]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_key_cache.c
Update bcachefs sources to 6a20aede29 bcachefs: Fix quotas + snapshots
[bcachefs-tools-debian] / libbcachefs / btree_key_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14
15 #include <linux/sched/mm.h>
16 #include <linux/seq_buf.h>
17
18 static inline bool btree_uses_pcpu_readers(enum btree_id id)
19 {
20         return id == BTREE_ID_subvolumes;
21 }
22
23 static struct kmem_cache *bch2_key_cache;
24
25 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
26                                        const void *obj)
27 {
28         const struct bkey_cached *ck = obj;
29         const struct bkey_cached_key *key = arg->key;
30
31         return ck->key.btree_id != key->btree_id ||
32                 !bpos_eq(ck->key.pos, key->pos);
33 }
34
35 static const struct rhashtable_params bch2_btree_key_cache_params = {
36         .head_offset    = offsetof(struct bkey_cached, hash),
37         .key_offset     = offsetof(struct bkey_cached, key),
38         .key_len        = sizeof(struct bkey_cached_key),
39         .obj_cmpfn      = bch2_btree_key_cache_cmp_fn,
40 };
41
42 __flatten
43 inline struct bkey_cached *
44 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
45 {
46         struct bkey_cached_key key = {
47                 .btree_id       = btree_id,
48                 .pos            = pos,
49         };
50
51         return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
52                                       bch2_btree_key_cache_params);
53 }
54
55 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
56 {
57         if (!six_trylock_intent(&ck->c.lock))
58                 return false;
59
60         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
61                 six_unlock_intent(&ck->c.lock);
62                 return false;
63         }
64
65         if (!six_trylock_write(&ck->c.lock)) {
66                 six_unlock_intent(&ck->c.lock);
67                 return false;
68         }
69
70         return true;
71 }
72
73 static void bkey_cached_evict(struct btree_key_cache *c,
74                               struct bkey_cached *ck)
75 {
76         BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
77                                       bch2_btree_key_cache_params));
78         memset(&ck->key, ~0, sizeof(ck->key));
79
80         atomic_long_dec(&c->nr_keys);
81 }
82
83 static void bkey_cached_free(struct btree_key_cache *bc,
84                              struct bkey_cached *ck)
85 {
86         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
87
88         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
89
90         ck->btree_trans_barrier_seq =
91                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
92
93         if (ck->c.lock.readers)
94                 list_move_tail(&ck->list, &bc->freed_pcpu);
95         else
96                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
97         atomic_long_inc(&bc->nr_freed);
98
99         kfree(ck->k);
100         ck->k           = NULL;
101         ck->u64s        = 0;
102
103         six_unlock_write(&ck->c.lock);
104         six_unlock_intent(&ck->c.lock);
105 }
106
107 #ifdef __KERNEL__
108 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
109                                                    struct bkey_cached *ck)
110 {
111         struct bkey_cached *pos;
112
113         list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
114                 if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
115                                  pos->btree_trans_barrier_seq)) {
116                         list_move(&ck->list, &pos->list);
117                         return;
118                 }
119         }
120
121         list_move(&ck->list, &bc->freed_nonpcpu);
122 }
123 #endif
124
125 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
126                                          struct bkey_cached *ck)
127 {
128         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
129
130         if (!ck->c.lock.readers) {
131 #ifdef __KERNEL__
132                 struct btree_key_cache_freelist *f;
133                 bool freed = false;
134
135                 preempt_disable();
136                 f = this_cpu_ptr(bc->pcpu_freed);
137
138                 if (f->nr < ARRAY_SIZE(f->objs)) {
139                         f->objs[f->nr++] = ck;
140                         freed = true;
141                 }
142                 preempt_enable();
143
144                 if (!freed) {
145                         mutex_lock(&bc->lock);
146                         preempt_disable();
147                         f = this_cpu_ptr(bc->pcpu_freed);
148
149                         while (f->nr > ARRAY_SIZE(f->objs) / 2) {
150                                 struct bkey_cached *ck2 = f->objs[--f->nr];
151
152                                 __bkey_cached_move_to_freelist_ordered(bc, ck2);
153                         }
154                         preempt_enable();
155
156                         __bkey_cached_move_to_freelist_ordered(bc, ck);
