]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_key_cache.c
Update bcachefs sources to 938f680845d1 fixup! rename and export __kern_path_locked()
[bcachefs-tools-debian] / libbcachefs / btree_key_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14
15 #include <linux/sched/mm.h>
16 #include <linux/seq_buf.h>
17
18 static inline bool btree_uses_pcpu_readers(enum btree_id id)
19 {
20         return id == BTREE_ID_subvolumes;
21 }
22
23 static struct kmem_cache *bch2_key_cache;
24
25 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
26                                        const void *obj)
27 {
28         const struct bkey_cached *ck = obj;
29         const struct bkey_cached_key *key = arg->key;
30
31         return ck->key.btree_id != key->btree_id ||
32                 !bpos_eq(ck->key.pos, key->pos);
33 }
34
35 static const struct rhashtable_params bch2_btree_key_cache_params = {
36         .head_offset    = offsetof(struct bkey_cached, hash),
37         .key_offset     = offsetof(struct bkey_cached, key),
38         .key_len        = sizeof(struct bkey_cached_key),
39         .obj_cmpfn      = bch2_btree_key_cache_cmp_fn,
40 };
41
42 __flatten
43 inline struct bkey_cached *
44 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
45 {
46         struct bkey_cached_key key = {
47                 .btree_id       = btree_id,
48                 .pos            = pos,
49         };
50
51         return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
52                                       bch2_btree_key_cache_params);
53 }
54
55 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
56 {
57         if (!six_trylock_intent(&ck->c.lock))
58                 return false;
59
60         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
61                 six_unlock_intent(&ck->c.lock);
62                 return false;
63         }
64
65         if (!six_trylock_write(&ck->c.lock)) {
66                 six_unlock_intent(&ck->c.lock);
67                 return false;
68         }
69
70         return true;
71 }
72
73 static void bkey_cached_evict(struct btree_key_cache *c,
74                               struct bkey_cached *ck)
75 {
76         BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
77                                       bch2_btree_key_cache_params));
78         memset(&ck->key, ~0, sizeof(ck->key));
79
80         atomic_long_dec(&c->nr_keys);
81 }
82
83 static void bkey_cached_free(struct btree_key_cache *bc,
84                              struct bkey_cached *ck)
85 {
86         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
87
88         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
89
90         ck->btree_trans_barrier_seq =
91                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
92
93         if (ck->c.lock.readers) {
94                 list_move_tail(&ck->list, &bc->freed_pcpu);
95                 bc->nr_freed_pcpu++;
96         } else {
97                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
98                 bc->nr_freed_nonpcpu++;
99         }
100         atomic_long_inc(&bc->nr_freed);
101
102         kfree(ck->k);
103         ck->k           = NULL;
104         ck->u64s        = 0;
105
106         six_unlock_write(&ck->c.lock);
107         six_unlock_intent(&ck->c.lock);
108 }
109
110 #ifdef __KERNEL__
111 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
112                                                    struct bkey_cached *ck)
113 {
114         struct bkey_cached *pos;
115
116         bc->nr_freed_nonpcpu++;
117
118         list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
119                 if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
120                                  pos->btree_trans_barrier_seq)) {
121                         list_move(&ck->list, &pos->list);
122                         return;
123                 }
124         }
125
126         list_move(&ck->list, &bc->freed_nonpcpu);
127 }
128 #endif
129
130 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
131                                          struct bkey_cached *ck)
132 {
133         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
134
135         if (!ck->c.lock.readers) {
136 #ifdef __KERNEL__
137                 struct btree_key_cache_freelist *f;
138                 bool freed = false;
139
140                 preempt_disable();
141                 f = this_cpu_ptr(bc->pcpu_freed);
142
143                 if (f->nr < ARRAY_SIZE(f->objs)) {
144                         f->objs[f->nr++] = ck;
145                         freed = true;
146                 }
147                 preempt_enable();
148
149                 if (!freed) {
150                         mutex_lock(&bc->lock);
151                         preempt_disable();
152                         f = this_cpu_ptr(bc->pcpu_freed);
153
154                         while (f->nr > ARRAY_SIZE(f->objs) / 2) {
155                                 struct bkey_cached *ck2 = f->objs[--f->nr];
