]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_io.c
Update bcachefs sources to e14d7c7195 bcachefs: Compression levels
[bcachefs-tools-debian] / libbcachefs / btree_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bkey_methods.h"
5 #include "bkey_sort.h"
6 #include "btree_cache.h"
7 #include "btree_io.h"
8 #include "btree_iter.h"
9 #include "btree_locking.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "buckets.h"
13 #include "checksum.h"
14 #include "debug.h"
15 #include "error.h"
16 #include "extents.h"
17 #include "io.h"
18 #include "journal_reclaim.h"
19 #include "journal_seq_blacklist.h"
20 #include "super-io.h"
21 #include "trace.h"
22
23 #include <linux/sched/mm.h>
24
25 void bch2_btree_node_io_unlock(struct btree *b)
26 {
27         EBUG_ON(!btree_node_write_in_flight(b));
28
29         clear_btree_node_write_in_flight_inner(b);
30         clear_btree_node_write_in_flight(b);
31         wake_up_bit(&b->flags, BTREE_NODE_write_in_flight);
32 }
33
34 void bch2_btree_node_io_lock(struct btree *b)
35 {
36         bch2_assert_btree_nodes_not_locked();
37
38         wait_on_bit_lock_io(&b->flags, BTREE_NODE_write_in_flight,
39                             TASK_UNINTERRUPTIBLE);
40 }
41
42 void __bch2_btree_node_wait_on_read(struct btree *b)
43 {
44         wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
45                        TASK_UNINTERRUPTIBLE);
46 }
47
48 void __bch2_btree_node_wait_on_write(struct btree *b)
49 {
50         wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
51                        TASK_UNINTERRUPTIBLE);
52 }
53
54 void bch2_btree_node_wait_on_read(struct btree *b)
55 {
56         bch2_assert_btree_nodes_not_locked();
57
58         wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
59                        TASK_UNINTERRUPTIBLE);
60 }
61
62 void bch2_btree_node_wait_on_write(struct btree *b)
63 {
64         bch2_assert_btree_nodes_not_locked();
65
66         wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
67                        TASK_UNINTERRUPTIBLE);
68 }
69
70 static void verify_no_dups(struct btree *b,
71                            struct bkey_packed *start,
72                            struct bkey_packed *end)
73 {
74 #ifdef CONFIG_BCACHEFS_DEBUG
75         struct bkey_packed *k, *p;
76
77         if (start == end)
78                 return;
79
80         for (p = start, k = bkey_p_next(start);
81              k != end;
82              p = k, k = bkey_p_next(k)) {
83                 struct bkey l = bkey_unpack_key(b, p);
84                 struct bkey r = bkey_unpack_key(b, k);
85
86                 BUG_ON(bpos_ge(l.p, bkey_start_pos(&r)));
87         }
88 #endif
89 }
90
91 static void set_needs_whiteout(struct bset *i, int v)
92 {
93         struct bkey_packed *k;
94
95         for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
96                 k->needs_whiteout = v;
97 }
98
99 static void btree_bounce_free(struct bch_fs *c, size_t size,
100                               bool used_mempool, void *p)
101 {
102         if (used_mempool)
103                 mempool_free(p, &c->btree_bounce_pool);
104         else
105                 vpfree(p, size);
106 }
107
108 static void *btree_bounce_alloc_noprof(struct bch_fs *c, size_t size,
109                                        bool *used_mempool)
110 {
111         unsigned flags = memalloc_nofs_save();
112         void *p;
113
114         BUG_ON(size > btree_bytes(c));
115
116         *used_mempool = false;
117         p = vpmalloc_noprof(size, __GFP_NOWARN|GFP_NOWAIT);
118         if (!p) {
119                 *used_mempool = true;
120                 p = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS);
121         }
122         memalloc_nofs_restore(flags);
123         return p;
124 }
125 #define btree_bounce_alloc(_c, _size, _used_mempool)            \
126         alloc_hooks(btree_bounce_alloc_noprof(_c, _size, _used_mempool))
127
128 static void sort_bkey_ptrs(const struct btree *bt,
129                            struct bkey_packed **ptrs, unsigned nr)
130 {
131         unsigned n = nr, a = nr / 2, b, c, d;
132
133         if (!a)
134                 return;
135
136         /* Heap sort: see lib/sort.c: */
137         while (1) {
138                 if (a)
139                         a--;
140                 else if (--n)
141                         swap(ptrs[0], ptrs[n]);
142                 else
143                         break;
144
145                 for (b = a; c = 2 * b + 1, (d = c + 1) < n;)
146                         b = bch2_bkey_cmp_packed(bt,
147                                             ptrs[c],
148                                             ptrs[d]) >= 0 ? c : d;
149                 if (d == n)
150                         b = c;
151
152                 while (b != a &&
153                        bch2_bkey_cmp_packed(bt,
154                                        ptrs[a],
155                                        ptrs[b]) >= 0)
156                         b = (b - 1) / 2;
157                 c = b;
158                 while (b != a) {
159                         b = (b - 1) / 2;
160                         swap(ptrs[b], ptrs[c]);
161                 }
162         }
163 }
164
165 static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b)
166 {
167         struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k;
168         bool used_mempool = false;
169         size_t bytes = b->whiteout_u64s * sizeof(u64);
170
171         if (!b->whiteout_u64s)
172                 return;
173
174         new_whiteouts = btree_bounce_alloc(c, bytes, &used_mempool);
175
176         ptrs = ptrs_end = ((void *) new_whiteouts + bytes);
177
178         for (k = unwritten_whiteouts_start(c, b);
179              k != unwritten_whiteouts_end(c, b);
180              k = bkey_p_next(k))
181                 *--ptrs = k;
182
183         sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs);
184
185         k = new_whiteouts;
186
187         while (ptrs != ptrs_end) {
188                 bkey_copy(k, *ptrs);
189                 k = bkey_p_next(k);
190                 ptrs++;
191         }
192
193         verify_no_dups(b, new_whiteouts,
194                        (void *) ((u64 *) new_whiteouts + b->whiteout_u64s));
195
196         memcpy_u64s(unwritten_whiteouts_start(c, b),
197                     new_whiteouts, b->whiteout_u64s);
198
199         btree_bounce_free(c, bytes, used_mempool, new_whiteouts);
200 }
201
202 static bool should_compact_bset(struct btree *b, struct bset_tree *t,
203                                 bool compacting, enum compact_mode mode)
204 {
205         if (!bset_dead_u64s(b, t))
206                 return false;
207
208         switch (mode) {
209         case COMPACT_LAZY:
210                 return should_compact_bset_lazy(b, t) ||
211                         (compacting && !bset_written(b, bset(b, t)));
212         case COMPACT_ALL:
213                 return true;
214         default:
215                 BUG();
216         }
217 }
218
219 static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode)
220 {
221         struct bset_tree *t;
222         bool ret = false;
223
224         for_each_bset(b, t) {
225                 struct bset *i = bset(b, t);
226                 struct bkey_packed *k, *n, *out, *start, *end;
227                 struct btree_node_entry *src = NULL, *dst = NULL;
228
229                 if (t != b->set && !bset_written(b, i)) {
230                         src = container_of(i, struct btree_node_entry, keys);
231                         dst = max(write_block(b),
232                                   (void *) btree_bkey_last(b, t - 1));
233                 }
234
235                 if (src != dst)
236                         ret = true;
237
238                 if (!should_compact_bset(b, t, ret, mode)) {
239                         if (src != dst) {
240                                 memmove(dst, src, sizeof(*src) +
241                                         le16_to_cpu(src->keys.u64s) *
242                                         sizeof(u64));
243                                 i = &dst->keys;
244                                 set_btree_bset(b, t, i);
245                         }
246                         continue;
247                 }
248
249                 start   = btree_bkey_first(b, t);
250                 end     = btree_bkey_last(b, t);
251
252                 if (src != dst) {
253                         memmove(dst, src, sizeof(*src));
254                         i = &dst->keys;
255                         set_btree_bset(b, t, i);
256                 }
257
258                 out = i->start;
259
260                 for (k = start; k != end; k = n) {
261                         n = bkey_p_next(k);
262
263                         if (!bkey_deleted(k)) {
264                                 bkey_copy(out, k);
265                                 out = bkey_p_next(out);
266                         } else {
267                                 BUG_ON(k->needs_whiteout);
268                         }
269                 }
270
271                 i->u64s = cpu_to_le16((u64 *) out - i->_data);
272                 set_btree_bset_end(b, t);
273                 bch2_bset_set_no_aux_tree(b, t);
274                 ret = true;
275         }
276
277         bch2_verify_btree_nr_keys(b);
278
279         bch2_btree_build_aux_trees(b);
280
281         return ret;
282 }
283
284 bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b,
285                             enum compact_mode mode)
286 {
287         return bch2_drop_whiteouts(b, mode);
288 }
289
290 static void btree_node_sort(struct bch_fs *c, struct btree *b,
291                             unsigned start_idx,
292                             unsigned end_idx,
293                             bool filter_whiteouts)
294 {
295         struct btree_node *out;
296         struct sort_iter sort_iter;
297         struct bset_tree *t;
298         struct bset *start_bset = bset(b, &b->set[start_idx]);