157                         mutex_unlock(&bc->lock);
158                 }
159 #else
160                 mutex_lock(&bc->lock);
161                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
162                 mutex_unlock(&bc->lock);
163 #endif
164         } else {
165                 mutex_lock(&bc->lock);
166                 list_move_tail(&ck->list, &bc->freed_pcpu);
167                 mutex_unlock(&bc->lock);
168         }
169 }
170
171 static void bkey_cached_free_fast(struct btree_key_cache *bc,
172                                   struct bkey_cached *ck)
173 {
174         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
175
176         ck->btree_trans_barrier_seq =
177                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
178
179         list_del_init(&ck->list);
180         atomic_long_inc(&bc->nr_freed);
181
182         kfree(ck->k);
183         ck->k           = NULL;
184         ck->u64s        = 0;
185
186         bkey_cached_move_to_freelist(bc, ck);
187
188         six_unlock_write(&ck->c.lock);
189         six_unlock_intent(&ck->c.lock);
190 }
191
192 static struct bkey_cached *
193 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
194                   bool *was_new)
195 {
196         struct bch_fs *c = trans->c;
197         struct btree_key_cache *bc = &c->btree_key_cache;
198         struct bkey_cached *ck = NULL;
199         bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
200         int ret;
201
202         if (!pcpu_readers) {
203 #ifdef __KERNEL__
204                 struct btree_key_cache_freelist *f;
205
206                 preempt_disable();
207                 f = this_cpu_ptr(bc->pcpu_freed);
208                 if (f->nr)
209                         ck = f->objs[--f->nr];
210                 preempt_enable();
211
212                 if (!ck) {
213                         mutex_lock(&bc->lock);
214                         preempt_disable();
215                         f = this_cpu_ptr(bc->pcpu_freed);
216
217                         while (!list_empty(&bc->freed_nonpcpu) &&
218                                f->nr < ARRAY_SIZE(f->objs) / 2) {
219                                 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
220                                 list_del_init(&ck->list);
221                                 f->objs[f->nr++] = ck;
222                         }
223
224                         ck = f->nr ? f->objs[--f->nr] : NULL;
225                         preempt_enable();
226                         mutex_unlock(&bc->lock);
227                 }
228 #else
229                 mutex_lock(&bc->lock);
230                 if (!list_empty(&bc->freed_nonpcpu)) {
231                         ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
232                         list_del_init(&ck->list);
233                 }
234                 mutex_unlock(&bc->lock);
235 #endif
236         } else {
237                 mutex_lock(&bc->lock);
238                 if (!list_empty(&bc->freed_pcpu)) {
239                         ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
240                         list_del_init(&ck->list);
241                 }
242                 mutex_unlock(&bc->lock);
243         }
244
245         if (ck) {
246                 int ret;
247
248                 ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
249                 if (unlikely(ret)) {
250                         bkey_cached_move_to_freelist(bc, ck);
251                         return ERR_PTR(ret);
252                 }
253
254                 path->l[0].b = (void *) ck;
255                 path->l[0].lock_seq = ck->c.lock.state.seq;
256                 mark_btree_node_locked(trans, path, 0, SIX_LOCK_intent);
257
258                 ret = bch2_btree_node_lock_write(trans, path, &ck->c);
259                 if (unlikely(ret)) {
260                         btree_node_unlock(trans, path, 0);
261                         bkey_cached_move_to_freelist(bc, ck);
262                         return ERR_PTR(ret);
263                 }
264
265                 return ck;
266         }
267
268         ck = kmem_cache_zalloc(bch2_key_cache, GFP_NOWAIT|__GFP_NOWARN);
269         if (likely(ck))
270                 goto init;
271
272         bch2_trans_unlock(trans);
273
274         ck = kmem_cache_zalloc(bch2_key_cache, GFP_KERNEL);
275
276         ret = bch2_trans_relock(trans);
277         if (ret) {
278                 kmem_cache_free(bch2_key_cache, ck);
279                 return ERR_PTR(ret);
280         }
281
282         if (!ck)
283                 return NULL;
284 init:
285         INIT_LIST_HEAD(&ck->list);
286         bch2_btree_lock_init(&ck->c);
287         if (pcpu_readers)
288                 six_lock_pcpu_alloc(&ck->c.lock);
289
290         ck->c.cached = true;
291         BUG_ON(!six_trylock_intent(&ck->c.lock));
292         BUG_ON(!six_trylock_write(&ck->c.lock));
293         *was_new = true;
294         return ck;
295 }
296
297 static struct bkey_cached *
298 bkey_cached_reuse(struct btree_key_cache *c)
