nr, 0, sizeof(nr));
726
727         while ((k = bch2_btree_node_iter_next_all(iter, src))) {
728                 if (filter_whiteouts && bkey_whiteout(k))
729                         continue;
730
731                 /*
732                  * The filter might modify pointers, so we have to unpack the
733                  * key and values to &tmp.k:
734                  */
735                 bch2_bkey_unpack(src, &tmp.k, k);
736
737                 if (filter && filter(c, src, bkey_i_to_s(&tmp.k)))
738                         continue;
739
740                 /* prev is always unpacked, for key merging: */
741
742                 if (prev &&
743                     merge &&
744                     merge(c, src, (void *) prev, &tmp.k) == BCH_MERGE_MERGE)
745                         continue;
746
747                 /*
748                  * the current key becomes the new prev: advance prev, then
749                  * copy the current key - but first pack prev (in place):
750                  */
751                 if (prev) {
752                         bch2_bkey_pack(prev, (void *) prev, out_f);
753
754                         btree_keys_account_key_add(&nr, 0, prev);
755                         prev = bkey_next(prev);
756                 } else {
757                         prev = vstruct_last(dst);
758                 }
759
760                 bkey_copy(prev, &tmp.k);
761         }
762
763         if (prev) {
764                 bch2_bkey_pack(prev, (void *) prev, out_f);
765                 btree_keys_account_key_add(&nr, 0, prev);
766                 out = bkey_next(prev);
767         } else {
768                 out = vstruct_last(dst);
769         }
770
771         dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
772         return nr;
773 }
774
775 void bch2_btree_sort_into(struct bch_fs *c,
776                          struct btree *dst,
777                          struct btree *src)
778 {
779         struct btree_nr_keys nr;
780         struct btree_node_iter src_iter;
781         u64 start_time = local_clock();
782
783         BUG_ON(dst->nsets != 1);
784
785         bch2_bset_set_no_aux_tree(dst, dst->set);
786
787         bch2_btree_node_iter_init_from_start(&src_iter, src,
788                                             btree_node_is_extents(src));
789
790         if (btree_node_ops(src)->key_normalize ||
791             btree_node_ops(src)->key_merge)
792                 nr = sort_repack_merge(c, btree_bset_first(dst),
793                                 src, &src_iter,
794                                 &dst->format,
795                                 true,
796                                 btree_node_ops(src)->key_normalize,
797                                 btree_node_ops(src)->key_merge);
798         else
799                 nr = sort_repack(btree_bset_first(dst),
800                                 src, &src_iter,
801                                 &dst->format,
802                                 true);
803
804         bch2_time_stats_update(&c->btree_sort_time, start_time);
805
806         set_btree_bset_end(dst, dst->set);
807
808         dst->nr.live_u64s       += nr.live_u64s;
809         dst->nr.bset_u64s[0]    += nr.bset_u64s[0];
810         dst->nr.packed_keys     += nr.packed_keys;
811         dst->nr.unpacked_keys   += nr.unpacked_keys;
812
813         bch2_verify_btree_nr_keys(dst);
814 }
815
816 #define SORT_CRIT       (4096 / sizeof(u64))
817
818 /*
819  * We're about to add another bset to the btree node, so if there's currently
820  * too many bsets - sort some of them together:
821  */
822 static bool btree_node_compact(struct bch_fs *c, struct btree *b,
823                                struct btree_iter *iter)
824 {
825         unsigned unwritten_idx;
826         bool ret = false;
827
828         for (unwritten_idx = 0;
829              unwritten_idx < b->nsets;
830              unwritten_idx++)
831                 if (bset_unwritten(b, bset(b, &b->set[unwritten_idx])))
832                         break;
833
834         if (b->nsets - unwritten_idx > 1) {
835                 btree_node_sort(c, b, iter, unwritten_idx,
836                                 b->nsets, false);
837                 ret = true;
838         }
839
840         if (unwritten_idx > 1) {
841                 btree_node_sort(c, b, iter, 0, unwritten_idx, false);
842                 ret = true;
843         }
844
845         return ret;
846 }
847
848 void bch2_btree_build_aux_trees(struct btree *b)
849 {
850         struct bset_tree *t;
851
852         for_each_bset(b, t)
853                 bch2_bset_build_aux_tree(b, t,
854                                 bset_unwritten(b, bset(b, t)) &&
855                                 t == bset_tree_last(b));
856 }
857
858 /*
859  * @bch_btree_init_next - initialize a new (unwritten) bset that can then be
860  * inserted into
861  *
862  * Safe to call if there already is an unwritten bset - will only add a new bset
863  * if @b doesn't already have one.