299         bool used_mempool = false;
300         u64 start_time, seq = 0;
301         unsigned i, u64s = 0, bytes, shift = end_idx - start_idx - 1;
302         bool sorting_entire_node = start_idx == 0 &&
303                 end_idx == b->nsets;
304
305         sort_iter_init(&sort_iter, b);
306
307         for (t = b->set + start_idx;
308              t < b->set + end_idx;
309              t++) {
310                 u64s += le16_to_cpu(bset(b, t)->u64s);
311                 sort_iter_add(&sort_iter,
312                               btree_bkey_first(b, t),
313                               btree_bkey_last(b, t));
314         }
315
316         bytes = sorting_entire_node
317                 ? btree_bytes(c)
318                 : __vstruct_bytes(struct btree_node, u64s);
319
320         out = btree_bounce_alloc(c, bytes, &used_mempool);
321
322         start_time = local_clock();
323
324         u64s = bch2_sort_keys(out->keys.start, &sort_iter, filter_whiteouts);
325
326         out->keys.u64s = cpu_to_le16(u64s);
327
328         BUG_ON(vstruct_end(&out->keys) > (void *) out + bytes);
329
330         if (sorting_entire_node)
331                 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
332                                        start_time);
333
334         /* Make sure we preserve bset journal_seq: */
335         for (t = b->set + start_idx; t < b->set + end_idx; t++)
336                 seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq));
337         start_bset->journal_seq = cpu_to_le64(seq);
338
339         if (sorting_entire_node) {
340                 unsigned u64s = le16_to_cpu(out->keys.u64s);
341
342                 BUG_ON(bytes != btree_bytes(c));
343
344                 /*
345                  * Our temporary buffer is the same size as the btree node's
346                  * buffer, we can just swap buffers instead of doing a big
347                  * memcpy()
348                  */
349                 *out = *b->data;
350                 out->keys.u64s = cpu_to_le16(u64s);
351                 swap(out, b->data);
352                 set_btree_bset(b, b->set, &b->data->keys);
353         } else {
354                 start_bset->u64s = out->keys.u64s;
355                 memcpy_u64s(start_bset->start,
356                             out->keys.start,
357                             le16_to_cpu(out->keys.u64s));
358         }
359
360         for (i = start_idx + 1; i < end_idx; i++)
361                 b->nr.bset_u64s[start_idx] +=
362                         b->nr.bset_u64s[i];
363
364         b->nsets -= shift;
365
366         for (i = start_idx + 1; i < b->nsets; i++) {
367                 b->nr.bset_u64s[i]      = b->nr.bset_u64s[i + shift];
368                 b->set[i]               = b->set[i + shift];
369         }
370
371         for (i = b->nsets; i < MAX_BSETS; i++)
372                 b->nr.bset_u64s[i] = 0;
373
374         set_btree_bset_end(b, &b->set[start_idx]);
375         bch2_bset_set_no_aux_tree(b, &b->set[start_idx]);
376
377         btree_bounce_free(c, bytes, used_mempool, out);
378
379         bch2_verify_btree_nr_keys(b);
380 }
381
382 void bch2_btree_sort_into(struct bch_fs *c,
383                          struct btree *dst,
384                          struct btree *src)
385 {
386         struct btree_nr_keys nr;
387         struct btree_node_iter src_iter;
388         u64 start_time = local_clock();
389
390         BUG_ON(dst->nsets != 1);
391
392         bch2_bset_set_no_aux_tree(dst, dst->set);
393
394         bch2_btree_node_iter_init_from_start(&src_iter, src);
395
396         nr = bch2_sort_repack(btree_bset_first(dst),
397                         src, &src_iter,
398                         &dst->format,
399                         true);
400
401         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
402                                start_time);
403
404         set_btree_bset_end(dst, dst->set);
405
406         dst->nr.live_u64s       += nr.live_u64s;
407         dst->nr.bset_u64s[0]    += nr.bset_u64s[0];
408         dst->nr.packed_keys     += nr.packed_keys;
409         dst->nr.unpacked_keys   += nr.unpacked_keys;
410
411         bch2_verify_btree_nr_keys(dst);
412 }
413
414 #define SORT_CRIT       (4096 / sizeof(u64))
415
416 /*
417  * We're about to add another bset to the btree node, so if there's currently
418  * too many bsets - sort some of them together:
419  */
420 static bool btree_node_compact(struct bch_fs *c, struct btree *b)
421 {
422         unsigned unwritten_idx;
423         bool ret = false;
424
425         for (unwritten_idx = 0;
426              unwritten_idx < b->nsets;
427              unwritten_idx++)
428                 if (!bset_written(b, bset(b, &b->set[unwritten_idx])))
429                         break;
430
431         if (b->nsets - unwritten_idx > 1) {
432                 btree_node_sort(c, b, unwritten_idx,
433                                 b->nsets, false);
434                 ret = true;
435         }
436
437         if (unwritten_idx > 1) {
438                 btree_node_sort(c, b, 0, unwritten_idx, false);
439                 ret = true;
440         }
441
442         return ret;
443 }
444
445 void bch2_btree_build_aux_trees(struct btree *b)
446 {
447         struct bset_tree *t;
448
449         for_each_bset(b, t)
450                 bch2_bset_build_aux_tree(b, t,
451                                 !bset_written(b, bset(b, t)) &&
452                                 t == bset_tree_last(b));
453 }
454
455 /*
456  * If we have MAX_BSETS (3) bsets, should we sort them all down to just one?
457  *
458  * The first bset is going to be of similar order to the size of the node, the
459  * last bset is bounded by btree_write_set_buffer(), which is set to keep the
460  * memmove on insert from being too expensive: the middle bset should, ideally,
461  * be the geometric mean of the first and the last.
462  *
463  * Returns true if the middle bset is greater than that geometric mean:
464  */
465 static inline bool should_compact_all(struct bch_fs *c, struct btree *b)
466 {
467         unsigned mid_u64s_bits =
468                 (ilog2(btree_max_u64s(c)) + BTREE_WRITE_SET_U64s_BITS) / 2;
469
470         return bset_u64s(&b->set[1]) > 1U << mid_u64s_bits;
471 }
472
473 /*
474  * @bch_btree_init_next - initialize a new (unwritten) bset that can then be
475  * inserted into
476  *
477  * Safe to call if there already is an unwritten bset - will only add a new bset
478  * if @b doesn't already have one.
479  *
480  * Returns true if we sorted (i.e. invalidated iterators
481  */
482 void bch2_btree_init_next(struct btree_trans *trans, struct btree *b)
483 {
484         struct bch_fs *c = trans->c;
485         struct btree_node_entry *bne;
486         bool reinit_iter = false;
487
488         EBUG_ON(!six_lock_counts(&b->c.lock).n[SIX_LOCK_write]);
489         BUG_ON(bset_written(b, bset(b, &b->set[1])));
490         BUG_ON(btree_node_just_written(b));
491
492         if (b->nsets == MAX_BSETS &&
493             !btree_node_write_in_flight(b) &&
494             should_compact_all(c, b)) {
495                 bch2_btree_node_write(c, b, SIX_LOCK_write,
496                                       BTREE_WRITE_init_next_bset);
497                 reinit_iter = true;
498         }
499
500         if (b->nsets == MAX_BSETS &&
501             btree_node_compact(c, b))
502                 reinit_iter = true;
503
504         BUG_ON(b->nsets >= MAX_BSETS);
505
506         bne = want_new_bset(c, b);
507         if (bne)
508                 bch2_bset_init_next(c, b, bne);
509
510         bch2_btree_build_aux_trees(b);
511
512         if (reinit_iter)
513                 bch2_trans_node_reinit_iter(trans, b);
514 }
515
516 static void btree_pos_to_text(struct printbuf *out, struct bch_fs *c,
517                           struct btree *b)
518 {
519         prt_printf(out, "%s level %u/%u\n  ",
520                bch2_btree_ids[b->c.btree_id],
521                b->c.level,
522                bch2_btree_id_root(c, b->c.btree_id)->level);
523         bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
524 }
525
526 static void btree_err_msg(struct printbuf *out, struct bch_fs *c,
527                           struct bch_dev *ca,
528                           struct btree *b, struct bset *i,
529                           unsigned offset, int write)
530 {
531         prt_printf(out, bch2_log_msg(c, "%s"),
532                    write == READ
533                    ? "error validating btree node "
534                    : "corrupt btree node before write ");
535         if (ca)
536                 prt_printf(out, "on %s ", ca->name);
537         prt_printf(out, "at btree ");
538         btree_pos_to_text(out, c, b);
539
540         prt_printf(out, "\n  node offset %u", b->written);
541         if (i)
542                 prt_printf(out, " bset u64s %u", le16_to_cpu(i->u64s));
543         prt_str(out, ": ");
544 }
545
546 enum btree_err_type {
547         /*
548          * We can repair this locally, and we're after the checksum check so
549          * there's no need to try another replica:
550          */
551         BTREE_ERR_FIXABLE,
552         /*
553          * We can repair this if we have to, but we should try reading another
554          * replica if we can:
555          */
556         BTREE_ERR_WANT_RETRY,
557         /*
558          * Read another replica if we have one, otherwise consider the whole
559          * node bad:
560          */
561         BTREE_ERR_MUST_RETRY,
562         BTREE_ERR_BAD_NODE,
563         BTREE_ERR_INCOMPATIBLE,
564 };
565
566 enum btree_validate_ret {
567         BTREE_RETRY_READ = 64,
568 };
569
570 static int __btree_err(enum btree_err_type type,
571                        struct bch_fs *c,
572                        struct bch_dev *ca,
573                        struct btree *b,
574                        struct bset *i,
575                        int write,
576                        bool have_retry,
577                        const char *fmt, ...)