299 {
300         struct bucket_table *tbl;
301         struct rhash_head *pos;
302         struct bkey_cached *ck;
303         unsigned i;
304
305         mutex_lock(&c->lock);
306         rcu_read_lock();
307         tbl = rht_dereference_rcu(c->table.tbl, &c->table);
308         for (i = 0; i < tbl->size; i++)
309                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
310                         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
311                             bkey_cached_lock_for_evict(ck)) {
312                                 bkey_cached_evict(c, ck);
313                                 goto out;
314                         }
315                 }
316         ck = NULL;
317 out:
318         rcu_read_unlock();
319         mutex_unlock(&c->lock);
320         return ck;
321 }
322
323 static struct bkey_cached *
324 btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
325 {
326         struct bch_fs *c = trans->c;
327         struct btree_key_cache *bc = &c->btree_key_cache;
328         struct bkey_cached *ck;
329         bool was_new = false;
330
331         ck = bkey_cached_alloc(trans, path, &was_new);
332         if (IS_ERR(ck))
333                 return ck;
334
335         if (unlikely(!ck)) {
336                 ck = bkey_cached_reuse(bc);
337                 if (unlikely(!ck)) {
338                         bch_err(c, "error allocating memory for key cache item, btree %s",
339                                 bch2_btree_ids[path->btree_id]);
340                         return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
341                 }
342
343                 mark_btree_node_locked(trans, path, 0, SIX_LOCK_intent);
344         } else {
345                 if (path->btree_id == BTREE_ID_subvolumes)
346                         six_lock_pcpu_alloc(&ck->c.lock);
347         }
348
349         ck->c.level             = 0;
350         ck->c.btree_id          = path->btree_id;
351         ck->key.btree_id        = path->btree_id;
352         ck->key.pos             = path->pos;
353         ck->valid               = false;
354         ck->flags               = 1U << BKEY_CACHED_ACCESSED;
355
356         if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
357                                           &ck->hash,
358                                           bch2_btree_key_cache_params))) {
359                 /* We raced with another fill: */
360
361                 if (likely(was_new)) {
362                         six_unlock_write(&ck->c.lock);
363                         six_unlock_intent(&ck->c.lock);
364                         kfree(ck);
365                 } else {
366                         bkey_cached_free_fast(bc, ck);
367                 }
368
369                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
370                 return NULL;
371         }
372
373         atomic_long_inc(&bc->nr_keys);
374
375         six_unlock_write(&ck->c.lock);
376
377         return ck;
378 }
379
380 static int btree_key_cache_fill(struct btree_trans *trans,
381                                 struct btree_path *ck_path,
382                                 struct bkey_cached *ck)
383 {
384         struct btree_iter iter;
385         struct bkey_s_c k;
386         unsigned new_u64s = 0;
387         struct bkey_i *new_k = NULL;
388         int ret;
389
390         k = bch2_bkey_get_iter(trans, &iter, ck->key.btree_id, ck->key.pos,
391                                BTREE_ITER_KEY_CACHE_FILL|
392                                BTREE_ITER_CACHED_NOFILL);
393         ret = bkey_err(k);
394         if (ret)
395                 goto err;
396
397         if (!bch2_btree_node_relock(trans, ck_path, 0)) {
398                 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
399                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
400                 goto err;
401         }
402
403         /*
404          * bch2_varint_decode can read past the end of the buffer by at
405          * most 7 bytes (it won't be used):
406          */
407         new_u64s = k.k->u64s + 1;
408
409         /*
410          * Allocate some extra space so that the transaction commit path is less
411          * likely to have to reallocate, since that requires a transaction
412          * restart:
413          */
414         new_u64s = min(256U, (new_u64s * 3) / 2);
415
416         if (new_u64s > ck->u64s) {
417                 new_u64s = roundup_pow_of_two(new_u64s);
418                 new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
419                 if (!new_k) {
420                         bch2_trans_unlock(trans);
421
422                         new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
423                         if (!new_k) {
424                                 bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
425                                         bch2_btree_ids[ck->key.btree_id], new_u64s);
426                                 ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
427                                 goto err;