864  *
865  * Returns true if we sorted (i.e. invalidated iterators
866  */
867 void bch2_btree_init_next(struct bch_fs *c, struct btree *b,
868                           struct btree_iter *iter)
869 {
870         struct btree_node_entry *bne;
871         bool did_sort;
872
873         EBUG_ON(!(b->lock.state.seq & 1));
874         EBUG_ON(iter && iter->l[b->level].b != b);
875
876         did_sort = btree_node_compact(c, b, iter);
877
878         bne = want_new_bset(c, b);
879         if (bne)
880                 bch2_bset_init_next(b, &bne->keys);
881
882         bch2_btree_build_aux_trees(b);
883
884         if (iter && did_sort)
885                 bch2_btree_iter_reinit_node(iter, b);
886 }
887
888 static struct nonce btree_nonce(struct bset *i, unsigned offset)
889 {
890         return (struct nonce) {{
891                 [0] = cpu_to_le32(offset),
892                 [1] = ((__le32 *) &i->seq)[0],
893                 [2] = ((__le32 *) &i->seq)[1],
894                 [3] = ((__le32 *) &i->journal_seq)[0]^BCH_NONCE_BTREE,
895         }};
896 }
897
898 static void bset_encrypt(struct bch_fs *c, struct bset *i, unsigned offset)
899 {
900         struct nonce nonce = btree_nonce(i, offset);
901
902         if (!offset) {
903                 struct btree_node *bn = container_of(i, struct btree_node, keys);
904                 unsigned bytes = (void *) &bn->keys - (void *) &bn->flags;
905
906                 bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, &bn->flags,
907                              bytes);
908
909                 nonce = nonce_add(nonce, round_up(bytes, CHACHA20_BLOCK_SIZE));
910         }
911
912         bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, i->_data,
913                      vstruct_end(i) - (void *) i->_data);
914 }
915
916 static int btree_err_msg(struct bch_fs *c, struct btree *b, struct bset *i,
917                          unsigned offset, int write, char *buf, size_t len)
918 {
919         char *out = buf, *end = buf + len;
920
921         out += scnprintf(out, end - out,
922                          "error validating btree node %s "
923                          "at btree %u level %u/%u\n"
924                          "pos %llu:%llu node offset %u",
925                          write ? "before write " : "",
926                          b->btree_id, b->level,
927                          c->btree_roots[b->btree_id].level,
928                          b->key.k.p.inode, b->key.k.p.offset,
929                          b->written);
930         if (i)
931                 out += scnprintf(out, end - out,
932                                  " bset u64s %u",
933                                  le16_to_cpu(i->u64s));
934
935         return out - buf;
936 }
937
938 enum btree_err_type {
939         BTREE_ERR_FIXABLE,
940         BTREE_ERR_WANT_RETRY,
941         BTREE_ERR_MUST_RETRY,
942         BTREE_ERR_FATAL,
943 };
944
945 enum btree_validate_ret {
946         BTREE_RETRY_READ = 64,
947 };
948
949 #define btree_err(type, c, b, i, msg, ...)                              \
950 ({                                                                      \
951         __label__ out;                                                  \
952         char _buf[300], *out = _buf, *end = out + sizeof(_buf);         \
953                                                                         \
954         out += btree_err_msg(c, b, i, b->written, write, out, end - out);\
955         out += scnprintf(out, end - out, ": " msg, ##__VA_ARGS__);      \
956                                                                         \
957         if (type == BTREE_ERR_FIXABLE &&                                \
958             write == READ &&                                            \
959             !test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) {             \
960                 mustfix_fsck_err(c, "%s", _buf);                        \
961                 goto out;                                               \
962         }                                                               \
963                                                                         \
964         switch (write) {                                                \
965         case READ:                                                      \
966                 bch_err(c, "%s", _buf);                                 \
967                                                                         \
968                 switch (type) {                                         \
969                 case BTREE_ERR_FIXABLE:                                 \
970                         ret = BCH_FSCK_ERRORS_NOT_FIXED;                \
971                         goto fsck_err;                                  \
972                 case BTREE_ERR_WANT_RETRY:                              \
973                         if (have_retry) {                               \
974                                 ret = BTREE_RETRY_READ;                 \
975                                 goto fsck_err;                          \
976                         }                                               \
977                         break;                                          \
978                 case BTREE_ERR_MUST_RETRY:                              \
979                         ret = BTREE_RETRY_READ;                         \
980                         goto fsck_err;                                  \
981                 case BTREE_ERR_FATAL:                                   \
982                         ret = BCH_FSCK_ERRORS_NOT_FIXED;                \
983                         goto fsck_err;                                  \
984                 }                                                       \
985                 break;                                                  \
986         case WRITE:                                                     \
987                 bch_err(c, "corrupt metadata before write: %s", _buf);  \
988                                                                         \
989                 if (bch2_fs_inconsistent(c)) {                          \
990                         ret = BCH_FSCK_ERRORS_NOT_FIXED;                \
991                         goto fsck_err;                                  \
992                 }                                                       \
993                 break;                                                  \
994         }                                                               \
995 out:                                                                    \
996         true;                                                           \
997 })
998
999 #define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false)
1000
1001 static int validate_bset(struct bch_fs *c, struct btree *b,
1002                          struct bset *i, unsigned sectors,
1003                          unsigned *whiteout_u64s, int write,
1004                          bool have_retry)
1005 {
1006         struct bkey_packed *k, *prev = NULL;
1007         struct bpos prev_pos = POS_MIN;
1008         enum bkey_type type = btree_node_type(b);
1009         bool seen_non_whiteout = false;
1010         const char *err;
1011         int ret = 0;
