]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_key_cache.c
Disable pristine-tar option in gbp.conf, since there is no pristine-tar branch.
[bcachefs-tools-debian] / libbcachefs / btree_key_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14
15 #include <linux/sched/mm.h>
16
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19         return id == BTREE_ID_subvolumes;
20 }
21
22 static struct kmem_cache *bch2_key_cache;
23
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25                                        const void *obj)
26 {
27         const struct bkey_cached *ck = obj;
28         const struct bkey_cached_key *key = arg->key;
29
30         return ck->key.btree_id != key->btree_id ||
31                 !bpos_eq(ck->key.pos, key->pos);
32 }
33
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35         .head_offset    = offsetof(struct bkey_cached, hash),
36         .key_offset     = offsetof(struct bkey_cached, key),
37         .key_len        = sizeof(struct bkey_cached_key),
38         .obj_cmpfn      = bch2_btree_key_cache_cmp_fn,
39 };
40
41 __flatten
42 inline struct bkey_cached *
43 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
44 {
45         struct bkey_cached_key key = {
46                 .btree_id       = btree_id,
47                 .pos            = pos,
48         };
49
50         return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
51                                       bch2_btree_key_cache_params);
52 }
53
54 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
55 {
56         if (!six_trylock_intent(&ck->c.lock))
57                 return false;
58
59         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
60                 six_unlock_intent(&ck->c.lock);
61                 return false;
62         }
63
64         if (!six_trylock_write(&ck->c.lock)) {
65                 six_unlock_intent(&ck->c.lock);
66                 return false;
67         }
68
69         return true;
70 }
71
72 static void bkey_cached_evict(struct btree_key_cache *c,
73                               struct bkey_cached *ck)
74 {
75         BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
76                                       bch2_btree_key_cache_params));
77         memset(&ck->key, ~0, sizeof(ck->key));
78
79         atomic_long_dec(&c->nr_keys);
80 }
81
82 static void bkey_cached_free(struct btree_key_cache *bc,
83                              struct bkey_cached *ck)
84 {
85         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
86
87         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
88
89         ck->btree_trans_barrier_seq =
90                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
91
92         if (ck->c.lock.readers) {
93                 list_move_tail(&ck->list, &bc->freed_pcpu);
94                 bc->nr_freed_pcpu++;
95         } else {
96                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
97                 bc->nr_freed_nonpcpu++;
98         }
99         atomic_long_inc(&bc->nr_freed);
100
101         kfree(ck->k);
102         ck->k           = NULL;
103         ck->u64s        = 0;
104
105         six_unlock_write(&ck->c.lock);
106         six_unlock_intent(&ck->c.lock);
107 }
108
109 #ifdef __KERNEL__
110 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
111                                                    struct bkey_cached *ck)
112 {
113         struct bkey_cached *pos;
114
115         bc->nr_freed_nonpcpu++;
116
117         list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
118                 if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
119                                  pos->btree_trans_barrier_seq)) {
120                         list_move(&ck->list, &pos->list);
121                         return;
122                 }
123         }
124
125         list_move(&ck->list, &bc->freed_nonpcpu);
126 }
127 #endif
128
129 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
130                                          struct bkey_cached *ck)
131 {
132         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
133
134         if (!ck->c.lock.readers) {
135 #ifdef __KERNEL__
136                 struct btree_key_cache_freelist *f;
137                 bool freed = false;
138
139                 preempt_disable();
140                 f = this_cpu_ptr(bc->pcpu_freed);
141
142                 if (f->nr < ARRAY_SIZE(f->objs)) {
143                         f->objs[f->nr++] = ck;
144                         freed = true;
145                 }
146                 preempt_enable();
147
148                 if (!freed) {
149                         mutex_lock(&bc->lock);
150                         preempt_disable();
151                         f = this_cpu_ptr(bc->pcpu_freed);
152
153                         while (f->nr > ARRAY_SIZE(f->objs) / 2) {
154                                 struct bkey_cached *ck2 = f->objs[--f->nr];
155