428                         }
429
430                         if (!bch2_btree_node_relock(trans, ck_path, 0)) {
431                                 kfree(new_k);
432                                 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
433                                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
434                                 goto err;
435                         }
436
437                         ret = bch2_trans_relock(trans);
438                         if (ret) {
439                                 kfree(new_k);
440                                 goto err;
441                         }
442                 }
443         }
444
445         ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
446         if (ret) {
447                 kfree(new_k);
448                 goto err;
449         }
450
451         if (new_k) {
452                 kfree(ck->k);
453                 ck->u64s = new_u64s;
454                 ck->k = new_k;
455         }
456
457         bkey_reassemble(ck->k, k);
458         ck->valid = true;
459         bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
460
461         /* We're not likely to need this iterator again: */
462         set_btree_iter_dontneed(&iter);
463 err:
464         bch2_trans_iter_exit(trans, &iter);
465         return ret;
466 }
467
468 static noinline int
469 bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
470                                          unsigned flags)
471 {
472         struct bch_fs *c = trans->c;
473         struct bkey_cached *ck;
474         int ret = 0;
475
476         BUG_ON(path->level);
477
478         path->l[1].b = NULL;
479
480         if (bch2_btree_node_relock_notrace(trans, path, 0)) {
481                 ck = (void *) path->l[0].b;
482                 goto fill;
483         }
484 retry:
485         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
486         if (!ck) {
487                 ck = btree_key_cache_create(trans, path);
488                 ret = PTR_ERR_OR_ZERO(ck);
489                 if (ret)
490                         goto err;
491                 if (!ck)
492                         goto retry;
493
494                 mark_btree_node_locked(trans, path, 0, SIX_LOCK_intent);
495                 path->locks_want = 1;
496         } else {
497                 enum six_lock_type lock_want = __btree_lock_want(path, 0);
498
499                 ret = btree_node_lock(trans, path, (void *) ck, 0,
500                                       lock_want, _THIS_IP_);
501                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
502                         goto err;
503
504                 BUG_ON(ret);
505
506                 if (ck->key.btree_id != path->btree_id ||
507                     !bpos_eq(ck->key.pos, path->pos)) {
508                         six_unlock_type(&ck->c.lock, lock_want);
509                         goto retry;
510                 }
511
512                 mark_btree_node_locked(trans, path, 0, lock_want);
513         }
514
515         path->l[0].lock_seq     = ck->c.lock.state.seq;
516         path->l[0].b            = (void *) ck;
517 fill:
518         path->uptodate = BTREE_ITER_UPTODATE;
519
520         if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
521                 /*
522                  * Using the underscore version because we haven't set
523                  * path->uptodate yet:
524                  */
525                 if (!path->locks_want &&
526                     !__bch2_btree_path_upgrade(trans, path, 1)) {
527                         trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_);
528                         ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade);
529                         goto err;
530                 }
531
532                 ret = btree_key_cache_fill(trans, path, ck);
533                 if (ret)
534                         goto err;
535
536                 ret = bch2_btree_path_relock(trans, path, _THIS_IP_);
537                 if (ret)
538                         goto err;
539
540                 path->uptodate = BTREE_ITER_UPTODATE;
541         }
542
543         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
544                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
545
546         BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
547         BUG_ON(path->uptodate);
548
549         return ret;
550 err:
551         path->uptodate = BTREE_ITER_NEED_TRAVERSE;
552         if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
553                 btree_node_unlock(trans, path, 0);
554                 path->l[0].b = ERR_PTR(ret);
555         }
556         return ret;
557 }
558
559 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
560                                     unsigned flags)
561 {
562         struct bch_fs *c = trans->c;
563         struct bkey_cached *ck;
564         int ret = 0;
565
566         EBUG_ON(path->level);
567
568         path->l[1].b = NULL;
569
570         if (bch2_btree_node_relock_notrace(trans, path, 0)) {