1012
1013         if (i == &b->data->keys) {
1014                 /* These indicate that we read the wrong btree node: */
1015                 btree_err_on(BTREE_NODE_ID(b->data) != b->btree_id,
1016                              BTREE_ERR_MUST_RETRY, c, b, i,
1017                              "incorrect btree id");
1018
1019                 btree_err_on(BTREE_NODE_LEVEL(b->data) != b->level,
1020                              BTREE_ERR_MUST_RETRY, c, b, i,
1021                              "incorrect level");
1022
1023                 if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) {
1024                         u64 *p = (u64 *) &b->data->ptr;
1025
1026                         *p = swab64(*p);
1027                         bch2_bpos_swab(&b->data->min_key);
1028                         bch2_bpos_swab(&b->data->max_key);
1029                 }
1030
1031                 btree_err_on(bkey_cmp(b->data->max_key, b->key.k.p),
1032                              BTREE_ERR_MUST_RETRY, c, b, i,
1033                              "incorrect max key");
1034
1035                 /* XXX: ideally we would be validating min_key too */
1036 #if 0
1037                 /*
1038                  * not correct anymore, due to btree node write error
1039                  * handling
1040                  *
1041                  * need to add b->data->seq to btree keys and verify
1042                  * against that
1043                  */
1044                 btree_err_on(!extent_contains_ptr(bkey_i_to_s_c_extent(&b->key),
1045                                                   b->data->ptr),
1046                              BTREE_ERR_FATAL, c, b, i,
1047                              "incorrect backpointer");
1048 #endif
1049                 err = bch2_bkey_format_validate(&b->data->format);
1050                 btree_err_on(err,
1051                              BTREE_ERR_FATAL, c, b, i,
1052                              "invalid bkey format: %s", err);
1053         }
1054
1055         if (btree_err_on(le16_to_cpu(i->version) != BCACHE_BSET_VERSION,
1056                          BTREE_ERR_FIXABLE, c, b, i,
1057                          "unsupported bset version")) {
1058                 i->version = cpu_to_le16(BCACHE_BSET_VERSION);
1059                 i->u64s = 0;
1060                 return 0;
1061         }
1062
1063         if (btree_err_on(b->written + sectors > c->opts.btree_node_size,
1064                          BTREE_ERR_FIXABLE, c, b, i,
1065                          "bset past end of btree node")) {
1066                 i->u64s = 0;
1067                 return 0;
1068         }
1069
1070         btree_err_on(b->written && !i->u64s,
1071                      BTREE_ERR_FIXABLE, c, b, i,
1072                      "empty bset");
1073
1074         if (!BSET_SEPARATE_WHITEOUTS(i)) {
1075                 seen_non_whiteout = true;
1076                 *whiteout_u64s = 0;
1077         }
1078
1079         for (k = i->start;
1080              k != vstruct_last(i);) {
1081                 struct bkey_s_c u;
1082                 struct bkey tmp;
1083                 const char *invalid;
1084
1085                 if (btree_err_on(!k->u64s,
1086                                  BTREE_ERR_FIXABLE, c, b, i,
1087                                  "KEY_U64s 0: %zu bytes of metadata lost",
1088                                  vstruct_end(i) - (void *) k)) {
1089                         i->u64s = cpu_to_le16((u64 *) k - i->_data);
1090                         break;
1091                 }
1092
1093                 if (btree_err_on(bkey_next(k) > vstruct_last(i),
1094                                  BTREE_ERR_FIXABLE, c, b, i,
1095                                  "key extends past end of bset")) {
1096                         i->u64s = cpu_to_le16((u64 *) k - i->_data);
1097                         break;
1098                 }
1099
1100                 if (btree_err_on(k->format > KEY_FORMAT_CURRENT,
1101                                  BTREE_ERR_FIXABLE, c, b, i,
1102                                  "invalid bkey format %u", k->format)) {
1103                         i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
1104                         memmove_u64s_down(k, bkey_next(k),
1105                                           (u64 *) vstruct_end(i) - (u64 *) k);
1106                         continue;
1107                 }
1108
1109                 if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN)
1110                         bch2_bkey_swab(type, &b->format, k);
1111
1112                 u = bkey_disassemble(b, k, &tmp);
1113
1114                 invalid = __bch2_bkey_invalid(c, type, u) ?:
1115                         bch2_bkey_in_btree_node(b, u) ?:
1116                         (write ? bch2_bkey_val_invalid(c, type, u) : NULL);
1117                 if (invalid) {
1118                         char buf[160];
1119
1120                         bch2_bkey_val_to_text(c, type, buf, sizeof(buf), u);
1121                         btree_err(BTREE_ERR_FIXABLE, c, b, i,
1122                                   "invalid bkey:\n%s\n%s", buf, invalid);
1123
1124                         i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
1125                         memmove_u64s_down(k, bkey_next(k),
1126                                           (u64 *) vstruct_end(i) - (u64 *) k);
1127                         continue;
1128                 }
1129
1130                 /*
1131                  * with the separate whiteouts thing (used for extents), the
1132                  * second set of keys actually can have whiteouts too, so we
1133                  * can't solely go off bkey_whiteout()...
1134                  */
1135
1136                 if (!seen_non_whiteout &&
1137                     (!bkey_whiteout(k) ||
1138                      (bkey_cmp(prev_pos, bkey_start_pos(u.k)) > 0))) {
1139                         *whiteout_u64s = k->_data - i->_data;
1140                         seen_non_whiteout = true;
1141                 } else if (bkey_cmp(prev_pos, bkey_start_pos(u.k)) > 0) {
1142                         btree_err(BTREE_ERR_FATAL, c, b, i,
1143                                   "keys out of order: %llu:%llu > %llu:%llu",
1144                                   prev_pos.inode,
1145                                   prev_pos.offset,
1146                                   u.k->p.inode,
1147                                   bkey_start_offset(u.k));
1148                         /* XXX: repair this */
1149                 }
1150
1151                 prev_pos = u.k->p;
1152                 prev = k;
1153                 k = bkey_next(k);
1154         }
1155
1156         SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
1157 fsck_err:
1158         return ret;
1159 }
1160
1161 int bch2_btree_node_read_done(struct bch_fs *c, struct btree *b, bool have_retry)
1162 {
1163         struct btree_node_entry *bne;
1164         struct btree_node_iter_large *iter;
1165         struct btree_node *sorted;
1166         struct bkey_packed *k;
1167         struct bset *i;
1168         bool used_mempool;
1169         unsigned u64s;
1170         int ret, retry_read = 0, write = READ;
1171
1172         iter = mempool_alloc(&c->fill_iter, GFP_NOIO);
1173         __bch2_btree_node_iter_large_init(iter, btree_node_is_extents(b));