156                                 __bkey_cached_move_to_freelist_ordered(bc, ck2);
157                         }
158                         preempt_enable();
159
160                         __bkey_cached_move_to_freelist_ordered(bc, ck);
161                         mutex_unlock(&bc->lock);
162                 }
163 #else
164                 mutex_lock(&bc->lock);
165                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
166                 bc->nr_freed_nonpcpu++;
167                 mutex_unlock(&bc->lock);
168 #endif
169         } else {
170                 mutex_lock(&bc->lock);
171                 list_move_tail(&ck->list, &bc->freed_pcpu);
172                 mutex_unlock(&bc->lock);
173         }
174 }
175
176 static void bkey_cached_free_fast(struct btree_key_cache *bc,
177                                   struct bkey_cached *ck)
178 {
179         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
180
181         ck->btree_trans_barrier_seq =
182                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
183
184         list_del_init(&ck->list);
185         atomic_long_inc(&bc->nr_freed);
186
187         kfree(ck->k);
188         ck->k           = NULL;
189         ck->u64s        = 0;
190
191         bkey_cached_move_to_freelist(bc, ck);
192
193         six_unlock_write(&ck->c.lock);
194         six_unlock_intent(&ck->c.lock);
195 }
196
197 static struct bkey_cached *
198 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
199                   bool *was_new)
200 {
201         struct bch_fs *c = trans->c;
202         struct btree_key_cache *bc = &c->btree_key_cache;
203         struct bkey_cached *ck = NULL;
204         bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
205         int ret;
206
207         if (!pcpu_readers) {
208 #ifdef __KERNEL__
209                 struct btree_key_cache_freelist *f;
210
211                 preempt_disable();
212                 f = this_cpu_ptr(bc->pcpu_freed);
213                 if (f->nr)
214                         ck = f->objs[--f->nr];
215                 preempt_enable();
216
217                 if (!ck) {
218                         mutex_lock(&bc->lock);
219                         preempt_disable();
220                         f = this_cpu_ptr(bc->pcpu_freed);
221
222                         while (!list_empty(&bc->freed_nonpcpu) &&
223                                f->nr < ARRAY_SIZE(f->objs) / 2) {
224                                 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
225                                 list_del_init(&ck->list);
226                                 bc->nr_freed_nonpcpu--;
227                                 f->objs[f->nr++] = ck;
228                         }
229
230                         ck = f->nr ? f->objs[--f->nr] : NULL;
231                         preempt_enable();
232                         mutex_unlock(&bc->lock);
233                 }
234 #else
235                 mutex_lock(&bc->lock);
236                 if (!list_empty(&bc->freed_nonpcpu)) {
237                         ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
238                         list_del_init(&ck->list);
239                         bc->nr_freed_nonpcpu--;
240                 }
241                 mutex_unlock(&bc->lock);
242 #endif
243         } else {
244                 mutex_lock(&bc->lock);
245                 if (!list_empty(&bc->freed_pcpu)) {
246                         ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
247                         list_del_init(&ck->list);
248                 }
249                 mutex_unlock(&bc->lock);
250         }
251
252         if (ck) {
253                 ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
254                 if (unlikely(ret)) {
255                         bkey_cached_move_to_freelist(bc, ck);
256                         return ERR_PTR(ret);
257                 }
258
259                 path->l[0].b = (void *) ck;
260                 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
261                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
262
263                 ret = bch2_btree_node_lock_write(trans, path, &ck->c);
264                 if (unlikely(ret)) {
265                         btree_node_unlock(trans, path, 0);
266                         bkey_cached_move_to_freelist(bc, ck);
267                         return ERR_PTR(ret);
268                 }
269
270                 return ck;
271         }
272
273         ck = allocate_dropping_locks(trans, ret,
274                         kmem_cache_zalloc(bch2_key_cache, _gfp));
275         if (ret) {
276                 kmem_cache_free(bch2_key_cache, ck);
277                 return ERR_PTR(ret);
278         }
279
280         if (!ck)
281                 return NULL;
282
283         INIT_LIST_HEAD(&ck->list);
284         bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
285
286         ck->c.cached = true;