571                 ck = (void *) path->l[0].b;
572                 goto fill;
573         }
574 retry:
575         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
576         if (!ck) {
577                 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
578         } else {
579                 enum six_lock_type lock_want = __btree_lock_want(path, 0);
580
581                 ret = btree_node_lock(trans, path, (void *) ck, 0,
582                                       lock_want, _THIS_IP_);
583                 EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
584
585                 if (ret)
586                         return ret;
587
588                 if (ck->key.btree_id != path->btree_id ||
589                     !bpos_eq(ck->key.pos, path->pos)) {
590                         six_unlock_type(&ck->c.lock, lock_want);
591                         goto retry;
592                 }
593
594                 mark_btree_node_locked(trans, path, 0, lock_want);
595         }
596
597         path->l[0].lock_seq     = ck->c.lock.state.seq;
598         path->l[0].b            = (void *) ck;
599 fill:
600         if (!ck->valid)
601                 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
602
603         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
604                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
605
606         path->uptodate = BTREE_ITER_UPTODATE;
607         EBUG_ON(!ck->valid);
608         EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
609
610         return ret;
611 }
612
613 static int btree_key_cache_flush_pos(struct btree_trans *trans,
614                                      struct bkey_cached_key key,
615                                      u64 journal_seq,
616                                      unsigned commit_flags,
617                                      bool evict)
618 {
619         struct bch_fs *c = trans->c;
620         struct journal *j = &c->journal;
621         struct btree_iter c_iter, b_iter;
622         struct bkey_cached *ck = NULL;
623         int ret;
624
625         bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
626                              BTREE_ITER_SLOTS|
627                              BTREE_ITER_INTENT|
628                              BTREE_ITER_ALL_SNAPSHOTS);
629         bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
630                              BTREE_ITER_CACHED|
631                              BTREE_ITER_INTENT);
632         b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
633
634         ret = bch2_btree_iter_traverse(&c_iter);
635         if (ret)
636                 goto out;
637
638         ck = (void *) c_iter.path->l[0].b;
639         if (!ck)
640                 goto out;
641
642         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
643                 if (evict)
644                         goto evict;
645                 goto out;
646         }
647
648         BUG_ON(!ck->valid);
649
650         if (journal_seq && ck->journal.seq != journal_seq)
651                 goto out;
652
653         /*
654          * Since journal reclaim depends on us making progress here, and the
655          * allocator/copygc depend on journal reclaim making progress, we need
656          * to be using alloc reserves:
657          */
658         ret   = bch2_btree_iter_traverse(&b_iter) ?:
659                 bch2_trans_update(trans, &b_iter, ck->k,
660                                   BTREE_UPDATE_KEY_CACHE_RECLAIM|
661                                   BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
662                                   BTREE_TRIGGER_NORUN) ?:
663                 bch2_trans_commit(trans, NULL, NULL,
664                                   BTREE_INSERT_NOCHECK_RW|
665                                   BTREE_INSERT_NOFAIL|
666                                   BTREE_INSERT_USE_RESERVE|
667                                   (ck->journal.seq == journal_last_seq(j)
668                                    ? JOURNAL_WATERMARK_reserved
669                                    : 0)|
670                                   commit_flags);
671
672         bch2_fs_fatal_err_on(ret &&
673                              !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
674                              !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
675                              !bch2_journal_error(j), c,
676                              "error flushing key cache: %s", bch2_err_str(ret));
677         if (ret)
678                 goto out;
679
680         bch2_journal_pin_drop(j, &ck->journal);
681         bch2_journal_preres_put(j, &ck->res);
682
683         BUG_ON(!btree_node_locked(c_iter.path, 0));
684
685         if (!evict) {
686                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
687                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
688                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
689                 }
690         } else {
691                 struct btree_path *path2;