1174
1175         if (bch2_meta_read_fault("btree"))
1176                 btree_err(BTREE_ERR_MUST_RETRY, c, b, NULL,
1177                           "dynamic fault");
1178
1179         btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c),
1180                      BTREE_ERR_MUST_RETRY, c, b, NULL,
1181                      "bad magic");
1182
1183         btree_err_on(!b->data->keys.seq,
1184                      BTREE_ERR_MUST_RETRY, c, b, NULL,
1185                      "bad btree header");
1186
1187         while (b->written < c->opts.btree_node_size) {
1188                 unsigned sectors, whiteout_u64s = 0;
1189                 struct nonce nonce;
1190                 struct bch_csum csum;
1191                 bool first = !b->written;
1192
1193                 if (!b->written) {
1194                         i = &b->data->keys;
1195
1196                         btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
1197                                      BTREE_ERR_WANT_RETRY, c, b, i,
1198                                      "unknown checksum type");
1199
1200                         nonce = btree_nonce(i, b->written << 9);
1201                         csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data);
1202
1203                         btree_err_on(bch2_crc_cmp(csum, b->data->csum),
1204                                      BTREE_ERR_WANT_RETRY, c, b, i,
1205                                      "invalid checksum");
1206
1207                         bset_encrypt(c, i, b->written << 9);
1208
1209                         sectors = vstruct_sectors(b->data, c->block_bits);
1210
1211                         btree_node_set_format(b, b->data->format);
1212                 } else {
1213                         bne = write_block(b);
1214                         i = &bne->keys;
1215
1216                         if (i->seq != b->data->keys.seq)
1217                                 break;
1218
1219                         btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
1220                                      BTREE_ERR_WANT_RETRY, c, b, i,
1221                                      "unknown checksum type");
1222
1223                         nonce = btree_nonce(i, b->written << 9);
1224                         csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
1225
1226                         btree_err_on(bch2_crc_cmp(csum, bne->csum),
1227                                      BTREE_ERR_WANT_RETRY, c, b, i,
1228                                      "invalid checksum");
1229
1230                         bset_encrypt(c, i, b->written << 9);
1231
1232                         sectors = vstruct_sectors(bne, c->block_bits);
1233                 }
1234
1235                 ret = validate_bset(c, b, i, sectors, &whiteout_u64s,
1236                                     READ, have_retry);
1237                 if (ret)
1238                         goto fsck_err;
1239
1240                 b->written += sectors;
1241
1242                 ret = bch2_journal_seq_should_ignore(c, le64_to_cpu(i->journal_seq), b);
1243                 if (ret < 0) {
1244                         btree_err(BTREE_ERR_FATAL, c, b, i,
1245                                   "insufficient memory");
1246                         goto err;
1247                 }
1248
1249                 if (ret) {
1250                         btree_err_on(first,
1251                                      BTREE_ERR_FIXABLE, c, b, i,
1252                                      "first btree node bset has blacklisted journal seq");
1253                         if (!first)
1254                                 continue;
1255                 }
1256
1257                 bch2_btree_node_iter_large_push(iter, b,
1258                                            i->start,
1259                                            vstruct_idx(i, whiteout_u64s));
1260
1261                 bch2_btree_node_iter_large_push(iter, b,
1262                                            vstruct_idx(i, whiteout_u64s),
1263                                            vstruct_last(i));
1264         }
1265
1266         for (bne = write_block(b);
1267              bset_byte_offset(b, bne) < btree_bytes(c);
1268              bne = (void *) bne + block_bytes(c))
1269                 btree_err_on(bne->keys.seq == b->data->keys.seq,
1270                              BTREE_ERR_WANT_RETRY, c, b, NULL,
1271                              "found bset signature after last bset");
1272
1273         sorted = btree_bounce_alloc(c, btree_page_order(c), &used_mempool);
1274         sorted->keys.u64s = 0;
1275
1276         set_btree_bset(b, b->set, &b->data->keys);
1277
1278         b->nr = btree_node_is_extents(b)
1279                 ? bch2_extent_sort_fix_overlapping(c, &sorted->keys, b, iter)
1280                 : bch2_key_sort_fix_overlapping(&sorted->keys, b, iter);
1281
1282         u64s = le16_to_cpu(sorted->keys.u64s);
1283         *sorted = *b->data;
1284         sorted->keys.u64s = cpu_to_le16(u64s);
1285         swap(sorted, b->data);
1286         set_btree_bset(b, b->set, &b->data->keys);
1287         b->nsets = 1;
1288
1289         BUG_ON(b->nr.live_u64s != u64s);
1290
1291         btree_bounce_free(c, btree_page_order(c), used_mempool, sorted);
1292
1293         i = &b->data->keys;
1294         for (k = i->start; k != vstruct_last(i);) {
1295                 enum bkey_type type = btree_node_type(b);
1296                 struct bkey tmp;
1297                 struct bkey_s_c u = bkey_disassemble(b, k, &tmp);
1298                 const char *invalid = bch2_bkey_val_invalid(c, type, u);
1299
1300                 if (invalid) {
1301                         char buf[160];
1302
1303                         bch2_bkey_val_to_text(c, type, buf, sizeof(buf), u);
1304                         btree_err(BTREE_ERR_FIXABLE, c, b, i,
1305                                   "invalid bkey %s: %s", buf, invalid);
1306
1307                         btree_keys_account_key_drop(&b->nr, 0, k);
1308
1309                         i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
1310                         memmove_u64s_down(k, bkey_next(k),
1311                                           (u64 *) vstruct_end(i) - (u64 *) k);
1312                         continue;
1313                 }
1314
1315                 k = bkey_next(k);
1316         }
1317
1318         bch2_bset_build_aux_tree(b, b->set, false);
1319
1320         set_needs_whiteout(btree_bset_first(b));
1321
1322         btree_node_reset_sib_u64s(b);
1323 out:
1324         mempool_free(iter, &c->fill_iter);
1325         return retry_read;
1326 err:
1327 fsck_err:
1328         if (ret == BTREE_RETRY_READ) {
1329                 retry_read = 1;
1330         } else {
1331                 bch2_inconsistent_error(c);
1332                 set_btree_node_read_error(b);
1333         }
1334         goto out;
1335 }
1336
1337 static void btree_node_read_work(struct work_struct *work)
1338 {
1339         struct btree_read_bio *rb =
1340                 container_of(work, struct btree_read_bio, work);
1341         struct bch_fs *c        = rb->c;
1342         struct bch_dev *ca      = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
1343         struct btree *b         = rb->bio.bi_private;
1344         struct bio *bio         = &rb->bio;