156
157                                 __bkey_cached_move_to_freelist_ordered(bc, ck2);
158                         }
159                         preempt_enable();
160
161                         __bkey_cached_move_to_freelist_ordered(bc, ck);
162                         mutex_unlock(&bc->lock);
163                 }
164 #else
165                 mutex_lock(&bc->lock);
166                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
167                 bc->nr_freed_nonpcpu++;
168                 mutex_unlock(&bc->lock);
169 #endif
170         } else {
171                 mutex_lock(&bc->lock);
172                 list_move_tail(&ck->list, &bc->freed_pcpu);
173                 mutex_unlock(&bc->lock);
174         }
175 }
176
177 static void bkey_cached_free_fast(struct btree_key_cache *bc,
178                                   struct bkey_cached *ck)
179 {
180         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
181
182         ck->btree_trans_barrier_seq =
183                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
184
185         list_del_init(&ck->list);
186         atomic_long_inc(&bc->nr_freed);
187
188         kfree(ck->k);
189         ck->k           = NULL;
190         ck->u64s        = 0;
191
192         bkey_cached_move_to_freelist(bc, ck);
193
194         six_unlock_write(&ck->c.lock);
195         six_unlock_intent(&ck->c.lock);
196 }
197
198 static struct bkey_cached *
199 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
200                   bool *was_new)
201 {
202         struct bch_fs *c = trans->c;
203         struct btree_key_cache *bc = &c->btree_key_cache;
204         struct bkey_cached *ck = NULL;
205         bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
206         int ret;
207
208         if (!pcpu_readers) {
209 #ifdef __KERNEL__
210                 struct btree_key_cache_freelist *f;
211
212                 preempt_disable();
213                 f = this_cpu_ptr(bc->pcpu_freed);
214                 if (f->nr)
215                         ck = f->objs[--f->nr];
216                 preempt_enable();
217
218                 if (!ck) {
219                         mutex_lock(&bc->lock);
220                         preempt_disable();
221                         f = this_cpu_ptr(bc->pcpu_freed);
222
223                         while (!list_empty(&bc->freed_nonpcpu) &&
224                                f->nr < ARRAY_SIZE(f->objs) / 2) {
225                                 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
226                                 list_del_init(&ck->list);
227                                 bc->nr_freed_nonpcpu--;
228                                 f->objs[f->nr++] = ck;
229                         }
230
231                         ck = f->nr ? f->objs[--f->nr] : NULL;
232                         preempt_enable();
233                         mutex_unlock(&bc->lock);
234                 }
235 #else
236                 mutex_lock(&bc->lock);
237                 if (!list_empty(&bc->freed_nonpcpu)) {
238                         ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
239                         list_del_init(&ck->list);
240                         bc->nr_freed_nonpcpu--;
241                 }
242                 mutex_unlock(&bc->lock);
243 #endif
244         } else {
245                 mutex_lock(&bc->lock);
246                 if (!list_empty(&bc->freed_pcpu)) {
247                         ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
248                         list_del_init(&ck->list);
249                 }
250                 mutex_unlock(&bc->lock);
251         }
252
253         if (ck) {
254                 ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
255                 if (unlikely(ret)) {
256                         bkey_cached_move_to_freelist(bc, ck);
257                         return ERR_PTR(ret);
258                 }
259
260                 path->l[0].b = (void *) ck;
261                 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
262                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
263
264                 ret = bch2_btree_node_lock_write(trans, path, &ck->c);
265                 if (unlikely(ret)) {
266                         btree_node_unlock(trans, path, 0);
267                         bkey_cached_move_to_freelist(bc, ck);
268                         return ERR_PTR(ret);
269                 }
270
271                 return ck;
272         }
273
274         ck = allocate_dropping_locks(trans, ret,
275                         kmem_cache_zalloc(bch2_key_cache, _gfp));
276         if (ret) {
277                 kmem_cache_free(bch2_key_cache, ck);
278                 return ERR_PTR(ret);
279         }
280
281         if (!ck)
282                 return NULL;
283
284         INIT_LIST_HEAD(&ck->list);
285         bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
286
287         ck->c.cached = true;
288         BUG_ON(!six_trylock_intent(&ck->c.lock));