578 {
579         struct printbuf out = PRINTBUF;
580         va_list args;
581         int ret = -BCH_ERR_fsck_fix;
582
583         btree_err_msg(&out, c, ca, b, i, b->written, write);
584
585         va_start(args, fmt);
586         prt_vprintf(&out, fmt, args);
587         va_end(args);
588
589         if (write == WRITE) {
590                 bch2_print_string_as_lines(KERN_ERR, out.buf);
591                 ret = c->opts.errors == BCH_ON_ERROR_continue
592                         ? 0
593                         : -BCH_ERR_fsck_errors_not_fixed;
594                 goto out;
595         }
596
597         if (!have_retry && type == BTREE_ERR_WANT_RETRY)
598                 type = BTREE_ERR_FIXABLE;
599         if (!have_retry && type == BTREE_ERR_MUST_RETRY)
600                 type = BTREE_ERR_BAD_NODE;
601
602         switch (type) {
603         case BTREE_ERR_FIXABLE:
604                 mustfix_fsck_err(c, "%s", out.buf);
605                 ret = -BCH_ERR_fsck_fix;
606                 break;
607         case BTREE_ERR_WANT_RETRY:
608         case BTREE_ERR_MUST_RETRY:
609                 bch2_print_string_as_lines(KERN_ERR, out.buf);
610                 ret = BTREE_RETRY_READ;
611                 break;
612         case BTREE_ERR_BAD_NODE:
613                 bch2_print_string_as_lines(KERN_ERR, out.buf);
614                 bch2_topology_error(c);
615                 ret = -BCH_ERR_need_topology_repair;
616                 break;
617         case BTREE_ERR_INCOMPATIBLE:
618                 bch2_print_string_as_lines(KERN_ERR, out.buf);
619                 ret = -BCH_ERR_fsck_errors_not_fixed;
620                 break;
621         default:
622                 BUG();
623         }
624 out:
625 fsck_err:
626         printbuf_exit(&out);
627         return ret;
628 }
629
630 #define btree_err(type, c, ca, b, i, msg, ...)                          \
631 ({                                                                      \
632         int _ret = __btree_err(type, c, ca, b, i, write, have_retry, msg, ##__VA_ARGS__);\
633                                                                         \
634         if (_ret != -BCH_ERR_fsck_fix)                                  \
635                 goto fsck_err;                                          \
636         *saw_error = true;                                              \
637 })
638
639 #define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false)
640
641 /*
642  * When btree topology repair changes the start or end of a node, that might
643  * mean we have to drop keys that are no longer inside the node:
644  */
645 __cold
646 void bch2_btree_node_drop_keys_outside_node(struct btree *b)
647 {
648         struct bset_tree *t;
649         struct bkey_s_c k;
650         struct bkey unpacked;
651         struct btree_node_iter iter;
652
653         for_each_bset(b, t) {
654                 struct bset *i = bset(b, t);
655                 struct bkey_packed *k;
656
657                 for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
658                         if (bkey_cmp_left_packed(b, k, &b->data->min_key) >= 0)
659                                 break;
660
661                 if (k != i->start) {
662                         unsigned shift = (u64 *) k - (u64 *) i->start;
663
664                         memmove_u64s_down(i->start, k,
665                                           (u64 *) vstruct_end(i) - (u64 *) k);
666                         i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - shift);
667                         set_btree_bset_end(b, t);
668                 }
669
670                 for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
671                         if (bkey_cmp_left_packed(b, k, &b->data->max_key) > 0)
672                                 break;
673
674                 if (k != vstruct_last(i)) {
675                         i->u64s = cpu_to_le16((u64 *) k - (u64 *) i->start);
676                         set_btree_bset_end(b, t);
677                 }
678         }
679
680         /*
681          * Always rebuild search trees: eytzinger search tree nodes directly
682          * depend on the values of min/max key:
683          */
684         bch2_bset_set_no_aux_tree(b, b->set);
685         bch2_btree_build_aux_trees(b);
686
687         for_each_btree_node_key_unpack(b, k, &iter, &unpacked) {
688                 BUG_ON(bpos_lt(k.k->p, b->data->min_key));
689                 BUG_ON(bpos_gt(k.k->p, b->data->max_key));
690         }
691 }
692
693 static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
694                          struct btree *b, struct bset *i,
695                          unsigned offset, unsigned sectors,
696                          int write, bool have_retry, bool *saw_error)
697 {
698         unsigned version = le16_to_cpu(i->version);
699         const char *err;
700         struct printbuf buf1 = PRINTBUF;
701         struct printbuf buf2 = PRINTBUF;
702         int ret = 0;
703
704         btree_err_on(!bch2_version_compatible(version),
705                      BTREE_ERR_INCOMPATIBLE, c, ca, b, i,
706                      "unsupported bset version %u.%u",
707                      BCH_VERSION_MAJOR(version),
708                      BCH_VERSION_MINOR(version));
709
710         if (btree_err_on(version < c->sb.version_min,
711                          BTREE_ERR_FIXABLE, c, NULL, b, i,
712                          "bset version %u older than superblock version_min %u",
713                          version, c->sb.version_min)) {
714                 mutex_lock(&c->sb_lock);
715                 c->disk_sb.sb->version_min = cpu_to_le16(version);
716                 bch2_write_super(c);
717                 mutex_unlock(&c->sb_lock);
718         }
719
720         if (btree_err_on(BCH_VERSION_MAJOR(version) >
721                          BCH_VERSION_MAJOR(c->sb.version),
722                          BTREE_ERR_FIXABLE, c, NULL, b, i,
723                          "bset version %u newer than superblock version %u",
724                          version, c->sb.version)) {
725                 mutex_lock(&c->sb_lock);
726                 c->disk_sb.sb->version = cpu_to_le16(version);
727                 bch2_write_super(c);
728                 mutex_unlock(&c->sb_lock);
729         }
730
731         btree_err_on(BSET_SEPARATE_WHITEOUTS(i),
732                      BTREE_ERR_INCOMPATIBLE, c, ca, b, i,
733                      "BSET_SEPARATE_WHITEOUTS no longer supported");
734
735         if (btree_err_on(offset + sectors > btree_sectors(c),
736                          BTREE_ERR_FIXABLE, c, ca, b, i,
737                          "bset past end of btree node")) {
738                 i->u64s = 0;
739                 ret = 0;
740                 goto out;
741         }
742
743         btree_err_on(offset && !i->u64s,
744                      BTREE_ERR_FIXABLE, c, ca, b, i,
745                      "empty bset");
746
747         btree_err_on(BSET_OFFSET(i) &&
748                      BSET_OFFSET(i) != offset,
749                      BTREE_ERR_WANT_RETRY, c, ca, b, i,
750                      "bset at wrong sector offset");
751
752         if (!offset) {
753                 struct btree_node *bn =
754                         container_of(i, struct btree_node, keys);
755                 /* These indicate that we read the wrong btree node: */
756
757                 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
758                         struct bch_btree_ptr_v2 *bp =
759                                 &bkey_i_to_btree_ptr_v2(&b->key)->v;
760
761                         /* XXX endianness */
762                         btree_err_on(bp->seq != bn->keys.seq,
763                                      BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
764                                      "incorrect sequence number (wrong btree node)");
765                 }
766
767                 btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id,
768                              BTREE_ERR_MUST_RETRY, c, ca, b, i,
769                              "incorrect btree id");
770
771                 btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level,
772                              BTREE_ERR_MUST_RETRY, c, ca, b, i,
773                              "incorrect level");
774
775                 if (!write)
776                         compat_btree_node(b->c.level, b->c.btree_id, version,
777                                           BSET_BIG_ENDIAN(i), write, bn);
778
779                 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
780                         struct bch_btree_ptr_v2 *bp =
781                                 &bkey_i_to_btree_ptr_v2(&b->key)->v;
782
783                         if (BTREE_PTR_RANGE_UPDATED(bp)) {
784                                 b->data->min_key = bp->min_key;
785                                 b->data->max_key = b->key.k.p;
786                         }
787
788                         btree_err_on(!bpos_eq(b->data->min_key, bp->min_key),
789                                      BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
790                                      "incorrect min_key: got %s should be %s",
791                                      (printbuf_reset(&buf1),
792                                       bch2_bpos_to_text(&buf1, bn->min_key), buf1.buf),
793                                      (printbuf_reset(&buf2),
794                                       bch2_bpos_to_text(&buf2, bp->min_key), buf2.buf));
795                 }
796
797                 btree_err_on(!bpos_eq(bn->max_key, b->key.k.p),
798                              BTREE_ERR_MUST_RETRY, c, ca, b, i,
799                              "incorrect max key %s",
800                              (printbuf_reset(&buf1),
801                               bch2_bpos_to_text(&buf1, bn->max_key), buf1.buf));
802
803                 if (write)
804                         compat_btree_node(b->c.level, b->c.btree_id, version,
805                                           BSET_BIG_ENDIAN(i), write, bn);
806
807                 err = bch2_bkey_format_validate(&bn->format);
808                 btree_err_on(err,
809                              BTREE_ERR_BAD_NODE, c, ca, b, i,
810                              "invalid bkey format: %s", err);
811
812                 compat_bformat(b->c.level, b->c.btree_id, version,
813                                BSET_BIG_ENDIAN(i), write,
814                                &bn->format);
815         }
816 out:
817 fsck_err:
818         printbuf_exit(&buf2);
819         printbuf_exit(&buf1);
820         return ret;
821 }
822
823 static int bset_key_invalid(struct bch_fs *c, struct btree *b,
824                             struct bkey_s_c k,
825                             bool updated_range, int rw,
826                             struct printbuf *err)
827 {
828         return __bch2_bkey_invalid(c, k, btree_node_type(b), READ, err) ?:
829                 (!updated_range ? bch2_bkey_in_btree_node(b, k, err) : 0) ?:
830                 (rw == WRITE ? bch2_bkey_val_invalid(c, k, READ, err) : 0);
831 }
832
833 static int validate_bset_keys(struct bch_fs *c, struct btree *b,
834                          struct bset *i, int write,
835                          bool have_retry, bool *saw_error)
836 {
837         unsigned version = le16_to_cpu(i->version);
838         struct bkey_packed *k, *prev = NULL;
839         struct printbuf buf = PRINTBUF;
840         bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
841                 BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v);
842         int ret = 0;
843
844         for (k = i->start;
845              k != vstruct_last(i);) {
846                 struct bkey_s u;
847                 struct bkey tmp;
848
849                 if (btree_err_on(bkey_p_next(k) > vstruct_last(i),
850                                  BTREE_ERR_FIXABLE, c, NULL, b, i,
851                                  "key extends past end of bset")) {
852                         i->u64s = cpu_to_le16((u64 *) k - i->_data);
853                         break;
854                 }
855
856                 if (btree_err_on(k->format > KEY_FORMAT_CURRENT,
857                                  BTREE_ERR_FIXABLE, c, NULL, b, i,
858                                  "invalid bkey format %u", k->format)) {
859                         i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
860                         memmove_u64s_down(k, bkey_p_next(k),
861                                           (u64 *) vstruct_end(i) - (u64 *) k);