1345         struct bch_devs_mask avoid;
1346         bool can_retry;
1347
1348         memset(&avoid, 0, sizeof(avoid));
1349
1350         goto start;
1351         while (1) {
1352                 bch_info(c, "retrying read");
1353                 ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
1354                 rb->have_ioref          = bch2_dev_get_ioref(ca, READ);
1355                 bio_reset(bio);
1356                 bio->bi_opf             = REQ_OP_READ|REQ_SYNC|REQ_META;
1357                 bio->bi_iter.bi_sector  = rb->pick.ptr.offset;
1358                 bio->bi_iter.bi_size    = btree_bytes(c);
1359
1360                 if (rb->have_ioref) {
1361                         bio_set_dev(bio, ca->disk_sb.bdev);
1362                         submit_bio_wait(bio);
1363                 } else {
1364                         bio->bi_status = BLK_STS_REMOVED;
1365                 }
1366 start:
1367                 bch2_dev_io_err_on(bio->bi_status, ca, "btree read");
1368                 if (rb->have_ioref)
1369                         percpu_ref_put(&ca->io_ref);
1370                 rb->have_ioref = false;
1371
1372                 __set_bit(rb->pick.ptr.dev, avoid.d);
1373                 can_retry = bch2_btree_pick_ptr(c, b, &avoid, &rb->pick) > 0;
1374
1375                 if (!bio->bi_status &&
1376                     !bch2_btree_node_read_done(c, b, can_retry))
1377                         break;
1378
1379                 if (!can_retry) {
1380                         set_btree_node_read_error(b);
1381                         break;
1382                 }
1383         }
1384
1385         bch2_time_stats_update(&c->btree_read_time, rb->start_time);
1386         bio_put(&rb->bio);
1387         clear_btree_node_read_in_flight(b);
1388         wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
1389 }
1390
1391 static void btree_node_read_endio(struct bio *bio)
1392 {
1393         struct btree_read_bio *rb =
1394                 container_of(bio, struct btree_read_bio, bio);
1395         struct bch_fs *c        = rb->c;
1396
1397         if (rb->have_ioref) {
1398                 struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
1399                 bch2_latency_acct(ca, rb->start_time, READ);
1400         }
1401
1402         queue_work(system_unbound_wq, &rb->work);
1403 }
1404
1405 void bch2_btree_node_read(struct bch_fs *c, struct btree *b,
1406                           bool sync)
1407 {
1408         struct extent_pick_ptr pick;
1409         struct btree_read_bio *rb;
1410         struct bch_dev *ca;
1411         struct bio *bio;
1412         int ret;
1413
1414         trace_btree_read(c, b);
1415
1416         ret = bch2_btree_pick_ptr(c, b, NULL, &pick);
1417         if (bch2_fs_fatal_err_on(ret <= 0, c,
1418                         "btree node read error: no device to read from")) {
1419                 set_btree_node_read_error(b);
1420                 return;
1421         }
1422
1423         ca = bch_dev_bkey_exists(c, pick.ptr.dev);
1424
1425         bio = bio_alloc_bioset(GFP_NOIO, btree_pages(c), &c->btree_bio);
1426         rb = container_of(bio, struct btree_read_bio, bio);
1427         rb->c                   = c;
1428         rb->start_time          = local_clock();
1429         rb->have_ioref          = bch2_dev_get_ioref(ca, READ);
1430         rb->pick                = pick;
1431         INIT_WORK(&rb->work, btree_node_read_work);
1432         bio->bi_opf             = REQ_OP_READ|REQ_SYNC|REQ_META;
1433         bio->bi_iter.bi_sector  = pick.ptr.offset;
1434         bio->bi_iter.bi_size    = btree_bytes(c);
1435         bio->bi_end_io          = btree_node_read_endio;
1436         bio->bi_private         = b;
1437         bch2_bio_map(bio, b->data);
1438
1439         set_btree_node_read_in_flight(b);
1440
1441         if (rb->have_ioref) {
1442                 this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_BTREE],
1443                              bio_sectors(bio));
1444                 bio_set_dev(bio, ca->disk_sb.bdev);
1445
1446                 if (sync) {
1447                         submit_bio_wait(bio);
1448
1449                         bio->bi_private = b;
1450                         btree_node_read_work(&rb->work);
1451                 } else {
1452                         submit_bio(bio);
1453                 }
1454         } else {
1455                 bio->bi_status = BLK_STS_REMOVED;
1456
1457                 if (sync)
1458                         btree_node_read_work(&rb->work);
1459                 else
1460                         queue_work(system_unbound_wq, &rb->work);
1461
1462         }
1463 }
1464
1465 int bch2_btree_root_read(struct bch_fs *c, enum btree_id id,
1466                         const struct bkey_i *k, unsigned level)
1467 {
1468         struct closure cl;
1469         struct btree *b;
1470         int ret;
1471
1472         closure_init_stack(&cl);
1473
1474         do {
1475                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1476                 closure_sync(&cl);
1477         } while (ret);
1478
1479         b = bch2_btree_node_mem_alloc(c);
1480         bch2_btree_cache_cannibalize_unlock(c);
1481
1482         BUG_ON(IS_ERR(b));
1483
1484         bkey_copy(&b->key, k);
1485         BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id));
1486
1487         bch2_btree_node_read(c, b, true);
1488
1489         if (btree_node_read_error(b)) {
1490                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1491
1492                 mutex_lock(&c->btree_cache.lock);
1493                 list_move(&b->list, &c->btree_cache.freeable);
1494                 mutex_unlock(&c->btree_cache.lock);
1495
1496                 ret = -EIO;
1497                 goto err;
1498         }
1499
1500         bch2_btree_set_root_for_read(c, b);
1501 err:
1502         six_unlock_write(&b->lock);
1503         six_unlock_intent(&b->lock);
1504
1505         return ret;
1506 }
1507
1508 void bch2_btree_complete_write(struct bch_fs *c, struct btree *b,
1509                               struct btree_write *w)
1510 {
1511         unsigned long old, new, v = READ_ONCE(b->will_make_reachable);
1512
1513         do {
1514                 old = new = v;
1515                 if (!(old & 1))
1516                         break;
1517
1518                 new &= ~1UL;
1519         } while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old);
1520
1521         if (old & 1)
1522                 closure_put(&((struct btree_update *) new)->cl);
1523
1524         bch2_journal_pin_drop(&c->journal, &w->journal);
1525         closure_wake_up(&w->wait);
1526 }
1527
1528 static void btree_node_write_done(struct bch_fs *c, struct btree *b)
1529 {
1530         struct btree_write *w = btree_prev_write(b);
1531
1532         bch2_btree_complete_write(c, b, w);
1533         btree_node_io_unlock(b);
1534 }
1535
1536 static void bch2_btree_node_write_error(struct bch_fs *c,
1537                                         struct btree_write_bio *wbio)
1538 {
1539         struct btree *b         = wbio->wbio.bio.bi_private;
1540         __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
1541         struct bkey_i_extent *new_key;
1542         struct bkey_s_extent e;
1543         struct bch_extent_ptr *ptr;