287         BUG_ON(!six_trylock_intent(&ck->c.lock));
288         BUG_ON(!six_trylock_write(&ck->c.lock));
289         *was_new = true;
290         return ck;
291 }
292
293 static struct bkey_cached *
294 bkey_cached_reuse(struct btree_key_cache *c)
295 {
296         struct bucket_table *tbl;
297         struct rhash_head *pos;
298         struct bkey_cached *ck;
299         unsigned i;
300
301         mutex_lock(&c->lock);
302         rcu_read_lock();
303         tbl = rht_dereference_rcu(c->table.tbl, &c->table);
304         for (i = 0; i < tbl->size; i++)
305                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
306                         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
307                             bkey_cached_lock_for_evict(ck)) {
308                                 bkey_cached_evict(c, ck);
309                                 goto out;
310                         }
311                 }
312         ck = NULL;
313 out:
314         rcu_read_unlock();
315         mutex_unlock(&c->lock);
316         return ck;
317 }
318
319 static struct bkey_cached *
320 btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
321 {
322         struct bch_fs *c = trans->c;
323         struct btree_key_cache *bc = &c->btree_key_cache;
324         struct bkey_cached *ck;
325         bool was_new = false;
326
327         ck = bkey_cached_alloc(trans, path, &was_new);
328         if (IS_ERR(ck))
329                 return ck;
330
331         if (unlikely(!ck)) {
332                 ck = bkey_cached_reuse(bc);
333                 if (unlikely(!ck)) {
334                         bch_err(c, "error allocating memory for key cache item, btree %s",
335                                 bch2_btree_id_str(path->btree_id));
336                         return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
337                 }
338
339                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
340         }
341
342         ck->c.level             = 0;
343         ck->c.btree_id          = path->btree_id;
344         ck->key.btree_id        = path->btree_id;
345         ck->key.pos             = path->pos;
346         ck->valid               = false;
347         ck->flags               = 1U << BKEY_CACHED_ACCESSED;
348
349         if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
350                                           &ck->hash,
351                                           bch2_btree_key_cache_params))) {
352                 /* We raced with another fill: */
353
354                 if (likely(was_new)) {
355                         six_unlock_write(&ck->c.lock);
356                         six_unlock_intent(&ck->c.lock);
357                         kfree(ck);
358                 } else {
359                         bkey_cached_free_fast(bc, ck);
360                 }
361
362                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
363                 return NULL;
364         }
365
366         atomic_long_inc(&bc->nr_keys);
367
368         six_unlock_write(&ck->c.lock);
369
370         return ck;
371 }
372
373 static int btree_key_cache_fill(struct btree_trans *trans,
374                                 struct btree_path *ck_path,
375                                 struct bkey_cached *ck)
376 {
377         struct btree_iter iter;
378         struct bkey_s_c k;
379         unsigned new_u64s = 0;
380         struct bkey_i *new_k = NULL;
381         int ret;
382
383         k = bch2_bkey_get_iter(trans, &iter, ck->key.btree_id, ck->key.pos,
384                                BTREE_ITER_KEY_CACHE_FILL|
385                                BTREE_ITER_CACHED_NOFILL);
386         ret = bkey_err(k);
387         if (ret)
388                 goto err;
389
390         if (!bch2_btree_node_relock(trans, ck_path, 0)) {
391                 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
392                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
393                 goto err;
394         }
395
396         /*
397          * bch2_varint_decode can read past the end of the buffer by at
398          * most 7 bytes (it won't be used):
399          */
400         new_u64s = k.k->u64s + 1;
401
402         /*
403          * Allocate some extra space so that the transaction commit path is less
404          * likely to have to reallocate, since that requires a transaction
405          * restart:
406          */
407         new_u64s = min(256U, (new_u64s * 3) / 2);
408
409         if (new_u64s > ck->u64s) {
410                 new_u64s = roundup_pow_of_two(new_u64s);
411                 new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
412                 if (!new_k) {
413                         bch2_trans_unlock(trans);
414
415                         new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
416                         if (!new_k) {
417                                 bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