862                         continue;
863                 }
864
865                 /* XXX: validate k->u64s */
866                 if (!write)
867                         bch2_bkey_compat(b->c.level, b->c.btree_id, version,
868                                     BSET_BIG_ENDIAN(i), write,
869                                     &b->format, k);
870
871                 u = __bkey_disassemble(b, k, &tmp);
872
873                 printbuf_reset(&buf);
874                 if (bset_key_invalid(c, b, u.s_c, updated_range, write, &buf)) {
875                         printbuf_reset(&buf);
876                         prt_printf(&buf, "invalid bkey:  ");
877                         bset_key_invalid(c, b, u.s_c, updated_range, write, &buf);
878                         prt_printf(&buf, "\n  ");
879                         bch2_bkey_val_to_text(&buf, c, u.s_c);
880
881                         btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf);
882
883                         i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
884                         memmove_u64s_down(k, bkey_p_next(k),
885                                           (u64 *) vstruct_end(i) - (u64 *) k);
886                         continue;
887                 }
888
889                 if (write)
890                         bch2_bkey_compat(b->c.level, b->c.btree_id, version,
891                                     BSET_BIG_ENDIAN(i), write,
892                                     &b->format, k);
893
894                 if (prev && bkey_iter_cmp(b, prev, k) > 0) {
895                         struct bkey up = bkey_unpack_key(b, prev);
896
897                         printbuf_reset(&buf);
898                         prt_printf(&buf, "keys out of order: ");
899                         bch2_bkey_to_text(&buf, &up);
900                         prt_printf(&buf, " > ");
901                         bch2_bkey_to_text(&buf, u.k);
902
903                         bch2_dump_bset(c, b, i, 0);
904
905                         if (btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf)) {
906                                 i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
907                                 memmove_u64s_down(k, bkey_p_next(k),
908                                                   (u64 *) vstruct_end(i) - (u64 *) k);
909                                 continue;
910                         }
911                 }
912
913                 prev = k;
914                 k = bkey_p_next(k);
915         }
916 fsck_err:
917         printbuf_exit(&buf);
918         return ret;
919 }
920
921 int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
922                               struct btree *b, bool have_retry, bool *saw_error)
923 {
924         struct btree_node_entry *bne;
925         struct sort_iter *iter;
926         struct btree_node *sorted;
927         struct bkey_packed *k;
928         struct bch_extent_ptr *ptr;
929         struct bset *i;
930         bool used_mempool, blacklisted;
931         bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
932                 BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v);
933         unsigned u64s;
934         unsigned blacklisted_written, nonblacklisted_written = 0;
935         unsigned ptr_written = btree_ptr_sectors_written(&b->key);
936         struct printbuf buf = PRINTBUF;
937         int ret = 0, retry_read = 0, write = READ;
938
939         b->version_ondisk = U16_MAX;
940         /* We might get called multiple times on read retry: */
941         b->written = 0;
942
943         iter = mempool_alloc(&c->fill_iter, GFP_NOFS);
944         sort_iter_init(iter, b);
945         iter->size = (btree_blocks(c) + 1) * 2;
946
947         if (bch2_meta_read_fault("btree"))
948                 btree_err(BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
949                           "dynamic fault");
950
951         btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c),
952                      BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
953                      "bad magic: want %llx, got %llx",
954                      bset_magic(c), le64_to_cpu(b->data->magic));
955
956         btree_err_on(!b->data->keys.seq,
957                      BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
958                      "bad btree header: seq 0");
959
960         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
961                 struct bch_btree_ptr_v2 *bp =
962                         &bkey_i_to_btree_ptr_v2(&b->key)->v;
963
964                 btree_err_on(b->data->keys.seq != bp->seq,
965                              BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
966                              "got wrong btree node (seq %llx want %llx)",
967                              b->data->keys.seq, bp->seq);
968         }
969
970         while (b->written < (ptr_written ?: btree_sectors(c))) {
971                 unsigned sectors;
972                 struct nonce nonce;
973                 struct bch_csum csum;
974                 bool first = !b->written;
975
976                 if (!b->written) {
977                         i = &b->data->keys;
978
979                         btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
980                                      BTREE_ERR_WANT_RETRY, c, ca, b, i,
981                                      "unknown checksum type %llu",
982                                      BSET_CSUM_TYPE(i));
983
984                         nonce = btree_nonce(i, b->written << 9);
985                         csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data);
986
987                         btree_err_on(bch2_crc_cmp(csum, b->data->csum),
988                                      BTREE_ERR_WANT_RETRY, c, ca, b, i,
989                                      "invalid checksum");
990
991                         ret = bset_encrypt(c, i, b->written << 9);
992                         if (bch2_fs_fatal_err_on(ret, c,
993                                         "error decrypting btree node: %i", ret))
994                                 goto fsck_err;
995
996                         btree_err_on(btree_node_type_is_extents(btree_node_type(b)) &&
997                                      !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data),
998                                      BTREE_ERR_INCOMPATIBLE, c, NULL, b, NULL,
999                                      "btree node does not have NEW_EXTENT_OVERWRITE set");
1000
1001                         sectors = vstruct_sectors(b->data, c->block_bits);
1002                 } else {
1003                         bne = write_block(b);
1004                         i = &bne->keys;
1005
1006                         if (i->seq != b->data->keys.seq)
1007                                 break;
1008
1009                         btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
1010                                      BTREE_ERR_WANT_RETRY, c, ca, b, i,
1011                                      "unknown checksum type %llu",
1012                                      BSET_CSUM_TYPE(i));
1013
1014                         nonce = btree_nonce(i, b->written << 9);
1015                         csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
1016
1017                         btree_err_on(bch2_crc_cmp(csum, bne->csum),
1018                                      BTREE_ERR_WANT_RETRY, c, ca, b, i,
1019                                      "invalid checksum");
1020
1021                         ret = bset_encrypt(c, i, b->written << 9);
1022                         if (bch2_fs_fatal_err_on(ret, c,
1023                                         "error decrypting btree node: %i\n", ret))
1024                                 goto fsck_err;
1025
1026                         sectors = vstruct_sectors(bne, c->block_bits);
1027                 }
1028
1029                 b->version_ondisk = min(b->version_ondisk,
1030                                         le16_to_cpu(i->version));
1031
1032                 ret = validate_bset(c, ca, b, i, b->written, sectors,
1033                                     READ, have_retry, saw_error);
1034                 if (ret)
1035                         goto fsck_err;
1036
1037                 if (!b->written)
1038                         btree_node_set_format(b, b->data->format);
1039
1040                 ret = validate_bset_keys(c, b, i, READ, have_retry, saw_error);
1041                 if (ret)
1042                         goto fsck_err;
1043
1044                 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
1045
1046                 blacklisted = bch2_journal_seq_is_blacklisted(c,
1047                                         le64_to_cpu(i->journal_seq),
1048                                         true);
1049
1050                 btree_err_on(blacklisted && first,
1051                              BTREE_ERR_FIXABLE, c, ca, b, i,
1052                              "first btree node bset has blacklisted journal seq (%llu)",
1053                              le64_to_cpu(i->journal_seq));
1054
1055                 btree_err_on(blacklisted && ptr_written,
1056                              BTREE_ERR_FIXABLE, c, ca, b, i,
1057                              "found blacklisted bset (journal seq %llu) in btree node at offset %u-%u/%u",
1058                              le64_to_cpu(i->journal_seq),
1059                              b->written, b->written + sectors, ptr_written);
1060
1061                 b->written += sectors;
1062
1063                 if (blacklisted && !first)
1064                         continue;
1065
1066                 sort_iter_add(iter,
1067                               vstruct_idx(i, 0),
1068                               vstruct_last(i));
1069
1070                 nonblacklisted_written = b->written;
1071         }
1072
1073         if (ptr_written) {
1074                 btree_err_on(b->written < ptr_written,
1075                              BTREE_ERR_WANT_RETRY, c, ca, b, NULL,
1076                              "btree node data missing: expected %u sectors, found %u",
1077                              ptr_written, b->written);
1078         } else {
1079                 for (bne = write_block(b);
1080                      bset_byte_offset(b, bne) < btree_bytes(c);
1081                      bne = (void *) bne + block_bytes(c))
1082                         btree_err_on(bne->keys.seq == b->data->keys.seq &&
1083                                      !bch2_journal_seq_is_blacklisted(c,
1084                                                                       le64_to_cpu(bne->keys.journal_seq),
1085                                                                       true),
1086                                      BTREE_ERR_WANT_RETRY, c, ca, b, NULL,
1087                                      "found bset signature after last bset");
1088
1089                 /*
1090                  * Blacklisted bsets are those that were written after the most recent
1091                  * (flush) journal write. Since there wasn't a flush, they may not have
1092                  * made it to all devices - which means we shouldn't write new bsets
1093                  * after them, as that could leave a gap and then reads from that device
1094                  * wouldn't find all the bsets in that btree node - which means it's
1095                  * important that we start writing new bsets after the most recent _non_
1096                  * blacklisted bset:
1097                  */
1098                 blacklisted_written = b->written;
1099                 b->written = nonblacklisted_written;
1100         }
1101
1102         sorted = btree_bounce_alloc(c, btree_bytes(c), &used_mempool);
1103         sorted->keys.u64s = 0;
1104
1105         set_btree_bset(b, b->set, &b->data->keys);
1106
1107         b->nr = bch2_key_sort_fix_overlapping(c, &sorted->keys, iter);
1108
1109         u64s = le16_to_cpu(sorted->keys.u64s);
1110         *sorted = *b->data;
1111         sorted->keys.u64s = cpu_to_le16(u64s);
1112         swap(sorted, b->data);
1113         set_btree_bset(b, b->set, &b->data->keys);
1114         b->nsets = 1;
1115
1116         BUG_ON(b->nr.live_u64s != u64s);
1117
1118         btree_bounce_free(c, btree_bytes(c), used_mempool, sorted);
1119
1120         if (updated_range)
1121                 bch2_btree_node_drop_keys_outside_node(b);
1122
1123         i = &b->data->keys;
1124         for (k = i->start; k != vstruct_last(i);) {
1125                 struct bkey tmp;
1126                 struct bkey_s u = __bkey_disassemble(b, k, &tmp);
1127