1544         struct btree_iter iter;
1545         int ret;
1546
1547         __bch2_btree_iter_init(&iter, c, b->btree_id, b->key.k.p,
1548                                BTREE_MAX_DEPTH,
1549                                b->level, 0);
1550 retry:
1551         ret = bch2_btree_iter_traverse(&iter);
1552         if (ret)
1553                 goto err;
1554
1555         /* has node been freed? */
1556         if (iter.l[b->level].b != b) {
1557                 /* node has been freed: */
1558                 BUG_ON(!btree_node_dying(b));
1559                 goto out;
1560         }
1561
1562         BUG_ON(!btree_node_hashed(b));
1563
1564         bkey_copy(&tmp.k, &b->key);
1565
1566         new_key = bkey_i_to_extent(&tmp.k);
1567         e = extent_i_to_s(new_key);
1568         extent_for_each_ptr_backwards(e, ptr)
1569                 if (bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev))
1570                         bch2_extent_drop_ptr(e, ptr);
1571
1572         if (!bch2_extent_nr_ptrs(e.c))
1573                 goto err;
1574
1575         ret = bch2_btree_node_update_key(c, &iter, b, new_key);
1576         if (ret == -EINTR)
1577                 goto retry;
1578         if (ret)
1579                 goto err;
1580 out:
1581         bch2_btree_iter_unlock(&iter);
1582         bio_put(&wbio->wbio.bio);
1583         btree_node_write_done(c, b);
1584         return;
1585 err:
1586         set_btree_node_noevict(b);
1587         bch2_fs_fatal_error(c, "fatal error writing btree node");
1588         goto out;
1589 }
1590
1591 void bch2_btree_write_error_work(struct work_struct *work)
1592 {
1593         struct bch_fs *c = container_of(work, struct bch_fs,
1594                                         btree_write_error_work);
1595         struct bio *bio;
1596
1597         while (1) {
1598                 spin_lock_irq(&c->btree_write_error_lock);
1599                 bio = bio_list_pop(&c->btree_write_error_list);
1600                 spin_unlock_irq(&c->btree_write_error_lock);
1601
1602                 if (!bio)
1603                         break;
1604
1605                 bch2_btree_node_write_error(c,
1606                         container_of(bio, struct btree_write_bio, wbio.bio));
1607         }
1608 }
1609
1610 static void btree_node_write_work(struct work_struct *work)
1611 {
1612         struct btree_write_bio *wbio =
1613                 container_of(work, struct btree_write_bio, work);
1614         struct bch_fs *c        = wbio->wbio.c;
1615         struct btree *b         = wbio->wbio.bio.bi_private;
1616
1617         btree_bounce_free(c,
1618                 wbio->wbio.order,
1619                 wbio->wbio.used_mempool,
1620                 wbio->data);
1621
1622         if (wbio->wbio.failed.nr) {
1623                 unsigned long flags;
1624
1625                 spin_lock_irqsave(&c->btree_write_error_lock, flags);
1626                 bio_list_add(&c->btree_write_error_list, &wbio->wbio.bio);
1627                 spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
1628
1629                 queue_work(c->wq, &c->btree_write_error_work);
1630                 return;
1631         }
1632
1633         bio_put(&wbio->wbio.bio);
1634         btree_node_write_done(c, b);
1635 }
1636
1637 static void btree_node_write_endio(struct bio *bio)
1638 {
1639         struct bch_write_bio *wbio      = to_wbio(bio);
1640         struct bch_write_bio *parent    = wbio->split ? wbio->parent : NULL;
1641         struct bch_write_bio *orig      = parent ?: wbio;
1642         struct bch_fs *c                = wbio->c;
1643         struct bch_dev *ca              = bch_dev_bkey_exists(c, wbio->dev);
1644         unsigned long flags;
1645
1646         if (wbio->have_ioref)
1647                 bch2_latency_acct(ca, wbio->submit_time, WRITE);
1648
1649         if (bio->bi_status == BLK_STS_REMOVED ||
1650             bch2_dev_io_err_on(bio->bi_status, ca, "btree write") ||
1651             bch2_meta_write_fault("btree")) {
1652                 spin_lock_irqsave(&c->btree_write_error_lock, flags);
1653                 bch2_dev_list_add_dev(&orig->failed, wbio->dev);
1654                 spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
1655         }
1656
1657         if (wbio->have_ioref)
1658                 percpu_ref_put(&ca->io_ref);
1659
1660         if (parent) {
1661                 bio_put(bio);
1662                 bio_endio(&parent->bio);
1663         } else {
1664                 struct btree_write_bio *wb =
1665                         container_of(orig, struct btree_write_bio, wbio);
1666
1667                 INIT_WORK(&wb->work, btree_node_write_work);
1668                 queue_work(system_unbound_wq, &wb->work);
1669         }
1670 }
1671
1672 static int validate_bset_for_write(struct bch_fs *c, struct btree *b,
1673                                    struct bset *i, unsigned sectors)
1674 {
1675         const struct bch_extent_ptr *ptr;
1676         unsigned whiteout_u64s = 0;
1677         int ret;
1678
1679         extent_for_each_ptr(bkey_i_to_s_c_extent(&b->key), ptr)
1680                 break;
1681
1682         ret = validate_bset(c, b, i, sectors, &whiteout_u64s, WRITE, false);
1683         if (ret)
1684                 bch2_inconsistent_error(c);
1685
1686         return ret;
1687 }
1688
1689 void __bch2_btree_node_write(struct bch_fs *c, struct btree *b,
1690                             enum six_lock_type lock_type_held)
1691 {
1692         struct btree_write_bio *wbio;
1693         struct bset_tree *t;
1694         struct bset *i;
1695         struct btree_node *bn = NULL;
1696         struct btree_node_entry *bne = NULL;
1697         BKEY_PADDED(key) k;
1698         struct bkey_s_extent e;
1699         struct bch_extent_ptr *ptr;
1700         struct sort_iter sort_iter;
1701         struct nonce nonce;
1702         unsigned bytes_to_write, sectors_to_write, order, bytes, u64s;
1703         u64 seq = 0;
1704         bool used_mempool;
1705         unsigned long old, new;
1706         void *data;
1707
1708         if (test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags))
1709                 return;
1710
1711         /*
1712          * We may only have a read lock on the btree node - the dirty bit is our
1713          * "lock" against racing with other threads that may be trying to start
1714          * a write, we do a write iff we clear the dirty bit. Since setting the
1715          * dirty bit requires a write lock, we can't race with other threads
1716          * redirtying it:
1717          */
1718         do {
1719                 old = new = READ_ONCE(b->flags);
1720
1721                 if (!(old & (1 << BTREE_NODE_dirty)))
1722                         return;
1723
1724                 if (b->written &&
1725                     !btree_node_may_write(b))
1726                         return;
1727
1728                 if (old & (1 << BTREE_NODE_write_in_flight)) {
1729                         btree_node_wait_on_io(b);
1730                         continue;
1731                 }
1732
1733                 new &= ~(1 << BTREE_NODE_dirty);
1734                 new &= ~(1 << BTREE_NODE_need_write);
1735                 new |=  (1 << BTREE_NODE_write_in_flight);
1736                 new |=  (1 << BTREE_NODE_just_written);
1737                 new ^=  (1 << BTREE_NODE_write_idx);