418                                         bch2_btree_id_str(ck->key.btree_id), new_u64s);
419                                 ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
420                                 goto err;
421                         }
422
423                         if (!bch2_btree_node_relock(trans, ck_path, 0)) {
424                                 kfree(new_k);
425                                 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
426                                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
427                                 goto err;
428                         }
429
430                         ret = bch2_trans_relock(trans);
431                         if (ret) {
432                                 kfree(new_k);
433                                 goto err;
434                         }
435                 }
436         }
437
438         ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
439         if (ret) {
440                 kfree(new_k);
441                 goto err;
442         }
443
444         if (new_k) {
445                 kfree(ck->k);
446                 ck->u64s = new_u64s;
447                 ck->k = new_k;
448         }
449
450         bkey_reassemble(ck->k, k);
451         ck->valid = true;
452         bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
453
454         /* We're not likely to need this iterator again: */
455         set_btree_iter_dontneed(&iter);
456 err:
457         bch2_trans_iter_exit(trans, &iter);
458         return ret;
459 }
460
461 static noinline int
462 bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
463                                          unsigned flags)
464 {
465         struct bch_fs *c = trans->c;
466         struct bkey_cached *ck;
467         int ret = 0;
468
469         BUG_ON(path->level);
470
471         path->l[1].b = NULL;
472
473         if (bch2_btree_node_relock_notrace(trans, path, 0)) {
474                 ck = (void *) path->l[0].b;
475                 goto fill;
476         }
477 retry:
478         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
479         if (!ck) {
480                 ck = btree_key_cache_create(trans, path);
481                 ret = PTR_ERR_OR_ZERO(ck);
482                 if (ret)
483                         goto err;
484                 if (!ck)
485                         goto retry;
486
487                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
488                 path->locks_want = 1;
489         } else {
490                 enum six_lock_type lock_want = __btree_lock_want(path, 0);
491
492                 ret = btree_node_lock(trans, path, (void *) ck, 0,
493                                       lock_want, _THIS_IP_);
494                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
495                         goto err;
496
497                 BUG_ON(ret);
498
499                 if (ck->key.btree_id != path->btree_id ||
500                     !bpos_eq(ck->key.pos, path->pos)) {
501                         six_unlock_type(&ck->c.lock, lock_want);
502                         goto retry;
503                 }
504
505                 mark_btree_node_locked(trans, path, 0,
506                                        (enum btree_node_locked_type) lock_want);
507         }
508
509         path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
510         path->l[0].b            = (void *) ck;
511 fill:
512         path->uptodate = BTREE_ITER_UPTODATE;
513
514         if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
515                 /*
516                  * Using the underscore version because we haven't set
517                  * path->uptodate yet:
518                  */
519                 if (!path->locks_want &&
520                     !__bch2_btree_path_upgrade(trans, path, 1, NULL)) {
521                         trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_);
522                         ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade);
523                         goto err;
524                 }
525
526                 ret = btree_key_cache_fill(trans, path, ck);
527                 if (ret)
528                         goto err;
529
530                 ret = bch2_btree_path_relock(trans, path, _THIS_IP_);
531                 if (ret)
532                         goto err;
533
534                 path->uptodate = BTREE_ITER_UPTODATE;
535         }
536
537         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
538                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
539
540         BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
541         BUG_ON(path->uptodate);
542
543         return ret;
544 err:
545         path->uptodate = BTREE_ITER_NEED_TRAVERSE;
546         if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
547                 btree_node_unlock(trans, path, 0);