1128                 printbuf_reset(&buf);
1129
1130                 if (bch2_bkey_val_invalid(c, u.s_c, READ, &buf) ||
1131                     (bch2_inject_invalid_keys &&
1132                      !bversion_cmp(u.k->version, MAX_VERSION))) {
1133                         printbuf_reset(&buf);
1134
1135                         prt_printf(&buf, "invalid bkey: ");
1136                         bch2_bkey_val_invalid(c, u.s_c, READ, &buf);
1137                         prt_printf(&buf, "\n  ");
1138                         bch2_bkey_val_to_text(&buf, c, u.s_c);
1139
1140                         btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf);
1141
1142                         btree_keys_account_key_drop(&b->nr, 0, k);
1143
1144                         i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
1145                         memmove_u64s_down(k, bkey_p_next(k),
1146                                           (u64 *) vstruct_end(i) - (u64 *) k);
1147                         set_btree_bset_end(b, b->set);
1148                         continue;
1149                 }
1150
1151                 if (u.k->type == KEY_TYPE_btree_ptr_v2) {
1152                         struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u);
1153
1154                         bp.v->mem_ptr = 0;
1155                 }
1156
1157                 k = bkey_p_next(k);
1158         }
1159
1160         bch2_bset_build_aux_tree(b, b->set, false);
1161
1162         set_needs_whiteout(btree_bset_first(b), true);
1163
1164         btree_node_reset_sib_u64s(b);
1165
1166         bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&b->key)), ptr) {
1167                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
1168
1169                 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1170                         set_btree_node_need_rewrite(b);
1171         }
1172
1173         if (!ptr_written)
1174                 set_btree_node_need_rewrite(b);
1175 out:
1176         mempool_free(iter, &c->fill_iter);
1177         printbuf_exit(&buf);
1178         return retry_read;
1179 fsck_err:
1180         if (ret == BTREE_RETRY_READ)
1181                 retry_read = 1;
1182         else
1183                 set_btree_node_read_error(b);
1184         goto out;
1185 }
1186
1187 static void btree_node_read_work(struct work_struct *work)
1188 {
1189         struct btree_read_bio *rb =
1190                 container_of(work, struct btree_read_bio, work);
1191         struct bch_fs *c        = rb->c;
1192         struct btree *b         = rb->b;
1193         struct bch_dev *ca      = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
1194         struct bio *bio         = &rb->bio;
1195         struct bch_io_failures failed = { .nr = 0 };
1196         struct printbuf buf = PRINTBUF;
1197         bool saw_error = false;
1198         bool retry = false;
1199         bool can_retry;
1200
1201         goto start;
1202         while (1) {
1203                 retry = true;
1204                 bch_info(c, "retrying read");
1205                 ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
1206                 rb->have_ioref          = bch2_dev_get_ioref(ca, READ);
1207                 bio_reset(bio, NULL, REQ_OP_READ|REQ_SYNC|REQ_META);
1208                 bio->bi_iter.bi_sector  = rb->pick.ptr.offset;
1209                 bio->bi_iter.bi_size    = btree_bytes(c);
1210
1211                 if (rb->have_ioref) {
1212                         bio_set_dev(bio, ca->disk_sb.bdev);
1213                         submit_bio_wait(bio);
1214                 } else {
1215                         bio->bi_status = BLK_STS_REMOVED;
1216                 }
1217 start:
1218                 printbuf_reset(&buf);
1219                 btree_pos_to_text(&buf, c, b);
1220                 bch2_dev_io_err_on(bio->bi_status, ca, "btree read error %s for %s",
1221                                    bch2_blk_status_to_str(bio->bi_status), buf.buf);
1222                 if (rb->have_ioref)
1223                         percpu_ref_put(&ca->io_ref);
1224                 rb->have_ioref = false;
1225
1226                 bch2_mark_io_failure(&failed, &rb->pick);
1227
1228                 can_retry = bch2_bkey_pick_read_device(c,
1229                                 bkey_i_to_s_c(&b->key),
1230                                 &failed, &rb->pick) > 0;
1231
1232                 if (!bio->bi_status &&
1233                     !bch2_btree_node_read_done(c, ca, b, can_retry, &saw_error)) {
1234                         if (retry)
1235                                 bch_info(c, "retry success");
1236                         break;
1237                 }
1238
1239                 saw_error = true;
1240
1241                 if (!can_retry) {
1242                         set_btree_node_read_error(b);
1243                         break;
1244                 }
1245         }
1246
1247         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read],
1248                                rb->start_time);
1249         bio_put(&rb->bio);
1250         printbuf_exit(&buf);
1251
1252         if (saw_error && !btree_node_read_error(b)) {
1253                 struct printbuf buf = PRINTBUF;
1254
1255                 bch2_bpos_to_text(&buf, b->key.k.p);
1256                 bch_info(c, "%s: rewriting btree node at btree=%s level=%u %s due to error",
1257                          __func__, bch2_btree_ids[b->c.btree_id], b->c.level, buf.buf);
1258                 printbuf_exit(&buf);
1259
1260                 bch2_btree_node_rewrite_async(c, b);
1261         }
1262
1263         clear_btree_node_read_in_flight(b);
1264         wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
1265 }
1266
1267 static void btree_node_read_endio(struct bio *bio)
1268 {
1269         struct btree_read_bio *rb =
1270                 container_of(bio, struct btree_read_bio, bio);
1271         struct bch_fs *c        = rb->c;
1272
1273         if (rb->have_ioref) {
1274                 struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
1275
1276                 bch2_latency_acct(ca, rb->start_time, READ);
1277         }
1278
1279         queue_work(c->io_complete_wq, &rb->work);
1280 }
1281
1282 struct btree_node_read_all {
1283         struct closure          cl;
1284         struct bch_fs           *c;
1285         struct btree            *b;
1286         unsigned                nr;
1287         void                    *buf[BCH_REPLICAS_MAX];
1288         struct bio              *bio[BCH_REPLICAS_MAX];
1289         blk_status_t            err[BCH_REPLICAS_MAX];
1290 };
1291
1292 static unsigned btree_node_sectors_written(struct bch_fs *c, void *data)
1293 {
1294         struct btree_node *bn = data;
1295         struct btree_node_entry *bne;
1296         unsigned offset = 0;
1297
1298         if (le64_to_cpu(bn->magic) !=  bset_magic(c))
1299                 return 0;
1300
1301         while (offset < btree_sectors(c)) {
1302                 if (!offset) {
1303                         offset += vstruct_sectors(bn, c->block_bits);
1304                 } else {
1305                         bne = data + (offset << 9);
1306                         if (bne->keys.seq != bn->keys.seq)
1307                                 break;
1308                         offset += vstruct_sectors(bne, c->block_bits);
1309                 }
1310         }
1311
1312         return offset;
1313 }
1314
1315 static bool btree_node_has_extra_bsets(struct bch_fs *c, unsigned offset, void *data)
1316 {
1317         struct btree_node *bn = data;
1318         struct btree_node_entry *bne;
1319
1320         if (!offset)
1321                 return false;
1322
1323         while (offset < btree_sectors(c)) {
1324                 bne = data + (offset << 9);
1325                 if (bne->keys.seq == bn->keys.seq)
1326                         return true;
1327                 offset++;
1328         }
1329
1330         return false;
1331         return offset;
1332 }
1333
1334 static void btree_node_read_all_replicas_done(struct closure *cl)
1335 {
1336         struct btree_node_read_all *ra =
1337                 container_of(cl, struct btree_node_read_all, cl);
1338         struct bch_fs *c = ra->c;
1339         struct btree *b = ra->b;
1340         struct printbuf buf = PRINTBUF;
1341         bool dump_bset_maps = false;
1342         bool have_retry = false;
1343         int ret = 0, best = -1, write = READ;
1344         unsigned i, written = 0, written2 = 0;
1345         __le64 seq = b->key.k.type == KEY_TYPE_btree_ptr_v2
1346                 ? bkey_i_to_btree_ptr_v2(&b->key)->v.seq : 0;
1347         bool _saw_error = false, *saw_error = &_saw_error;
1348
1349         for (i = 0; i < ra->nr; i++) {
1350                 struct btree_node *bn = ra->buf[i];
1351
1352                 if (ra->err[i])
1353                         continue;
1354
1355                 if (le64_to_cpu(bn->magic) != bset_magic(c) ||
1356                     (seq && seq != bn->keys.seq))
1357                         continue;
1358
1359                 if (best < 0) {
1360                         best = i;
1361                         written = btree_node_sectors_written(c, bn);
1362                         continue;
1363                 }
1364
1365                 written2 = btree_node_sectors_written(c, ra->buf[i]);
1366                 if (btree_err_on(written2 != written, BTREE_ERR_FIXABLE, c, NULL, b, NULL,
1367                                  "btree node sectors written mismatch: %u != %u",
1368                                  written, written2) ||
1369                     btree_err_on(btree_node_has_extra_bsets(c, written2, ra->buf[i]),
1370                                  BTREE_ERR_FIXABLE, c, NULL, b, NULL,
1371                                  "found bset signature after last bset") ||
1372                     btree_err_on(memcmp(ra->buf[best], ra->buf[i], written << 9),
1373                                  BTREE_ERR_FIXABLE, c, NULL, b, NULL,
1374                                  "btree node replicas content mismatch"))
1375                         dump_bset_maps = true;
1376
1377                 if (written2 > written) {
1378                         written = written2;
1379                         best = i;
1380                 }
1381         }
1382 fsck_err:
1383         if (dump_bset_maps) {
1384                 for (i = 0; i < ra->nr; i++) {
1385                         struct btree_node *bn = ra->buf[i];
1386                         struct btree_node_entry *bne = NULL;
1387                         unsigned offset = 0, sectors;
1388                         bool gap = false;
1389
1390                         if (ra->err[i])
1391                                 continue;
1392
1393                         printbuf_reset(&buf);
1394
1395                         while (offset < btree_sectors(c)) {
1396                                 if (!offset) {
1397                                         sectors = vstruct_sectors(bn, c->block_bits);
1398                                 } else {
1399                                         bne = ra->buf[i] + (offset << 9);
1400                                         if (bne->keys.seq != bn->keys.seq)
1401                                                 break;
1402                                         sectors = vstruct_sectors(bne, c->block_bits);
1403                                 }
1404
1405                                 prt_printf(&buf, " %u-%u", offset, offset + sectors);
1406                                 if (bne && bch2_journal_seq_is_blacklisted(c,
1407                                                         le64_to_cpu(bne->keys.journal_seq), false))
1408                                         prt_printf(&buf, "*");
1409                                 offset += sectors;
1410                         }
1411
1412                         while (offset < btree_sectors(c)) {
1413                                 bne = ra->buf[i] + (offset << 9);
1414                                 if (bne->keys.seq == bn->keys.seq) {
1415                                         if (!gap)
1416                                                 prt_printf(&buf, " GAP");
1417                                         gap = true;
1418
1419                                         sectors = vstruct_sectors(bne, c->block_bits);
1420                                         prt_printf(&buf, " %u-%u", offset, offset + sectors);
1421                                         if (bch2_journal_seq_is_blacklisted(c,
1422                                                         le64_to_cpu(bne->keys.journal_seq), false))