1738         } while (cmpxchg_acquire(&b->flags, old, new) != old);
1739
1740         BUG_ON(btree_node_fake(b));
1741         BUG_ON(!list_empty(&b->write_blocked));
1742         BUG_ON((b->will_make_reachable != 0) != !b->written);
1743
1744         BUG_ON(b->written >= c->opts.btree_node_size);
1745         BUG_ON(bset_written(b, btree_bset_last(b)));
1746         BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c));
1747         BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format)));
1748
1749         /*
1750          * We can't block on six_lock_write() here; another thread might be
1751          * trying to get a journal reservation with read locks held, and getting
1752          * a journal reservation might be blocked on flushing the journal and
1753          * doing btree writes:
1754          */
1755         if (lock_type_held == SIX_LOCK_intent &&
1756             six_trylock_write(&b->lock)) {
1757                 __bch2_compact_whiteouts(c, b, COMPACT_WRITTEN);
1758                 six_unlock_write(&b->lock);
1759         } else {
1760                 __bch2_compact_whiteouts(c, b, COMPACT_WRITTEN_NO_WRITE_LOCK);
1761         }
1762
1763         BUG_ON(b->uncompacted_whiteout_u64s);
1764
1765         sort_iter_init(&sort_iter, b);
1766
1767         bytes = !b->written
1768                 ? sizeof(struct btree_node)
1769                 : sizeof(struct btree_node_entry);
1770
1771         bytes += b->whiteout_u64s * sizeof(u64);
1772
1773         for_each_bset(b, t) {
1774                 i = bset(b, t);
1775
1776                 if (bset_written(b, i))
1777                         continue;
1778
1779                 bytes += le16_to_cpu(i->u64s) * sizeof(u64);
1780                 sort_iter_add(&sort_iter,
1781                               btree_bkey_first(b, t),
1782                               btree_bkey_last(b, t));
1783                 seq = max(seq, le64_to_cpu(i->journal_seq));
1784         }
1785
1786         order = get_order(bytes);
1787         data = btree_bounce_alloc(c, order, &used_mempool);
1788
1789         if (!b->written) {
1790                 bn = data;
1791                 *bn = *b->data;
1792                 i = &bn->keys;
1793         } else {
1794                 bne = data;
1795                 bne->keys = b->data->keys;
1796                 i = &bne->keys;
1797         }
1798
1799         i->journal_seq  = cpu_to_le64(seq);
1800         i->u64s         = 0;
1801
1802         if (!btree_node_is_extents(b)) {
1803                 sort_iter_add(&sort_iter,
1804                               unwritten_whiteouts_start(c, b),
1805                               unwritten_whiteouts_end(c, b));
1806                 SET_BSET_SEPARATE_WHITEOUTS(i, false);
1807         } else {
1808                 memcpy_u64s(i->start,
1809                             unwritten_whiteouts_start(c, b),
1810                             b->whiteout_u64s);
1811                 i->u64s = cpu_to_le16(b->whiteout_u64s);
1812                 SET_BSET_SEPARATE_WHITEOUTS(i, true);
1813         }
1814
1815         b->whiteout_u64s = 0;
1816
1817         u64s = btree_node_is_extents(b)
1818                 ? sort_extents(vstruct_last(i), &sort_iter, false)
1819                 : sort_keys(i->start, &sort_iter, false);
1820         le16_add_cpu(&i->u64s, u64s);
1821
1822         clear_needs_whiteout(i);
1823
1824         /* do we have data to write? */
1825         if (b->written && !i->u64s)
1826                 goto nowrite;
1827
1828         bytes_to_write = vstruct_end(i) - data;
1829         sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9;
1830
1831         memset(data + bytes_to_write, 0,
1832                (sectors_to_write << 9) - bytes_to_write);
1833
1834         BUG_ON(b->written + sectors_to_write > c->opts.btree_node_size);
1835         BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
1836         BUG_ON(i->seq != b->data->keys.seq);
1837
1838         i->version = cpu_to_le16(BCACHE_BSET_VERSION);
1839         SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c));
1840
1841         /* if we're going to be encrypting, check metadata validity first: */
1842         if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i)) &&
1843             validate_bset_for_write(c, b, i, sectors_to_write))
1844                 goto err;
1845
1846         bset_encrypt(c, i, b->written << 9);
1847
1848         nonce = btree_nonce(i, b->written << 9);
1849
1850         if (bn)
1851                 bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn);
1852         else
1853                 bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
1854
1855         /* if we're not encrypting, check metadata after checksumming: */
1856         if (!bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i)) &&
1857             validate_bset_for_write(c, b, i, sectors_to_write))
1858                 goto err;
1859
1860         /*
1861          * We handle btree write errors by immediately halting the journal -
1862          * after we've done that, we can't issue any subsequent btree writes
1863          * because they might have pointers to new nodes that failed to write.
1864          *
1865          * Furthermore, there's no point in doing any more btree writes because
1866          * with the journal stopped, we're never going to update the journal to
1867          * reflect that those writes were done and the data flushed from the
1868          * journal:
1869          *
1870          * Make sure to update b->written so bch2_btree_init_next() doesn't
1871          * break:
1872          */
1873         if (bch2_journal_error(&c->journal) ||
1874             c->opts.nochanges)
1875                 goto err;
1876
1877         trace_btree_write(b, bytes_to_write, sectors_to_write);
1878
1879         wbio = container_of(bio_alloc_bioset(GFP_NOIO, 1 << order, &c->btree_bio),
1880                             struct btree_write_bio, wbio.bio);
1881         wbio_init(&wbio->wbio.bio);
1882         wbio->data                      = data;
1883         wbio->wbio.order                = order;
1884         wbio->wbio.used_mempool         = used_mempool;
1885         wbio->wbio.bio.bi_opf           = REQ_OP_WRITE|REQ_META|REQ_FUA;
1886         wbio->wbio.bio.bi_iter.bi_size  = sectors_to_write << 9;
1887         wbio->wbio.bio.bi_end_io        = btree_node_write_endio;
1888         wbio->wbio.bio.bi_private       = b;
1889
1890         bch2_bio_map(&wbio->wbio.bio, data);
1891
1892         /*
1893          * If we're appending to a leaf node, we don't technically need FUA -
1894          * this write just needs to be persisted before the next journal write,
1895          * which will be marked FLUSH|FUA.
1896          *
1897          * Similarly if we're writing a new btree root - the pointer is going to
1898          * be in the next journal entry.
1899          *
1900          * But if we're writing a new btree node (that isn't a root) or
1901          * appending to a non leaf btree node, we need either FUA or a flush
1902          * when we write the parent with the new pointer. FUA is cheaper than a
1903          * flush, and writes appending to leaf nodes aren't blocking anything so
1904          * just make all btree node writes FUA to keep things sane.