548                 path->l[0].b = ERR_PTR(ret);
549         }
550         return ret;
551 }
552
553 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
554                                     unsigned flags)
555 {
556         struct bch_fs *c = trans->c;
557         struct bkey_cached *ck;
558         int ret = 0;
559
560         EBUG_ON(path->level);
561
562         path->l[1].b = NULL;
563
564         if (bch2_btree_node_relock_notrace(trans, path, 0)) {
565                 ck = (void *) path->l[0].b;
566                 goto fill;
567         }
568 retry:
569         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
570         if (!ck) {
571                 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
572         } else {
573                 enum six_lock_type lock_want = __btree_lock_want(path, 0);
574
575                 ret = btree_node_lock(trans, path, (void *) ck, 0,
576                                       lock_want, _THIS_IP_);
577                 EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
578
579                 if (ret)
580                         return ret;
581
582                 if (ck->key.btree_id != path->btree_id ||
583                     !bpos_eq(ck->key.pos, path->pos)) {
584                         six_unlock_type(&ck->c.lock, lock_want);
585                         goto retry;
586                 }
587
588                 mark_btree_node_locked(trans, path, 0,
589                                        (enum btree_node_locked_type) lock_want);
590         }
591
592         path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
593         path->l[0].b            = (void *) ck;
594 fill:
595         if (!ck->valid)
596                 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
597
598         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
599                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
600
601         path->uptodate = BTREE_ITER_UPTODATE;
602         EBUG_ON(!ck->valid);
603         EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
604
605         return ret;
606 }
607
608 static int btree_key_cache_flush_pos(struct btree_trans *trans,
609                                      struct bkey_cached_key key,
610                                      u64 journal_seq,
611                                      unsigned commit_flags,
612                                      bool evict)
613 {
614         struct bch_fs *c = trans->c;
615         struct journal *j = &c->journal;
616         struct btree_iter c_iter, b_iter;
617         struct bkey_cached *ck = NULL;
618         int ret;
619
620         bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
621                              BTREE_ITER_SLOTS|
622                              BTREE_ITER_INTENT|
623                              BTREE_ITER_ALL_SNAPSHOTS);
624         bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
625                              BTREE_ITER_CACHED|
626                              BTREE_ITER_INTENT);
627         b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
628
629         ret = bch2_btree_iter_traverse(&c_iter);
630         if (ret)
631                 goto out;
632
633         ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
634         if (!ck)
635                 goto out;
636
637         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
638                 if (evict)
639                         goto evict;
640                 goto out;
641         }
642
643         BUG_ON(!ck->valid);
644
645         if (journal_seq && ck->journal.seq != journal_seq)
646                 goto out;
647
648         trans->journal_res.seq = ck->journal.seq;
649
650         /*
651          * If we're at the end of the journal, we really want to free up space
652          * in the journal right away - we don't want to pin that old journal
653          * sequence number with a new btree node write, we want to re-journal
654          * the update
655          */
656         if (ck->journal.seq == journal_last_seq(j))
657                 commit_flags |= BCH_WATERMARK_reclaim;
658
659         if (ck->journal.seq != journal_last_seq(j) ||
660             j->watermark == BCH_WATERMARK_stripe)
661                 commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
662
663         ret   = bch2_btree_iter_traverse(&b_iter) ?:
664                 bch2_trans_update(trans, &b_iter, ck->k,
665                                   BTREE_UPDATE_KEY_CACHE_RECLAIM|
666                                   BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
667                                   BTREE_TRIGGER_NORUN) ?:
668                 bch2_trans_commit(trans, NULL, NULL,
669                                   BCH_TRANS_COMMIT_no_check_rw|
670                                   BCH_TRANS_COMMIT_no_enospc|
671                                   commit_flags);
672
673         bch2_fs_fatal_err_on(ret &&