289         BUG_ON(!six_trylock_write(&ck->c.lock));
290         *was_new = true;
291         return ck;
292 }
293
294 static struct bkey_cached *
295 bkey_cached_reuse(struct btree_key_cache *c)
296 {
297         struct bucket_table *tbl;
298         struct rhash_head *pos;
299         struct bkey_cached *ck;
300         unsigned i;
301
302         mutex_lock(&c->lock);
303         rcu_read_lock();
304         tbl = rht_dereference_rcu(c->table.tbl, &c->table);
305         for (i = 0; i < tbl->size; i++)
306                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
307                         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
308                             bkey_cached_lock_for_evict(ck)) {
309                                 bkey_cached_evict(c, ck);
310                                 goto out;
311                         }
312                 }
313         ck = NULL;
314 out:
315         rcu_read_unlock();
316         mutex_unlock(&c->lock);
317         return ck;
318 }
319
320 static struct bkey_cached *
321 btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
322 {
323         struct bch_fs *c = trans->c;
324         struct btree_key_cache *bc = &c->btree_key_cache;
325         struct bkey_cached *ck;
326         bool was_new = false;
327
328         ck = bkey_cached_alloc(trans, path, &was_new);
329         if (IS_ERR(ck))
330                 return ck;
331
332         if (unlikely(!ck)) {
333                 ck = bkey_cached_reuse(bc);
334                 if (unlikely(!ck)) {
335                         bch_err(c, "error allocating memory for key cache item, btree %s",
336                                 bch2_btree_id_str(path->btree_id));
337                         return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
338                 }
339
340                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
341         }
342
343         ck->c.level             = 0;
344         ck->c.btree_id          = path->btree_id;
345         ck->key.btree_id        = path->btree_id;
346         ck->key.pos             = path->pos;
347         ck->valid               = false;
348         ck->flags               = 1U << BKEY_CACHED_ACCESSED;
349
350         if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
351                                           &ck->hash,
352                                           bch2_btree_key_cache_params))) {
353                 /* We raced with another fill: */
354
355                 if (likely(was_new)) {
356                         six_unlock_write(&ck->c.lock);
357                         six_unlock_intent(&ck->c.lock);
358                         kfree(ck);
359                 } else {
360                         bkey_cached_free_fast(bc, ck);
361                 }
362
363                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
364                 return NULL;
365         }
366
367         atomic_long_inc(&bc->nr_keys);
368
369         six_unlock_write(&ck->c.lock);
370
371         return ck;
372 }
373
374 static int btree_key_cache_fill(struct btree_trans *trans,
375                                 struct btree_path *ck_path,
376                                 struct bkey_cached *ck)
377 {
378         struct btree_iter iter;
379         struct bkey_s_c k;
380         unsigned new_u64s = 0;
381         struct bkey_i *new_k = NULL;
382         int ret;
383
384         k = bch2_bkey_get_iter(trans, &iter, ck->key.btree_id, ck->key.pos,
385                                BTREE_ITER_KEY_CACHE_FILL|
386                                BTREE_ITER_CACHED_NOFILL);
387         ret = bkey_err(k);
388         if (ret)
389                 goto err;
390
391         if (!bch2_btree_node_relock(trans, ck_path, 0)) {
392                 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
393                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
394                 goto err;
395         }
396
397         /*
398          * bch2_varint_decode can read past the end of the buffer by at
399          * most 7 bytes (it won't be used):
400          */
401         new_u64s = k.k->u64s + 1;
402
403         /*
404          * Allocate some extra space so that the transaction commit path is less
405          * likely to have to reallocate, since that requires a transaction
406          * restart:
407          */
408         new_u64s = min(256U, (new_u64s * 3) / 2);
409
410         if (new_u64s > ck->u64s) {
411                 new_u64s = roundup_pow_of_two(new_u64s);
412                 new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
413                 if (!new_k) {
414                         bch2_trans_unlock(trans);
415
416                         new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
417                         if (!new_k) {
418                                 bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
419                                         bch2_btree_id_str(ck->key.btree_id), new_u64s);