692 evict:
693                 trans_for_each_path(trans, path2)
694                         if (path2 != c_iter.path)
695                                 __bch2_btree_path_unlock(trans, path2);
696
697                 bch2_btree_node_lock_write_nofail(trans, c_iter.path, &ck->c);
698
699                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
700                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
701                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
702                 }
703
704                 mark_btree_node_locked_noreset(c_iter.path, 0, BTREE_NODE_UNLOCKED);
705                 bkey_cached_evict(&c->btree_key_cache, ck);
706                 bkey_cached_free_fast(&c->btree_key_cache, ck);
707         }
708 out:
709         bch2_trans_iter_exit(trans, &b_iter);
710         bch2_trans_iter_exit(trans, &c_iter);
711         return ret;
712 }
713
714 int bch2_btree_key_cache_journal_flush(struct journal *j,
715                                 struct journal_entry_pin *pin, u64 seq)
716 {
717         struct bch_fs *c = container_of(j, struct bch_fs, journal);
718         struct bkey_cached *ck =
719                 container_of(pin, struct bkey_cached, journal);
720         struct bkey_cached_key key;
721         struct btree_trans trans;
722         int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
723         int ret = 0;
724
725         bch2_trans_init(&trans, c, 0, 0);
726
727         btree_node_lock_nopath_nofail(&trans, &ck->c, SIX_LOCK_read);
728         key = ck->key;
729
730         if (ck->journal.seq != seq ||
731             !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
732                 six_unlock_read(&ck->c.lock);
733                 goto unlock;
734         }
735
736         if (ck->seq != seq) {
737                 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
738                                         bch2_btree_key_cache_journal_flush);
739                 six_unlock_read(&ck->c.lock);
740                 goto unlock;
741         }
742         six_unlock_read(&ck->c.lock);
743
744         ret = commit_do(&trans, NULL, NULL, 0,
745                 btree_key_cache_flush_pos(&trans, key, seq,
746                                 BTREE_INSERT_JOURNAL_RECLAIM, false));
747 unlock:
748         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
749
750         bch2_trans_exit(&trans);
751         return ret;
752 }
753
754 /*
755  * Flush and evict a key from the key cache:
756  */
757 int bch2_btree_key_cache_flush(struct btree_trans *trans,
758                                enum btree_id id, struct bpos pos)
759 {
760         struct bch_fs *c = trans->c;
761         struct bkey_cached_key key = { id, pos };
762
763         /* Fastpath - assume it won't be found: */
764         if (!bch2_btree_key_cache_find(c, id, pos))
765                 return 0;
766
767         return btree_key_cache_flush_pos(trans, key, 0, 0, true);
768 }
769
770 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
771                                   unsigned flags,
772                                   struct btree_insert_entry *insert_entry)
773 {
774         struct bch_fs *c = trans->c;
775         struct bkey_cached *ck = (void *) insert_entry->path->l[0].b;
776         struct bkey_i *insert = insert_entry->k;
777         bool kick_reclaim = false;
778
779         BUG_ON(insert->k.u64s > ck->u64s);
780
781         if (likely(!(flags & BTREE_INSERT_JOURNAL_REPLAY))) {
782                 int difference;
783
784                 BUG_ON(jset_u64s(insert->k.u64s) > trans->journal_preres.u64s);
785
786                 difference = jset_u64s(insert->k.u64s) - ck->res.u64s;
787                 if (difference > 0) {
788                         trans->journal_preres.u64s      -= difference;
789                         ck->res.u64s                    += difference;
790                 }
791         }
792
793         bkey_copy(ck->k, insert);
794         ck->valid = true;
795
796         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
797                 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
798                 atomic_long_inc(&c->btree_key_cache.nr_dirty);
799
800                 if (bch2_nr_btree_keys_need_flush(c))
801                         kick_reclaim = true;
802         }
803
804         /*
805          * To minimize lock contention, we only add the journal pin here and
806          * defer pin updates to the flush callback via ->seq. Be careful not to
807          * update ->seq on nojournal commits because we don't want to update the
808          * pin to a seq that doesn't include journal updates on disk. Otherwise
809          * we risk losing the update after a crash.
810          *
811          * The only exception is if the pin is not active in the first place. We
812          * have to add the pin because journal reclaim drives key cache
813          * flushing. The flush callback will not proceed unless ->seq matches
814          * the latest pin, so make sure it starts with a consistent value.