674                              !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
675                              !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
676                              !bch2_journal_error(j), c,
677                              "error flushing key cache: %s", bch2_err_str(ret));
678         if (ret)
679                 goto out;
680
681         bch2_journal_pin_drop(j, &ck->journal);
682
683         struct btree_path *path = btree_iter_path(trans, &c_iter);
684         BUG_ON(!btree_node_locked(path, 0));
685
686         if (!evict) {
687                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
688                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
689                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
690                 }
691         } else {
692                 struct btree_path *path2;
693                 unsigned i;
694 evict:
695                 trans_for_each_path(trans, path2, i)
696                         if (path2 != path)
697                                 __bch2_btree_path_unlock(trans, path2);
698
699                 bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
700
701                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
702                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
703                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
704                 }
705
706                 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
707                 bkey_cached_evict(&c->btree_key_cache, ck);
708                 bkey_cached_free_fast(&c->btree_key_cache, ck);
709         }
710 out:
711         bch2_trans_iter_exit(trans, &b_iter);
712         bch2_trans_iter_exit(trans, &c_iter);
713         return ret;
714 }
715
716 int bch2_btree_key_cache_journal_flush(struct journal *j,
717                                 struct journal_entry_pin *pin, u64 seq)
718 {
719         struct bch_fs *c = container_of(j, struct bch_fs, journal);
720         struct bkey_cached *ck =
721                 container_of(pin, struct bkey_cached, journal);
722         struct bkey_cached_key key;
723         struct btree_trans *trans = bch2_trans_get(c);
724         int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
725         int ret = 0;
726
727         btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
728         key = ck->key;
729
730         if (ck->journal.seq != seq ||
731             !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
732                 six_unlock_read(&ck->c.lock);
733                 goto unlock;
734         }
735
736         if (ck->seq != seq) {
737                 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
738                                         bch2_btree_key_cache_journal_flush);
739                 six_unlock_read(&ck->c.lock);
740                 goto unlock;
741         }
742         six_unlock_read(&ck->c.lock);
743
744         ret = lockrestart_do(trans,
745                 btree_key_cache_flush_pos(trans, key, seq,
746                                 BCH_TRANS_COMMIT_journal_reclaim, false));
747 unlock:
748         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
749
750         bch2_trans_put(trans);
751         return ret;
752 }
753
754 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
755                                   unsigned flags,
756                                   struct btree_insert_entry *insert_entry)
757 {
758         struct bch_fs *c = trans->c;
759         struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
760         struct bkey_i *insert = insert_entry->k;
761         bool kick_reclaim = false;
762
763         BUG_ON(insert->k.u64s > ck->u64s);
764
765         bkey_copy(ck->k, insert);
766         ck->valid = true;
767
768         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
769                 EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
770                 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
771                 atomic_long_inc(&c->btree_key_cache.nr_dirty);
772
773                 if (bch2_nr_btree_keys_need_flush(c))
774                         kick_reclaim = true;
775         }
776
777         /*
778          * To minimize lock contention, we only add the journal pin here and
779          * defer pin updates to the flush callback via ->seq. Be careful not to
780          * update ->seq on nojournal commits because we don't want to update the
781          * pin to a seq that doesn't include journal updates on disk. Otherwise
782          * we risk losing the update after a crash.
783          *
784          * The only exception is if the pin is not active in the first place. We
785          * have to add the pin because journal reclaim drives key cache
786          * flushing. The flush callback will not proceed unless ->seq matches
787          * the latest pin, so make sure it starts with a consistent value.