420                                 ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
421                                 goto err;
422                         }
423
424                         if (!bch2_btree_node_relock(trans, ck_path, 0)) {
425                                 kfree(new_k);
426                                 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
427                                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
428                                 goto err;
429                         }
430
431                         ret = bch2_trans_relock(trans);
432                         if (ret) {
433                                 kfree(new_k);
434                                 goto err;
435                         }
436                 }
437         }
438
439         ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
440         if (ret) {
441                 kfree(new_k);
442                 goto err;
443         }
444
445         if (new_k) {
446                 kfree(ck->k);
447                 ck->u64s = new_u64s;
448                 ck->k = new_k;
449         }
450
451         bkey_reassemble(ck->k, k);
452         ck->valid = true;
453         bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
454
455         /* We're not likely to need this iterator again: */
456         set_btree_iter_dontneed(&iter);
457 err:
458         bch2_trans_iter_exit(trans, &iter);
459         return ret;
460 }
461
462 static noinline int
463 bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
464                                          unsigned flags)
465 {
466         struct bch_fs *c = trans->c;
467         struct bkey_cached *ck;
468         int ret = 0;
469
470         BUG_ON(path->level);
471
472         path->l[1].b = NULL;
473
474         if (bch2_btree_node_relock_notrace(trans, path, 0)) {
475                 ck = (void *) path->l[0].b;
476                 goto fill;
477         }
478 retry:
479         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
480         if (!ck) {
481                 ck = btree_key_cache_create(trans, path);
482                 ret = PTR_ERR_OR_ZERO(ck);
483                 if (ret)
484                         goto err;
485                 if (!ck)
486                         goto retry;
487
488                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
489                 path->locks_want = 1;
490         } else {
491                 enum six_lock_type lock_want = __btree_lock_want(path, 0);
492
493                 ret = btree_node_lock(trans, path, (void *) ck, 0,
494                                       lock_want, _THIS_IP_);
495                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
496                         goto err;
497
498                 BUG_ON(ret);
499
500                 if (ck->key.btree_id != path->btree_id ||
501                     !bpos_eq(ck->key.pos, path->pos)) {
502                         six_unlock_type(&ck->c.lock, lock_want);
503                         goto retry;
504                 }
505
506                 mark_btree_node_locked(trans, path, 0,
507                                        (enum btree_node_locked_type) lock_want);
508         }
509
510         path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
511         path->l[0].b            = (void *) ck;
512 fill:
513         path->uptodate = BTREE_ITER_UPTODATE;
514
515         if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
516                 /*
517                  * Using the underscore version because we haven't set
518                  * path->uptodate yet:
519                  */
520                 if (!path->locks_want &&
521                     !__bch2_btree_path_upgrade(trans, path, 1, NULL)) {
522                         trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_);
523                         ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade);
524                         goto err;
525                 }
526
527                 ret = btree_key_cache_fill(trans, path, ck);
528                 if (ret)
529                         goto err;
530
531                 ret = bch2_btree_path_relock(trans, path, _THIS_IP_);
532                 if (ret)
533                         goto err;
534
535                 path->uptodate = BTREE_ITER_UPTODATE;
536         }
537
538         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
539                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
540
541         BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
542         BUG_ON(path->uptodate);
543
544         return ret;
545 err:
546         path->uptodate = BTREE_ITER_NEED_TRAVERSE;
547         if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
548                 btree_node_unlock(trans, path, 0);
549                 path->l[0].b = ERR_PTR(ret);
550         }
551         return ret;
552 }
553
554 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