1905          */
1906
1907         bkey_copy(&k.key, &b->key);
1908         e = bkey_i_to_s_extent(&k.key);
1909
1910         extent_for_each_ptr(e, ptr)
1911                 ptr->offset += b->written;
1912
1913         b->written += sectors_to_write;
1914
1915         bch2_submit_wbio_replicas(&wbio->wbio, c, BCH_DATA_BTREE, &k.key);
1916         return;
1917 err:
1918         set_btree_node_noevict(b);
1919         b->written += sectors_to_write;
1920 nowrite:
1921         btree_bounce_free(c, order, used_mempool, data);
1922         btree_node_write_done(c, b);
1923 }
1924
1925 /*
1926  * Work that must be done with write lock held:
1927  */
1928 bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b)
1929 {
1930         bool invalidated_iter = false;
1931         struct btree_node_entry *bne;
1932         struct bset_tree *t;
1933
1934         if (!btree_node_just_written(b))
1935                 return false;
1936
1937         BUG_ON(b->whiteout_u64s);
1938         BUG_ON(b->uncompacted_whiteout_u64s);
1939
1940         clear_btree_node_just_written(b);
1941
1942         /*
1943          * Note: immediately after write, bset_unwritten()/bset_written() don't
1944          * work - the amount of data we had to write after compaction might have
1945          * been smaller than the offset of the last bset.
1946          *
1947          * However, we know that all bsets have been written here, as long as
1948          * we're still holding the write lock:
1949          */
1950
1951         /*
1952          * XXX: decide if we really want to unconditionally sort down to a
1953          * single bset:
1954          */
1955         if (b->nsets > 1) {
1956                 btree_node_sort(c, b, NULL, 0, b->nsets, true);
1957                 invalidated_iter = true;
1958         } else {
1959                 invalidated_iter = bch2_drop_whiteouts(b);
1960         }
1961
1962         for_each_bset(b, t)
1963                 set_needs_whiteout(bset(b, t));
1964
1965         bch2_btree_verify(c, b);
1966
1967         /*
1968          * If later we don't unconditionally sort down to a single bset, we have
1969          * to ensure this is still true:
1970          */
1971         BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b));
1972
1973         bne = want_new_bset(c, b);
1974         if (bne)
1975                 bch2_bset_init_next(b, &bne->keys);
1976
1977         bch2_btree_build_aux_trees(b);
1978
1979         return invalidated_iter;
1980 }
1981
1982 /*
1983  * Use this one if the node is intent locked:
1984  */
1985 void bch2_btree_node_write(struct bch_fs *c, struct btree *b,
1986                           enum six_lock_type lock_type_held)
1987 {
1988         BUG_ON(lock_type_held == SIX_LOCK_write);
1989
1990         if (lock_type_held == SIX_LOCK_intent ||
1991             six_lock_tryupgrade(&b->lock)) {
1992                 __bch2_btree_node_write(c, b, SIX_LOCK_intent);
1993
1994                 /* don't cycle lock unnecessarily: */
1995                 if (btree_node_just_written(b) &&
1996                     six_trylock_write(&b->lock)) {
1997                         bch2_btree_post_write_cleanup(c, b);
1998                         six_unlock_write(&b->lock);
1999                 }
2000
2001                 if (lock_type_held == SIX_LOCK_read)
2002                         six_lock_downgrade(&b->lock);
2003         } else {
2004                 __bch2_btree_node_write(c, b, SIX_LOCK_read);
2005         }
2006 }
2007
2008 static void __bch2_btree_flush_all(struct bch_fs *c, unsigned flag)
2009 {
2010         struct bucket_table *tbl;
2011         struct rhash_head *pos;
2012         struct btree *b;
2013         unsigned i;
2014 restart:
2015         rcu_read_lock();
2016         for_each_cached_btree(b, c, tbl, i, pos)
2017                 if (test_bit(flag, &b->flags)) {
2018                         rcu_read_unlock();
2019                         wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE);
2020                         goto restart;
2021
2022                 }
2023         rcu_read_unlock();
2024 }
2025
2026 void bch2_btree_flush_all_reads(struct bch_fs *c)
2027 {
2028         __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight);
2029 }
2030
2031 void bch2_btree_flush_all_writes(struct bch_fs *c)
2032 {
2033         __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight);
2034 }
2035
2036 void bch2_btree_verify_flushed(struct bch_fs *c)
2037 {
2038         struct bucket_table *tbl;
2039         struct rhash_head *pos;
2040         struct btree *b;
2041         unsigned i;
2042
2043         rcu_read_lock();
2044         for_each_cached_btree(b, c, tbl, i, pos) {
2045                 unsigned long flags = READ_ONCE(b->flags);
2046
2047                 BUG_ON((flags & (1 << BTREE_NODE_dirty)) ||
2048                        (flags & (1 << BTREE_NODE_write_in_flight)));
2049         }
2050         rcu_read_unlock();
2051 }
2052
2053 ssize_t bch2_dirty_btree_nodes_print(struct bch_fs *c, char *buf)
2054 {
2055         char *out = buf, *end = buf + PAGE_SIZE;
2056         struct bucket_table *tbl;
2057         struct rhash_head *pos;
2058         struct btree *b;
2059         unsigned i;
2060
2061         rcu_read_lock();
2062         for_each_cached_btree(b, c, tbl, i, pos) {
2063                 unsigned long flags = READ_ONCE(b->flags);
2064                 unsigned idx = (flags & (1 << BTREE_NODE_write_idx)) != 0;
2065
2066                 if (//!(flags & (1 << BTREE_NODE_dirty)) &&
2067                     !b->writes[0].wait.list.first &&
2068                     !b->writes[1].wait.list.first &&
2069                     !(b->will_make_reachable & 1))
2070                         continue;
2071
2072                 out += scnprintf(out, end - out, "%p d %u l %u w %u b %u r %u:%lu c %u p %u\n",
2073                                  b,
2074                                  (flags & (1 << BTREE_NODE_dirty)) != 0,
2075                                  b->level,
2076                                  b->written,
2077                                  !list_empty_careful(&b->write_blocked),
2078                                  b->will_make_reachable != 0,
2079                                  b->will_make_reachable & 1,
2080                                  b->writes[ idx].wait.list.first != NULL,
2081                                  b->writes[!idx].wait.list.first != NULL);
2082         }
2083         rcu_read_unlock();
2084
2085         return out - buf;
2086 }