1423                                                 prt_printf(&buf, "*");
1424                                 }
1425                                 offset++;
1426                         }
1427
1428                         bch_err(c, "replica %u:%s", i, buf.buf);
1429                 }
1430         }
1431
1432         if (best >= 0) {
1433                 memcpy(b->data, ra->buf[best], btree_bytes(c));
1434                 ret = bch2_btree_node_read_done(c, NULL, b, false, saw_error);
1435         } else {
1436                 ret = -1;
1437         }
1438
1439         if (ret)
1440                 set_btree_node_read_error(b);
1441         else if (*saw_error)
1442                 bch2_btree_node_rewrite_async(c, b);
1443
1444         for (i = 0; i < ra->nr; i++) {
1445                 mempool_free(ra->buf[i], &c->btree_bounce_pool);
1446                 bio_put(ra->bio[i]);
1447         }
1448
1449         closure_debug_destroy(&ra->cl);
1450         kfree(ra);
1451         printbuf_exit(&buf);
1452
1453         clear_btree_node_read_in_flight(b);
1454         wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
1455 }
1456
1457 static void btree_node_read_all_replicas_endio(struct bio *bio)
1458 {
1459         struct btree_read_bio *rb =
1460                 container_of(bio, struct btree_read_bio, bio);
1461         struct bch_fs *c        = rb->c;
1462         struct btree_node_read_all *ra = rb->ra;
1463
1464         if (rb->have_ioref) {
1465                 struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
1466
1467                 bch2_latency_acct(ca, rb->start_time, READ);
1468         }
1469
1470         ra->err[rb->idx] = bio->bi_status;
1471         closure_put(&ra->cl);
1472 }
1473
1474 /*
1475  * XXX This allocates multiple times from the same mempools, and can deadlock
1476  * under sufficient memory pressure (but is only a debug path)
1477  */
1478 static int btree_node_read_all_replicas(struct bch_fs *c, struct btree *b, bool sync)
1479 {
1480         struct bkey_s_c k = bkey_i_to_s_c(&b->key);
1481         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1482         const union bch_extent_entry *entry;
1483         struct extent_ptr_decoded pick;
1484         struct btree_node_read_all *ra;
1485         unsigned i;
1486
1487         ra = kzalloc(sizeof(*ra), GFP_NOFS);
1488         if (!ra)
1489                 return -BCH_ERR_ENOMEM_btree_node_read_all_replicas;
1490
1491         closure_init(&ra->cl, NULL);
1492         ra->c   = c;
1493         ra->b   = b;
1494         ra->nr  = bch2_bkey_nr_ptrs(k);
1495
1496         for (i = 0; i < ra->nr; i++) {
1497                 ra->buf[i] = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS);
1498                 ra->bio[i] = bio_alloc_bioset(NULL,
1499                                               buf_pages(ra->buf[i], btree_bytes(c)),
1500                                               REQ_OP_READ|REQ_SYNC|REQ_META,
1501                                               GFP_NOFS,
1502                                               &c->btree_bio);
1503         }
1504
1505         i = 0;
1506         bkey_for_each_ptr_decode(k.k, ptrs, pick, entry) {
1507                 struct bch_dev *ca = bch_dev_bkey_exists(c, pick.ptr.dev);
1508                 struct btree_read_bio *rb =
1509                         container_of(ra->bio[i], struct btree_read_bio, bio);
1510                 rb->c                   = c;
1511                 rb->b                   = b;
1512                 rb->ra                  = ra;
1513                 rb->start_time          = local_clock();
1514                 rb->have_ioref          = bch2_dev_get_ioref(ca, READ);
1515                 rb->idx                 = i;
1516                 rb->pick                = pick;
1517                 rb->bio.bi_iter.bi_sector = pick.ptr.offset;
1518                 rb->bio.bi_end_io       = btree_node_read_all_replicas_endio;
1519                 bch2_bio_map(&rb->bio, ra->buf[i], btree_bytes(c));
1520
1521                 if (rb->have_ioref) {
1522                         this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree],
1523                                      bio_sectors(&rb->bio));
1524                         bio_set_dev(&rb->bio, ca->disk_sb.bdev);
1525
1526                         closure_get(&ra->cl);
1527                         submit_bio(&rb->bio);
1528                 } else {
1529                         ra->err[i] = BLK_STS_REMOVED;
1530                 }
1531
1532                 i++;
1533         }
1534
1535         if (sync) {
1536                 closure_sync(&ra->cl);
1537                 btree_node_read_all_replicas_done(&ra->cl);
1538         } else {
1539                 continue_at(&ra->cl, btree_node_read_all_replicas_done,
1540                             c->io_complete_wq);
1541         }
1542
1543         return 0;
1544 }
1545
1546 void bch2_btree_node_read(struct bch_fs *c, struct btree *b,
1547                           bool sync)
1548 {
1549         struct extent_ptr_decoded pick;
1550         struct btree_read_bio *rb;
1551         struct bch_dev *ca;
1552         struct bio *bio;
1553         int ret;
1554
1555         trace_and_count(c, btree_node_read, c, b);
1556
1557         if (bch2_verify_all_btree_replicas &&
1558             !btree_node_read_all_replicas(c, b, sync))
1559                 return;
1560
1561         ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key),
1562                                          NULL, &pick);
1563
1564         if (ret <= 0) {
1565                 struct printbuf buf = PRINTBUF;
1566
1567                 prt_str(&buf, "btree node read error: no device to read from\n at ");
1568                 btree_pos_to_text(&buf, c, b);
1569                 bch_err(c, "%s", buf.buf);
1570
1571                 if (test_bit(BCH_FS_TOPOLOGY_REPAIR_DONE, &c->flags))
1572                         bch2_fatal_error(c);
1573
1574                 set_btree_node_read_error(b);
1575                 clear_btree_node_read_in_flight(b);
1576                 wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
1577                 printbuf_exit(&buf);
1578                 return;
1579         }
1580
1581         ca = bch_dev_bkey_exists(c, pick.ptr.dev);
1582
1583         bio = bio_alloc_bioset(NULL,
1584                                buf_pages(b->data, btree_bytes(c)),
1585                                REQ_OP_READ|REQ_SYNC|REQ_META,
1586                                GFP_NOFS,
1587                                &c->btree_bio);
1588         rb = container_of(bio, struct btree_read_bio, bio);
1589         rb->c                   = c;
1590         rb->b                   = b;
1591         rb->ra                  = NULL;
1592         rb->start_time          = local_clock();
1593         rb->have_ioref          = bch2_dev_get_ioref(ca, READ);
1594         rb->pick                = pick;
1595         INIT_WORK(&rb->work, btree_node_read_work);
1596         bio->bi_iter.bi_sector  = pick.ptr.offset;
1597         bio->bi_end_io          = btree_node_read_endio;
1598         bch2_bio_map(bio, b->data, btree_bytes(c));
1599
1600         if (rb->have_ioref) {
1601                 this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree],
1602                              bio_sectors(bio));
1603                 bio_set_dev(bio, ca->disk_sb.bdev);
1604
1605                 if (sync) {
1606                         submit_bio_wait(bio);
1607
1608                         btree_node_read_work(&rb->work);
1609                 } else {
1610                         submit_bio(bio);
1611                 }
1612         } else {
1613                 bio->bi_status = BLK_STS_REMOVED;
1614
1615                 if (sync)
1616                         btree_node_read_work(&rb->work);
1617                 else
1618                         queue_work(c->io_complete_wq, &rb->work);
1619         }
1620 }
1621
1622 static int __bch2_btree_root_read(struct btree_trans *trans, enum btree_id id,
1623                                   const struct bkey_i *k, unsigned level)
1624 {
1625         struct bch_fs *c = trans->c;
1626         struct closure cl;
1627         struct btree *b;
1628         int ret;
1629
1630         closure_init_stack(&cl);
1631
1632         do {
1633                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1634                 closure_sync(&cl);
1635         } while (ret);
1636
1637         b = bch2_btree_node_mem_alloc(trans, level != 0);
1638         bch2_btree_cache_cannibalize_unlock(c);
1639
1640         BUG_ON(IS_ERR(b));
1641
1642         bkey_copy(&b->key, k);
1643         BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id));
1644
1645         set_btree_node_read_in_flight(b);
1646
1647         bch2_btree_node_read(c, b, true);
1648
1649         if (btree_node_read_error(b)) {
1650                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1651
1652                 mutex_lock(&c->btree_cache.lock);
1653                 list_move(&b->list, &c->btree_cache.freeable);
1654                 mutex_unlock(&c->btree_cache.lock);
1655
1656                 ret = -EIO;
1657                 goto err;
1658         }
1659
1660         bch2_btree_set_root_for_read(c, b);
1661 err:
1662         six_unlock_write(&b->c.lock);
1663         six_unlock_intent(&b->c.lock);
1664
1665         return ret;
1666 }
1667
1668 int bch2_btree_root_read(struct bch_fs *c, enum btree_id id,
1669                         const struct bkey_i *k, unsigned level)
1670 {
1671         return bch2_trans_run(c, __bch2_btree_root_read(&trans, id, k, level));
1672
1673 }
1674
1675 void bch2_btree_complete_write(struct bch_fs *c, struct btree *b,
1676                               struct btree_write *w)
1677 {
1678         unsigned long old, new, v = READ_ONCE(b->will_make_reachable);
1679
1680         do {
1681                 old = new = v;
1682                 if (!(old & 1))
1683                         break;
1684
1685                 new &= ~1UL;
1686         } while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old);
1687
1688         if (old & 1)
1689                 closure_put(&((struct btree_update *) new)->cl);
1690
1691         bch2_journal_pin_drop(&c->journal, &w->journal);
1692 }
1693
1694 static void __btree_node_write_done(struct bch_fs *c, struct btree *b)
1695 {
1696         struct btree_write *w = btree_prev_write(b);
1697         unsigned long old, new, v;
1698         unsigned type = 0;
1699
1700         bch2_btree_complete_write(c, b, w);
1701
1702         v = READ_ONCE(b->flags);
1703         do {
1704                 old = new = v;
1705
1706                 if ((old & (1U << BTREE_NODE_dirty)) &&
1707                     (old & (1U << BTREE_NODE_need_write)) &&
1708                     !(old & (1U << BTREE_NODE_never_write)) &&
1709                     !(old & (1U << BTREE_NODE_write_blocked)) &&
1710                     !(old & (1U << BTREE_NODE_will_make_reachable))) {
1711                         new &= ~(1U << BTREE_NODE_dirty);
1712                         new &= ~(1U << BTREE_NODE_need_write);
1713                         new |=  (1U << BTREE_NODE_write_in_flight);
1714                         new |=  (1U << BTREE_NODE_write_in_flight_inner);
1715                         new |=  (1U << BTREE_NODE_just_written);
1716                         new ^=  (1U << BTREE_NODE_write_idx);
1717
1718                         type = new & BTREE_WRITE_TYPE_MASK;
1719                         new &= ~BTREE_WRITE_TYPE_MASK;
1720                 } else {
1721                         new &= ~(1U << BTREE_NODE_write_in_flight);
1722                         new &= ~(1U << BTREE_NODE_write_in_flight_inner);
1723                 }
1724         } while ((v = cmpxchg(&b->flags, old, new)) != old);
1725
1726         if (new & (1U << BTREE_NODE_write_in_flight))
1727                 __bch2_btree_node_write(c, b, BTREE_WRITE_ALREADY_STARTED|type);
1728         else
1729                 wake_up_bit(&b->flags, BTREE_NODE_write_in_flight);
1730 }
1731
1732 static void btree_node_write_done(struct bch_fs *c, struct btree *b)
1733 {
1734         struct btree_trans trans;
1735
1736         bch2_trans_init(&trans, c, 0, 0);
1737
1738         btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_read);
1739         __btree_node_write_done(c, b);
1740         six_unlock_read(&b->c.lock);
1741
1742         bch2_trans_exit(&trans);
1743 }
1744
1745 static void btree_node_write_work(struct work_struct *work)
1746 {
1747         struct btree_write_bio *wbio =
1748                 container_of(work, struct btree_write_bio, work);