788          */
789         if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) ||
790             !journal_pin_active(&ck->journal)) {
791                 ck->seq = trans->journal_res.seq;
792         }
793         bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
794                              &ck->journal, bch2_btree_key_cache_journal_flush);
795
796         if (kick_reclaim)
797                 journal_reclaim_kick(&c->journal);
798         return true;
799 }
800
801 void bch2_btree_key_cache_drop(struct btree_trans *trans,
802                                struct btree_path *path)
803 {
804         struct bch_fs *c = trans->c;
805         struct bkey_cached *ck = (void *) path->l[0].b;
806
807         BUG_ON(!ck->valid);
808
809         /*
810          * We just did an update to the btree, bypassing the key cache: the key
811          * cache key is now stale and must be dropped, even if dirty:
812          */
813         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
814                 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
815                 atomic_long_dec(&c->btree_key_cache.nr_dirty);
816                 bch2_journal_pin_drop(&c->journal, &ck->journal);
817         }
818
819         ck->valid = false;
820 }
821
822 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
823                                            struct shrink_control *sc)
824 {
825         struct bch_fs *c = shrink->private_data;
826         struct btree_key_cache *bc = &c->btree_key_cache;
827         struct bucket_table *tbl;
828         struct bkey_cached *ck, *t;
829         size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
830         unsigned start, flags;
831         int srcu_idx;
832
833         mutex_lock(&bc->lock);
834         srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
835         flags = memalloc_nofs_save();
836
837         /*
838          * Newest freed entries are at the end of the list - once we hit one
839          * that's too new to be freed, we can bail out:
840          */
841         scanned += bc->nr_freed_nonpcpu;
842
843         list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
844                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
845                                                  ck->btree_trans_barrier_seq))
846                         break;
847
848                 list_del(&ck->list);
849                 six_lock_exit(&ck->c.lock);
850                 kmem_cache_free(bch2_key_cache, ck);
851                 atomic_long_dec(&bc->nr_freed);
852                 freed++;
853                 bc->nr_freed_nonpcpu--;
854         }
855
856         if (scanned >= nr)
857                 goto out;
858
859         scanned += bc->nr_freed_pcpu;
860
861         list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
862                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
863                                                  ck->btree_trans_barrier_seq))
864                         break;
865
866                 list_del(&ck->list);
867                 six_lock_exit(&ck->c.lock);
868                 kmem_cache_free(bch2_key_cache, ck);
869                 atomic_long_dec(&bc->nr_freed);
870                 freed++;
871                 bc->nr_freed_pcpu--;
872         }
873
874         if (scanned >= nr)
875                 goto out;
876
877         rcu_read_lock();
878         tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
879         if (bc->shrink_iter >= tbl->size)
880                 bc->shrink_iter = 0;
881         start = bc->shrink_iter;
882
883         do {
884                 struct rhash_head *pos, *next;
885
886                 pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
887
888                 while (!rht_is_a_nulls(pos)) {
889                         next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
890                         ck = container_of(pos, struct bkey_cached, hash);
891
892                         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags))
893                                 goto next;
894
895                         if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
896                                 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
897                         else if (bkey_cached_lock_for_evict(ck)) {
898                                 bkey_cached_evict(bc, ck);
899                                 bkey_cached_free(bc, ck);
900                         }
901
902                         scanned++;
903                         if (scanned >= nr)
904                                 break;
905 next:
906                         pos = next;
907                 }
908
909                 bc->shrink_iter++;
910                 if (bc->shrink_iter >= tbl->size)
911                         bc->shrink_iter = 0;
912         } while (scanned < nr && bc->shrink_iter != start);
913
914         rcu_read_unlock();
915 out:
916         memalloc_nofs_restore(flags);
917         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
918         mutex_unlock(&bc->lock);
919
920         return freed;
921 }
922