555                                     unsigned flags)
556 {
557         struct bch_fs *c = trans->c;
558         struct bkey_cached *ck;
559         int ret = 0;
560
561         EBUG_ON(path->level);
562
563         path->l[1].b = NULL;
564
565         if (bch2_btree_node_relock_notrace(trans, path, 0)) {
566                 ck = (void *) path->l[0].b;
567                 goto fill;
568         }
569 retry:
570         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
571         if (!ck) {
572                 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
573         } else {
574                 enum six_lock_type lock_want = __btree_lock_want(path, 0);
575
576                 ret = btree_node_lock(trans, path, (void *) ck, 0,
577                                       lock_want, _THIS_IP_);
578                 EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
579
580                 if (ret)
581                         return ret;
582
583                 if (ck->key.btree_id != path->btree_id ||
584                     !bpos_eq(ck->key.pos, path->pos)) {
585                         six_unlock_type(&ck->c.lock, lock_want);
586                         goto retry;
587                 }
588
589                 mark_btree_node_locked(trans, path, 0,
590                                        (enum btree_node_locked_type) lock_want);
591         }
592
593         path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
594         path->l[0].b            = (void *) ck;
595 fill:
596         if (!ck->valid)
597                 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
598
599         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
600                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
601
602         path->uptodate = BTREE_ITER_UPTODATE;
603         EBUG_ON(!ck->valid);
604         EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
605
606         return ret;
607 }
608
609 static int btree_key_cache_flush_pos(struct btree_trans *trans,
610                                      struct bkey_cached_key key,
611                                      u64 journal_seq,
612                                      unsigned commit_flags,
613                                      bool evict)
614 {
615         struct bch_fs *c = trans->c;
616         struct journal *j = &c->journal;
617         struct btree_iter c_iter, b_iter;
618         struct bkey_cached *ck = NULL;
619         int ret;
620
621         bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
622                              BTREE_ITER_SLOTS|
623                              BTREE_ITER_INTENT|
624                              BTREE_ITER_ALL_SNAPSHOTS);
625         bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
626                              BTREE_ITER_CACHED|
627                              BTREE_ITER_INTENT);
628         b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
629
630         ret = bch2_btree_iter_traverse(&c_iter);
631         if (ret)
632                 goto out;
633
634         ck = (void *) c_iter.path->l[0].b;
635         if (!ck)
636                 goto out;
637
638         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
639                 if (evict)
640                         goto evict;
641                 goto out;
642         }
643
644         BUG_ON(!ck->valid);
645
646         if (journal_seq && ck->journal.seq != journal_seq)
647                 goto out;
648
649         /*
650          * Since journal reclaim depends on us making progress here, and the
651          * allocator/copygc depend on journal reclaim making progress, we need
652          * to be using alloc reserves:
653          */
654         ret   = bch2_btree_iter_traverse(&b_iter) ?:
655                 bch2_trans_update(trans, &b_iter, ck->k,
656                                   BTREE_UPDATE_KEY_CACHE_RECLAIM|
657                                   BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
658                                   BTREE_TRIGGER_NORUN) ?:
659                 bch2_trans_commit(trans, NULL, NULL,
660                                   BCH_TRANS_COMMIT_no_check_rw|
661                                   BCH_TRANS_COMMIT_no_enospc|
662                                   (ck->journal.seq == journal_last_seq(j)
663                                    ? BCH_WATERMARK_reclaim
664                                    : 0)|
665                                   commit_flags);
666
667         bch2_fs_fatal_err_on(ret &&
668                              !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
669                              !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
670                              !bch2_journal_error(j), c,
671                              "error flushing key cache: %s", bch2_err_str(ret));
672         if (ret)
673                 goto out;
674
675         bch2_journal_pin_drop(j, &ck->journal);
676