1749         struct bch_fs *c        = wbio->wbio.c;
1750         struct btree *b         = wbio->wbio.bio.bi_private;
1751         struct bch_extent_ptr *ptr;
1752         int ret = 0;
1753
1754         btree_bounce_free(c,
1755                 wbio->data_bytes,
1756                 wbio->wbio.used_mempool,
1757                 wbio->data);
1758
1759         bch2_bkey_drop_ptrs(bkey_i_to_s(&wbio->key), ptr,
1760                 bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev));
1761
1762         if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(&wbio->key)))
1763                 goto err;
1764
1765         if (wbio->wbio.first_btree_write) {
1766                 if (wbio->wbio.failed.nr) {
1767
1768                 }
1769         } else {
1770                 ret = bch2_trans_do(c, NULL, NULL, 0,
1771                         bch2_btree_node_update_key_get_iter(&trans, b, &wbio->key,
1772                                         BCH_WATERMARK_reclaim|
1773                                         BTREE_INSERT_JOURNAL_RECLAIM|
1774                                         BTREE_INSERT_NOFAIL|
1775                                         BTREE_INSERT_NOCHECK_RW,
1776                                         !wbio->wbio.failed.nr));
1777                 if (ret)
1778                         goto err;
1779         }
1780 out:
1781         bio_put(&wbio->wbio.bio);
1782         btree_node_write_done(c, b);
1783         return;
1784 err:
1785         set_btree_node_noevict(b);
1786         if (!bch2_err_matches(ret, EROFS))
1787                 bch2_fs_fatal_error(c, "fatal error writing btree node: %s", bch2_err_str(ret));
1788         goto out;
1789 }
1790
1791 static void btree_node_write_endio(struct bio *bio)
1792 {
1793         struct bch_write_bio *wbio      = to_wbio(bio);
1794         struct bch_write_bio *parent    = wbio->split ? wbio->parent : NULL;
1795         struct bch_write_bio *orig      = parent ?: wbio;
1796         struct btree_write_bio *wb      = container_of(orig, struct btree_write_bio, wbio);
1797         struct bch_fs *c                = wbio->c;
1798         struct btree *b                 = wbio->bio.bi_private;
1799         struct bch_dev *ca              = bch_dev_bkey_exists(c, wbio->dev);
1800         unsigned long flags;
1801
1802         if (wbio->have_ioref)
1803                 bch2_latency_acct(ca, wbio->submit_time, WRITE);
1804
1805         if (bch2_dev_io_err_on(bio->bi_status, ca, "btree write error: %s",
1806                                bch2_blk_status_to_str(bio->bi_status)) ||
1807             bch2_meta_write_fault("btree")) {
1808                 spin_lock_irqsave(&c->btree_write_error_lock, flags);
1809                 bch2_dev_list_add_dev(&orig->failed, wbio->dev);
1810                 spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
1811         }
1812
1813         if (wbio->have_ioref)
1814                 percpu_ref_put(&ca->io_ref);
1815
1816         if (parent) {
1817                 bio_put(bio);
1818                 bio_endio(&parent->bio);
1819                 return;
1820         }
1821
1822         clear_btree_node_write_in_flight_inner(b);
1823         wake_up_bit(&b->flags, BTREE_NODE_write_in_flight_inner);
1824         INIT_WORK(&wb->work, btree_node_write_work);
1825         queue_work(c->btree_io_complete_wq, &wb->work);
1826 }
1827
1828 static int validate_bset_for_write(struct bch_fs *c, struct btree *b,
1829                                    struct bset *i, unsigned sectors)
1830 {
1831         struct printbuf buf = PRINTBUF;
1832         bool saw_error;
1833         int ret;
1834
1835         ret = bch2_bkey_invalid(c, bkey_i_to_s_c(&b->key),
1836                                 BKEY_TYPE_btree, WRITE, &buf);
1837
1838         if (ret)
1839                 bch2_fs_inconsistent(c, "invalid btree node key before write: %s", buf.buf);
1840         printbuf_exit(&buf);
1841         if (ret)
1842                 return ret;
1843
1844         ret = validate_bset_keys(c, b, i, WRITE, false, &saw_error) ?:
1845                 validate_bset(c, NULL, b, i, b->written, sectors, WRITE, false, &saw_error);
1846         if (ret) {
1847                 bch2_inconsistent_error(c);
1848                 dump_stack();
1849         }
1850
1851         return ret;
1852 }
1853
1854 static void btree_write_submit(struct work_struct *work)
1855 {
1856         struct btree_write_bio *wbio = container_of(work, struct btree_write_bio, work);
1857         struct bch_extent_ptr *ptr;
1858         BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
1859
1860         bkey_copy(&tmp.k, &wbio->key);
1861
1862         bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&tmp.k)), ptr)
1863                 ptr->offset += wbio->sector_offset;
1864
1865         bch2_submit_wbio_replicas(&wbio->wbio, wbio->wbio.c, BCH_DATA_btree,
1866                                   &tmp.k, false);
1867 }
1868
1869 void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, unsigned flags)
1870 {
1871         struct btree_write_bio *wbio;
1872         struct bset_tree *t;
1873         struct bset *i;
1874         struct btree_node *bn = NULL;
1875         struct btree_node_entry *bne = NULL;
1876         struct sort_iter sort_iter;
1877         struct nonce nonce;
1878         unsigned bytes_to_write, sectors_to_write, bytes, u64s;
1879         u64 seq = 0;
1880         bool used_mempool;
1881         unsigned long old, new;
1882         bool validate_before_checksum = false;
1883         enum btree_write_type type = flags & BTREE_WRITE_TYPE_MASK;
1884         void *data;
1885         int ret;
1886
1887         if (flags & BTREE_WRITE_ALREADY_STARTED)
1888                 goto do_write;
1889
1890         /*
1891          * We may only have a read lock on the btree node - the dirty bit is our
1892          * "lock" against racing with other threads that may be trying to start
1893          * a write, we do a write iff we clear the dirty bit. Since setting the
1894          * dirty bit requires a write lock, we can't race with other threads
1895          * redirtying it:
1896          */
1897         do {
1898                 old = new = READ_ONCE(b->flags);
1899
1900                 if (!(old & (1 << BTREE_NODE_dirty)))
1901                         return;
1902
1903                 if ((flags & BTREE_WRITE_ONLY_IF_NEED) &&
1904                     !(old & (1 << BTREE_NODE_need_write)))
1905                         return;
1906
1907                 if (old &
1908                     ((1 << BTREE_NODE_never_write)|
1909                      (1 << BTREE_NODE_write_blocked)))
1910                         return;
1911
1912                 if (b->written &&
1913                     (old & (1 << BTREE_NODE_will_make_reachable)))
1914                         return;
1915
1916                 if (old & (1 << BTREE_NODE_write_in_flight))
1917                         return;
1918
1919                 if (flags & BTREE_WRITE_ONLY_IF_NEED)
1920                         type = new & BTREE_WRITE_TYPE_MASK;
1921                 new &= ~BTREE_WRITE_TYPE_MASK;
1922
1923                 new &= ~(1 << BTREE_NODE_dirty);
1924                 new &= ~(1 << BTREE_NODE_need_write);
1925                 new |=  (1 << BTREE_NODE_write_in_flight);
1926                 new |=  (1 << BTREE_NODE_write_in_flight_inner);
1927                 new |=  (1 << BTREE_NODE_just_written);
1928                 new ^=  (1 << BTREE_NODE_write_idx);
1929         } while (cmpxchg_acquire(&b->flags, old, new) != old);
1930
1931         if (new & (1U << BTREE_NODE_need_write))
1932                 return;
1933 do_write:
1934         BUG_ON((type == BTREE_WRITE_initial) != (b->written == 0));
1935
1936         atomic_dec(&c->btree_cache.dirty);
1937
1938         BUG_ON(btree_node_fake(b));
1939         BUG_ON((b->will_make_reachable != 0) != !b->written);
1940
1941         BUG_ON(b->written >= btree_sectors(c));
1942         BUG_ON(b->written & (block_sectors(c) - 1));
1943         BUG_ON(bset_written(b, btree_bset_last(b)));
1944         BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c));
1945         BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format)));
1946
1947         bch2_sort_whiteouts(c, b);
1948
1949         sort_iter_init(&sort_iter, b);
1950
1951         bytes = !b->written
1952                 ? sizeof(struct btree_node)
1953                 : sizeof(struct btree_node_entry);
1954
1955         bytes += b->whiteout_u64s * sizeof(u64);
1956
1957         for_each_bset(b, t) {
1958                 i = bset(b, t);
1959
1960                 if (bset_written(b, i))
1961                         continue;
1962
1963                 bytes += le16_to_cpu(i->u64s) * sizeof(u64);
1964                 sort_iter_add(&sort_iter,
1965                               btree_bkey_first(b, t),
1966                               btree_bkey_last(b, t));
1967                 seq = max(seq, le64_to_cpu(i->journal_seq));
1968         }
1969
1970         BUG_ON(b->written && !seq);
1971
1972         /* bch2_varint_decode may read up to 7 bytes past the end of the buffer: */
1973         bytes += 8;
1974
1975         /* buffer must be a multiple of the block size */
1976         bytes = round_up(bytes, block_bytes(c));
1977
1978         data = btree_bounce_alloc(c, bytes, &used_mempool);
1979
1980         if (!b->written) {
1981                 bn = data;
1982                 *bn = *b->data;
1983                 i = &bn->keys;
1984         } else {
1985                 bne = data;
1986                 bne->keys = b->data->keys;
1987                 i = &bne->keys;
1988         }
1989
1990         i->journal_seq  = cpu_to_le64(seq);
1991         i->u64s         = 0;
1992
1993         sort_iter_add(&sort_iter,
1994                       unwritten_whiteouts_start(c, b),
1995                       unwritten_whiteouts_end(c, b));
1996         SET_BSET_SEPARATE_WHITEOUTS(i, false);
1997
1998         b->whiteout_u64s = 0;
1999
2000         u64s = bch2_sort_keys(i->start, &sort_iter, false);
2001         le16_add_cpu(&i->u64s, u64s);
2002
2003         BUG_ON(!b->written && i->u64s != b->data->keys.u64s);
2004
2005         set_needs_whiteout(i, false);
2006
2007         /* do we have data to write? */
2008         if (b->written && !i->u64s)
2009                 goto nowrite;
2010
2011         bytes_to_write = vstruct_end(i) - data;
2012         sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9;
2013
2014         if (!b->written &&
2015             b->key.k.type == KEY_TYPE_btree_ptr_v2)
2016                 BUG_ON(btree_ptr_sectors_written(&b->key) != sectors_to_write);
2017
2018         memset(data + bytes_to_write, 0,
2019                (sectors_to_write << 9) - bytes_to_write);
2020
2021         BUG_ON(b->written + sectors_to_write > btree_sectors(c));
2022         BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
2023         BUG_ON(i->seq != b->data->keys.seq);
2024
2025         i->version = cpu_to_le16(c->sb.version);
2026         SET_BSET_OFFSET(i, b->written);
2027         SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c));
2028
2029         if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i)))
2030                 validate_before_checksum = true;
2031
2032         /* validate_bset will be modifying: */
2033         if (le16_to_cpu(i->version) < bcachefs_metadata_version_current)
2034                 validate_before_checksum = true;
2035
2036         /* if we're going to be encrypting, check metadata validity first: */
2037         if (validate_before_checksum &&
2038             validate_bset_for_write(c, b, i, sectors_to_write))
2039                 goto err;
2040
2041         ret = bset_encrypt(c, i, b->written << 9);
2042         if (bch2_fs_fatal_err_on(ret, c,
2043                         "error encrypting btree node: %i\n", ret))
2044                 goto err;
2045
2046         nonce = btree_nonce(i, b->written << 9);
2047
2048         if (bn)
2049                 bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn);
2050         else
2051                 bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
2052
2053         /* if we're not encrypting, check metadata after checksumming: */
2054         if (!validate_before_checksum &&
2055             validate_bset_for_write(c, b, i, sectors_to_write))
2056                 goto err;
2057
2058         /*
2059          * We handle btree write errors by immediately halting the journal -
2060          * after we've done that, we can't issue any subsequent btree writes
2061          * because they might have pointers to new nodes that failed to write.