923 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
924                                             struct shrink_control *sc)
925 {
926         struct bch_fs *c = shrink->private_data;
927         struct btree_key_cache *bc = &c->btree_key_cache;
928         long nr = atomic_long_read(&bc->nr_keys) -
929                 atomic_long_read(&bc->nr_dirty);
930
931         return max(0L, nr);
932 }
933
934 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
935 {
936         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
937         struct bucket_table *tbl;
938         struct bkey_cached *ck, *n;
939         struct rhash_head *pos;
940         LIST_HEAD(items);
941         unsigned i;
942 #ifdef __KERNEL__
943         int cpu;
944 #endif
945
946         shrinker_free(bc->shrink);
947
948         mutex_lock(&bc->lock);
949
950         /*
951          * The loop is needed to guard against racing with rehash:
952          */
953         while (atomic_long_read(&bc->nr_keys)) {
954                 rcu_read_lock();
955                 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
956                 if (tbl)
957                         for (i = 0; i < tbl->size; i++)
958                                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
959                                         bkey_cached_evict(bc, ck);
960                                         list_add(&ck->list, &items);
961                                 }
962                 rcu_read_unlock();
963         }
964
965 #ifdef __KERNEL__
966         for_each_possible_cpu(cpu) {
967                 struct btree_key_cache_freelist *f =
968                         per_cpu_ptr(bc->pcpu_freed, cpu);
969
970                 for (i = 0; i < f->nr; i++) {
971                         ck = f->objs[i];
972                         list_add(&ck->list, &items);
973                 }
974         }
975 #endif
976
977         BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
978         BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
979
980         list_splice(&bc->freed_pcpu,    &items);
981         list_splice(&bc->freed_nonpcpu, &items);
982
983         mutex_unlock(&bc->lock);
984
985         list_for_each_entry_safe(ck, n, &items, list) {
986                 cond_resched();
987
988                 list_del(&ck->list);
989                 kfree(ck->k);
990                 six_lock_exit(&ck->c.lock);
991                 kmem_cache_free(bch2_key_cache, ck);
992         }
993
994         if (atomic_long_read(&bc->nr_dirty) &&
995             !bch2_journal_error(&c->journal) &&
996             test_bit(BCH_FS_was_rw, &c->flags))
997                 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
998                       atomic_long_read(&bc->nr_dirty));
999
1000         if (atomic_long_read(&bc->nr_keys))
1001                 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
1002                       atomic_long_read(&bc->nr_keys));
1003
1004         if (bc->table_init_done)
1005                 rhashtable_destroy(&bc->table);
1006
1007         free_percpu(bc->pcpu_freed);
1008 }
1009
1010 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
1011 {
1012         mutex_init(&c->lock);
1013         INIT_LIST_HEAD(&c->freed_pcpu);
1014         INIT_LIST_HEAD(&c->freed_nonpcpu);
1015 }
1016
1017 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
1018 {
1019         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1020         struct shrinker *shrink;
1021
1022 #ifdef __KERNEL__
1023         bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
1024         if (!bc->pcpu_freed)
1025                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1026 #endif
1027
1028         if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
1029                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1030
1031         bc->table_init_done = true;
1032
1033         shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
1034         if (!shrink)
1035                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1036         bc->shrink = shrink;
1037         shrink->seeks           = 0;
1038         shrink->count_objects   = bch2_btree_key_cache_count;
1039         shrink->scan_objects    = bch2_btree_key_cache_scan;
1040         shrink->private_data    = c;
1041         shrinker_register(shrink);
1042         return 0;
1043 }
1044
1045 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
1046 {
1047         prt_printf(out, "nr_freed:\t%lu",       atomic_long_read(&c->nr_freed));
1048         prt_newline(out);
1049         prt_printf(out, "nr_keys:\t%lu",        atomic_long_read(&c->nr_keys));
1050         prt_newline(out);
1051         prt_printf(out, "nr_dirty:\t%lu",       atomic_long_read(&c->nr_dirty));
1052         prt_newline(out);
1053 }
1054
1055 void bch2_btree_key_cache_exit(void)
1056 {
1057         kmem_cache_destroy(bch2_key_cache);
1058 }
1059
1060 int __init bch2_btree_key_cache_init(void)
1061 {
1062         bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1063         if (!bch2_key_cache)
1064                 return -ENOMEM;
1065
1066         return 0;
1067 }