677         BUG_ON(!btree_node_locked(c_iter.path, 0));
678
679         if (!evict) {
680                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
681                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
682                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
683                 }
684         } else {
685                 struct btree_path *path2;
686 evict:
687                 trans_for_each_path(trans, path2)
688                         if (path2 != c_iter.path)
689                                 __bch2_btree_path_unlock(trans, path2);
690
691                 bch2_btree_node_lock_write_nofail(trans, c_iter.path, &ck->c);
692
693                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
694                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
695                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
696                 }
697
698                 mark_btree_node_locked_noreset(c_iter.path, 0, BTREE_NODE_UNLOCKED);
699                 bkey_cached_evict(&c->btree_key_cache, ck);
700                 bkey_cached_free_fast(&c->btree_key_cache, ck);
701         }
702 out:
703         bch2_trans_iter_exit(trans, &b_iter);
704         bch2_trans_iter_exit(trans, &c_iter);
705         return ret;
706 }
707
708 int bch2_btree_key_cache_journal_flush(struct journal *j,
709                                 struct journal_entry_pin *pin, u64 seq)
710 {
711         struct bch_fs *c = container_of(j, struct bch_fs, journal);
712         struct bkey_cached *ck =
713                 container_of(pin, struct bkey_cached, journal);
714         struct bkey_cached_key key;
715         struct btree_trans *trans = bch2_trans_get(c);
716         int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
717         int ret = 0;
718
719         btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
720         key = ck->key;
721
722         if (ck->journal.seq != seq ||
723             !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
724                 six_unlock_read(&ck->c.lock);
725                 goto unlock;
726         }
727
728         if (ck->seq != seq) {
729                 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
730                                         bch2_btree_key_cache_journal_flush);
731                 six_unlock_read(&ck->c.lock);
732                 goto unlock;
733         }
734         six_unlock_read(&ck->c.lock);
735
736         ret = commit_do(trans, NULL, NULL, 0,
737                 btree_key_cache_flush_pos(trans, key, seq,
738                                 BCH_TRANS_COMMIT_journal_reclaim, false));
739 unlock:
740         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
741
742         bch2_trans_put(trans);
743         return ret;
744 }
745
746 /*
747  * Flush and evict a key from the key cache:
748  */
749 int bch2_btree_key_cache_flush(struct btree_trans *trans,
750                                enum btree_id id, struct bpos pos)
751 {
752         struct bch_fs *c = trans->c;
753         struct bkey_cached_key key = { id, pos };
754
755         /* Fastpath - assume it won't be found: */
756         if (!bch2_btree_key_cache_find(c, id, pos))
757                 return 0;
758
759         return btree_key_cache_flush_pos(trans, key, 0, 0, true);
760 }
761
762 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
763                                   unsigned flags,
764                                   struct btree_insert_entry *insert_entry)
765 {
766         struct bch_fs *c = trans->c;
767         struct bkey_cached *ck = (void *) insert_entry->path->l[0].b;
768         struct bkey_i *insert = insert_entry->k;
769         bool kick_reclaim = false;
770
771         BUG_ON(insert->k.u64s > ck->u64s);
772
773         bkey_copy(ck->k, insert);
774         ck->valid = true;
775
776         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
777                 EBUG_ON(test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags));
778                 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
779                 atomic_long_inc(&c->btree_key_cache.nr_dirty);
780
781                 if (bch2_nr_btree_keys_need_flush(c))
782                         kick_reclaim = true;
783         }
784
785         /*
786          * To minimize lock contention, we only add the journal pin here and
787          * defer pin updates to the flush callback via ->seq. Be careful not to
788          * update ->seq on nojournal commits because we don't want to update the
789          * pin to a seq that doesn't include journal updates on disk. Otherwise
790          * we risk losing the update after a crash.
791          *
792          * The only exception is if the pin is not active in the first place. We
793          * have to add the pin because journal reclaim drives key cache
794          * flushing. The flush callback will not proceed unless ->seq matches
795          * the latest pin, so make sure it starts with a consistent value.