2062          *
2063          * Furthermore, there's no point in doing any more btree writes because
2064          * with the journal stopped, we're never going to update the journal to
2065          * reflect that those writes were done and the data flushed from the
2066          * journal:
2067          *
2068          * Also on journal error, the pending write may have updates that were
2069          * never journalled (interior nodes, see btree_update_nodes_written()) -
2070          * it's critical that we don't do the write in that case otherwise we
2071          * will have updates visible that weren't in the journal:
2072          *
2073          * Make sure to update b->written so bch2_btree_init_next() doesn't
2074          * break:
2075          */
2076         if (bch2_journal_error(&c->journal) ||
2077             c->opts.nochanges)
2078                 goto err;
2079
2080         trace_and_count(c, btree_node_write, b, bytes_to_write, sectors_to_write);
2081
2082         wbio = container_of(bio_alloc_bioset(NULL,
2083                                 buf_pages(data, sectors_to_write << 9),
2084                                 REQ_OP_WRITE|REQ_META,
2085                                 GFP_NOFS,
2086                                 &c->btree_bio),
2087                             struct btree_write_bio, wbio.bio);
2088         wbio_init(&wbio->wbio.bio);
2089         wbio->data                      = data;
2090         wbio->data_bytes                = bytes;
2091         wbio->sector_offset             = b->written;
2092         wbio->wbio.c                    = c;
2093         wbio->wbio.used_mempool         = used_mempool;
2094         wbio->wbio.first_btree_write    = !b->written;
2095         wbio->wbio.bio.bi_end_io        = btree_node_write_endio;
2096         wbio->wbio.bio.bi_private       = b;
2097
2098         bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9);
2099
2100         bkey_copy(&wbio->key, &b->key);
2101
2102         b->written += sectors_to_write;
2103
2104         if (wbio->key.k.type == KEY_TYPE_btree_ptr_v2)
2105                 bkey_i_to_btree_ptr_v2(&wbio->key)->v.sectors_written =
2106                         cpu_to_le16(b->written);
2107
2108         atomic64_inc(&c->btree_write_stats[type].nr);
2109         atomic64_add(bytes_to_write, &c->btree_write_stats[type].bytes);
2110
2111         INIT_WORK(&wbio->work, btree_write_submit);
2112         queue_work(c->io_complete_wq, &wbio->work);
2113         return;
2114 err:
2115         set_btree_node_noevict(b);
2116         b->written += sectors_to_write;
2117 nowrite:
2118         btree_bounce_free(c, bytes, used_mempool, data);
2119         __btree_node_write_done(c, b);
2120 }
2121
2122 /*
2123  * Work that must be done with write lock held:
2124  */
2125 bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b)
2126 {
2127         bool invalidated_iter = false;
2128         struct btree_node_entry *bne;
2129         struct bset_tree *t;
2130
2131         if (!btree_node_just_written(b))
2132                 return false;
2133
2134         BUG_ON(b->whiteout_u64s);
2135
2136         clear_btree_node_just_written(b);
2137
2138         /*
2139          * Note: immediately after write, bset_written() doesn't work - the
2140          * amount of data we had to write after compaction might have been
2141          * smaller than the offset of the last bset.
2142          *
2143          * However, we know that all bsets have been written here, as long as
2144          * we're still holding the write lock:
2145          */
2146
2147         /*
2148          * XXX: decide if we really want to unconditionally sort down to a
2149          * single bset:
2150          */
2151         if (b->nsets > 1) {
2152                 btree_node_sort(c, b, 0, b->nsets, true);
2153                 invalidated_iter = true;
2154         } else {
2155                 invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL);
2156         }
2157
2158         for_each_bset(b, t)
2159                 set_needs_whiteout(bset(b, t), true);
2160
2161         bch2_btree_verify(c, b);
2162
2163         /*
2164          * If later we don't unconditionally sort down to a single bset, we have
2165          * to ensure this is still true:
2166          */
2167         BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b));
2168
2169         bne = want_new_bset(c, b);
2170         if (bne)
2171                 bch2_bset_init_next(c, b, bne);
2172
2173         bch2_btree_build_aux_trees(b);
2174
2175         return invalidated_iter;
2176 }
2177
2178 /*
2179  * Use this one if the node is intent locked:
2180  */
2181 void bch2_btree_node_write(struct bch_fs *c, struct btree *b,
2182                            enum six_lock_type lock_type_held,
2183                            unsigned flags)
2184 {
2185         if (lock_type_held == SIX_LOCK_intent ||
2186             (lock_type_held == SIX_LOCK_read &&
2187              six_lock_tryupgrade(&b->c.lock))) {
2188                 __bch2_btree_node_write(c, b, flags);
2189
2190                 /* don't cycle lock unnecessarily: */
2191                 if (btree_node_just_written(b) &&
2192                     six_trylock_write(&b->c.lock)) {
2193                         bch2_btree_post_write_cleanup(c, b);
2194                         six_unlock_write(&b->c.lock);
2195                 }
2196
2197                 if (lock_type_held == SIX_LOCK_read)
2198                         six_lock_downgrade(&b->c.lock);
2199         } else {
2200                 __bch2_btree_node_write(c, b, flags);
2201                 if (lock_type_held == SIX_LOCK_write &&
2202                     btree_node_just_written(b))
2203                         bch2_btree_post_write_cleanup(c, b);
2204         }
2205 }
2206
2207 static bool __bch2_btree_flush_all(struct bch_fs *c, unsigned flag)
2208 {
2209         struct bucket_table *tbl;
2210         struct rhash_head *pos;
2211         struct btree *b;
2212         unsigned i;
2213         bool ret = false;
2214 restart:
2215         rcu_read_lock();
2216         for_each_cached_btree(b, c, tbl, i, pos)
2217                 if (test_bit(flag, &b->flags)) {
2218                         rcu_read_unlock();
2219                         wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE);
2220                         ret = true;
2221                         goto restart;
2222                 }
2223         rcu_read_unlock();
2224
2225         return ret;
2226 }
2227
2228 bool bch2_btree_flush_all_reads(struct bch_fs *c)
2229 {
2230         return __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight);
2231 }
2232
2233 bool bch2_btree_flush_all_writes(struct bch_fs *c)
2234 {
2235         return __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight);
2236 }
2237
2238 static const char * const bch2_btree_write_types[] = {
2239 #define x(t, n) [n] = #t,
2240         BCH_BTREE_WRITE_TYPES()
2241         NULL
2242 };
2243
2244 void bch2_btree_write_stats_to_text(struct printbuf *out, struct bch_fs *c)
2245 {
2246         printbuf_tabstop_push(out, 20);
2247         printbuf_tabstop_push(out, 10);
2248
2249         prt_tab(out);
2250         prt_str(out, "nr");
2251         prt_tab(out);
2252         prt_str(out, "size");
2253         prt_newline(out);
2254
2255         for (unsigned i = 0; i < BTREE_WRITE_TYPE_NR; i++) {
2256                 u64 nr          = atomic64_read(&c->btree_write_stats[i].nr);
2257                 u64 bytes       = atomic64_read(&c->btree_write_stats[i].bytes);
2258
2259                 prt_printf(out, "%s:", bch2_btree_write_types[i]);
2260                 prt_tab(out);
2261                 prt_u64(out, nr);
2262                 prt_tab(out);
2263                 prt_human_readable_u64(out, nr ? div64_u64(bytes, nr) : 0);
2264                 prt_newline(out);
2265         }
2266 }