796          */
797         if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) ||
798             !journal_pin_active(&ck->journal)) {
799                 ck->seq = trans->journal_res.seq;
800         }
801         bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
802                              &ck->journal, bch2_btree_key_cache_journal_flush);
803
804         if (kick_reclaim)
805                 journal_reclaim_kick(&c->journal);
806         return true;
807 }
808
809 void bch2_btree_key_cache_drop(struct btree_trans *trans,
810                                struct btree_path *path)
811 {
812         struct bch_fs *c = trans->c;
813         struct bkey_cached *ck = (void *) path->l[0].b;
814
815         BUG_ON(!ck->valid);
816
817         /*
818          * We just did an update to the btree, bypassing the key cache: the key
819          * cache key is now stale and must be dropped, even if dirty:
820          */
821         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
822                 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
823                 atomic_long_dec(&c->btree_key_cache.nr_dirty);
824                 bch2_journal_pin_drop(&c->journal, &ck->journal);
825         }
826
827         ck->valid = false;
828 }
829
830 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
831                                            struct shrink_control *sc)
832 {
833         struct bch_fs *c = container_of(shrink, struct bch_fs,
834                                         btree_key_cache.shrink);
835         struct btree_key_cache *bc = &c->btree_key_cache;
836         struct bucket_table *tbl;
837         struct bkey_cached *ck, *t;
838         size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
839         unsigned start, flags;
840         int srcu_idx;
841
842         mutex_lock(&bc->lock);
843         srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
844         flags = memalloc_nofs_save();
845
846         /*
847          * Newest freed entries are at the end of the list - once we hit one
848          * that's too new to be freed, we can bail out:
849          */
850         scanned += bc->nr_freed_nonpcpu;
851
852         list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
853                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
854                                                  ck->btree_trans_barrier_seq))
855                         break;
856
857                 list_del(&ck->list);
858                 six_lock_exit(&ck->c.lock);
859                 kmem_cache_free(bch2_key_cache, ck);
860                 atomic_long_dec(&bc->nr_freed);
861                 freed++;
862                 bc->nr_freed_nonpcpu--;
863         }
864
865         if (scanned >= nr)
866                 goto out;
867
868         scanned += bc->nr_freed_pcpu;
869
870         list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
871                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
872                                                  ck->btree_trans_barrier_seq))
873                         break;
874
875                 list_del(&ck->list);
876                 six_lock_exit(&ck->c.lock);
877                 kmem_cache_free(bch2_key_cache, ck);
878                 atomic_long_dec(&bc->nr_freed);
879                 freed++;
880                 bc->nr_freed_pcpu--;
881         }
882
883         if (scanned >= nr)
884                 goto out;
885
886         rcu_read_lock();
887         tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
888         if (bc->shrink_iter >= tbl->size)
889                 bc->shrink_iter = 0;
890         start = bc->shrink_iter;
891
892         do {
893                 struct rhash_head *pos, *next;
894
895                 pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
896
897                 while (!rht_is_a_nulls(pos)) {
898                         next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
899                         ck = container_of(pos, struct bkey_cached, hash);
900
901                         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags))
902                                 goto next;
903
904                         if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
905                                 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
906                         else if (bkey_cached_lock_for_evict(ck)) {
907                                 bkey_cached_evict(bc, ck);
908                                 bkey_cached_free(bc, ck);
909                         }
910
911                         scanned++;
912                         if (scanned >= nr)
913                                 break;
914 next:
915                         pos = next;
916                 }
917
918                 bc->shrink_iter++;
919                 if (bc->shrink_iter >= tbl->size)
920                         bc->shrink_iter = 0;
921         } while (scanned < nr && bc->shrink_iter != start);
922
923         rcu_read_unlock();
924 out:
925         memalloc_nofs_restore(flags);
926         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
927         mutex_unlock(&bc->lock);
928
929         return freed;
930 }
931
932 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
933                                             struct shrink_control *sc)
934 {
935         struct bch_fs *c = container_of(shrink, struct bch_fs,
936                                         btree_key_cache.shrink);
937         struct btree_key_cache *bc = &c->btree_key_cache;
938         long nr = atomic_long_read(&bc->nr_keys) -
939                 atomic_long_read(&bc->nr_dirty);
940
941         return max(0L, nr);
942 }
943
944 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
945 {
946         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
947         struct bucket_table *tbl;
948         struct bkey_cached *ck, *n;
949         struct rhash_head *pos;
950         LIST_HEAD(items);
951         unsigned i;
952 #ifdef __KERNEL__
953         int cpu;
954 #endif
955
956         unregister_shrinker(&bc->shrink);
957
958         mutex_lock(&bc->lock);
959
960         /*
961          * The loop is needed to guard against racing with rehash:
962          */
963         while (atomic_long_read(&bc->nr_keys)) {
964                 rcu_read_lock();
965                 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
966                 if (tbl)
967                         for (i = 0; i < tbl->size; i++)
968                                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
969                                         bkey_cached_evict(bc, ck);
970                                         list_add(&ck->list, &items);
971                                 }
972                 rcu_read_unlock();
973         }
974
975 #ifdef __KERNEL__
976         for_each_possible_cpu(cpu) {
977                 struct btree_key_cache_freelist *f =
978                         per_cpu_ptr(bc->pcpu_freed, cpu);
979
980                 for (i = 0; i < f->nr; i++) {
981                         ck = f->objs[i];
982                         list_add(&ck->list, &items);
983                 }
984         }
985 #endif
986
987         BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
988         BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
989
990         list_splice(&bc->freed_pcpu,    &items);
991         list_splice(&bc->freed_nonpcpu, &items);
992
993         mutex_unlock(&bc->lock);
994
995         list_for_each_entry_safe(ck, n, &items, list) {
996                 cond_resched();
997
998                 bch2_journal_pin_drop(&c->journal, &ck->journal);
999
1000                 list_del(&ck->list);
1001                 kfree(ck->k);
1002                 six_lock_exit(&ck->c.lock);
1003                 kmem_cache_free(bch2_key_cache, ck);
1004         }
1005
1006         if (atomic_long_read(&bc->nr_dirty) &&
1007             !bch2_journal_error(&c->journal) &&
1008             test_bit(BCH_FS_WAS_RW, &c->flags))
1009                 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
1010                       atomic_long_read(&bc->nr_dirty));
1011
1012         if (atomic_long_read(&bc->nr_keys))
1013                 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
1014                       atomic_long_read(&bc->nr_keys));
1015
1016         if (bc->table_init_done)
1017                 rhashtable_destroy(&bc->table);
1018
1019         free_percpu(bc->pcpu_freed);
1020 }
1021
1022 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
1023 {
1024         mutex_init(&c->lock);
1025         INIT_LIST_HEAD(&c->freed_pcpu);
1026         INIT_LIST_HEAD(&c->freed_nonpcpu);
1027 }
1028
1029 static void bch2_btree_key_cache_shrinker_to_text(struct seq_buf *s, struct shrinker *shrink)
1030 {
1031         struct btree_key_cache *bc =
1032                 container_of(shrink, struct btree_key_cache, shrink);
1033         char *cbuf;
1034         size_t buflen = seq_buf_get_buf(s, &cbuf);
1035         struct printbuf out = PRINTBUF_EXTERN(cbuf, buflen);
1036
1037         bch2_btree_key_cache_to_text(&out, bc);
1038         seq_buf_commit(s, out.pos);
1039 }
1040
1041 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
1042 {
1043         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1044
1045 #ifdef __KERNEL__
1046         bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
1047         if (!bc->pcpu_freed)
1048                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1049 #endif
1050
1051         if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
1052                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1053
1054         bc->table_init_done = true;
1055
1056         bc->shrink.seeks                = 0;
1057         bc->shrink.count_objects        = bch2_btree_key_cache_count;
1058         bc->shrink.scan_objects         = bch2_btree_key_cache_scan;
1059         bc->shrink.to_text              = bch2_btree_key_cache_shrinker_to_text;
1060         if (register_shrinker(&bc->shrink, "%s-btree_key_cache", c->name))
1061                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1062         return 0;
1063 }
1064
1065 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
1066 {
1067         prt_printf(out, "nr_freed:\t%lu",       atomic_long_read(&c->nr_freed));
1068         prt_newline(out);
1069         prt_printf(out, "nr_keys:\t%lu",        atomic_long_read(&c->nr_keys));
1070         prt_newline(out);
1071         prt_printf(out, "nr_dirty:\t%lu",       atomic_long_read(&c->nr_dirty));
1072         prt_newline(out);
1073 }
1074
1075 void bch2_btree_key_cache_exit(void)
1076 {
1077         kmem_cache_destroy(bch2_key_cache);
1078 }
1079
1080 int __init bch2_btree_key_cache_init(void)
1081 {
1082         bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1083         if (!bch2_key_cache)
1084                 return -ENOMEM;
1085
1086         return 0;
1087 }