815          */
816         if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) ||
817             !journal_pin_active(&ck->journal)) {
818                 ck->seq = trans->journal_res.seq;
819         }
820         bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
821                              &ck->journal, bch2_btree_key_cache_journal_flush);
822
823         if (kick_reclaim)
824                 journal_reclaim_kick(&c->journal);
825         return true;
826 }
827
828 void bch2_btree_key_cache_drop(struct btree_trans *trans,
829                                struct btree_path *path)
830 {
831         struct bch_fs *c = trans->c;
832         struct bkey_cached *ck = (void *) path->l[0].b;
833
834         BUG_ON(!ck->valid);
835
836         /*
837          * We just did an update to the btree, bypassing the key cache: the key
838          * cache key is now stale and must be dropped, even if dirty:
839          */
840         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
841                 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
842                 atomic_long_dec(&c->btree_key_cache.nr_dirty);
843                 bch2_journal_pin_drop(&c->journal, &ck->journal);
844         }
845
846         ck->valid = false;
847 }
848
849 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
850                                            struct shrink_control *sc)
851 {
852         struct bch_fs *c = container_of(shrink, struct bch_fs,
853                                         btree_key_cache.shrink);
854         struct btree_key_cache *bc = &c->btree_key_cache;
855         struct bucket_table *tbl;
856         struct bkey_cached *ck, *t;
857         size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
858         unsigned start, flags;
859         int srcu_idx;
860
861         mutex_lock(&bc->lock);
862         srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
863         flags = memalloc_nofs_save();
864
865         /*
866          * Newest freed entries are at the end of the list - once we hit one
867          * that's too new to be freed, we can bail out:
868          */
869         list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
870                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
871                                                  ck->btree_trans_barrier_seq))
872                         break;
873
874                 list_del(&ck->list);
875                 six_lock_pcpu_free(&ck->c.lock);
876                 kmem_cache_free(bch2_key_cache, ck);
877                 atomic_long_dec(&bc->nr_freed);
878                 scanned++;
879                 freed++;
880         }
881
882         if (scanned >= nr)
883                 goto out;
884
885         list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
886                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
887                                                  ck->btree_trans_barrier_seq))
888                         break;
889
890                 list_del(&ck->list);
891                 six_lock_pcpu_free(&ck->c.lock);
892                 kmem_cache_free(bch2_key_cache, ck);
893                 atomic_long_dec(&bc->nr_freed);
894                 scanned++;
895                 freed++;
896         }
897
898         if (scanned >= nr)
899                 goto out;
900
901         rcu_read_lock();
902         tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
903         if (bc->shrink_iter >= tbl->size)
904                 bc->shrink_iter = 0;
905         start = bc->shrink_iter;
906
907         do {
908                 struct rhash_head *pos, *next;
909
910                 pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
911
912                 while (!rht_is_a_nulls(pos)) {
913                         next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
914                         ck = container_of(pos, struct bkey_cached, hash);
915
916                         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags))
917                                 goto next;
918
919                         if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
920                                 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
921                         else if (bkey_cached_lock_for_evict(ck)) {
922                                 bkey_cached_evict(bc, ck);
923                                 bkey_cached_free(bc, ck);
924                         }
925
926                         scanned++;
927                         if (scanned >= nr)
928                                 break;
929 next:
930                         pos = next;
931                 }
932
933                 bc->shrink_iter++;
934                 if (bc->shrink_iter >= tbl->size)
935                         bc->shrink_iter = 0;
936         } while (scanned < nr && bc->shrink_iter != start);
937
938         rcu_read_unlock();
939 out:
940         memalloc_nofs_restore(flags);
941         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
942         mutex_unlock(&bc->lock);
943
944         return freed;
945 }
946
947 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
948                                             struct shrink_control *sc)
949 {
950         struct bch_fs *c = container_of(shrink, struct bch_fs,
951                                         btree_key_cache.shrink);
952         struct btree_key_cache *bc = &c->btree_key_cache;
953         long nr = atomic_long_read(&bc->nr_keys) -
954                 atomic_long_read(&bc->nr_dirty);
955
956         return max(0L, nr);
957 }
958
959 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
960 {
961         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
962         struct bucket_table *tbl;
963         struct bkey_cached *ck, *n;
964         struct rhash_head *pos;
965         LIST_HEAD(items);
966         unsigned i;
967 #ifdef __KERNEL__
968         int cpu;
969 #endif
970
971         if (bc->shrink.list.next)
972                 unregister_shrinker(&bc->shrink);
973
974         mutex_lock(&bc->lock);
975
976         /*
977          * The loop is needed to guard against racing with rehash:
978          */
979         while (atomic_long_read(&bc->nr_keys)) {
980                 rcu_read_lock();
981                 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
982                 if (tbl)
983                         for (i = 0; i < tbl->size; i++)
984                                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
985                                         bkey_cached_evict(bc, ck);
986                                         list_add(&ck->list, &items);
987                                 }
988                 rcu_read_unlock();
989         }
990
991 #ifdef __KERNEL__
992         for_each_possible_cpu(cpu) {
993                 struct btree_key_cache_freelist *f =
994                         per_cpu_ptr(bc->pcpu_freed, cpu);
995
996                 for (i = 0; i < f->nr; i++) {
997                         ck = f->objs[i];
998                         list_add(&ck->list, &items);
999                 }
1000         }
1001 #endif
1002
1003         list_splice(&bc->freed_pcpu,    &items);
1004         list_splice(&bc->freed_nonpcpu, &items);
1005
1006         mutex_unlock(&bc->lock);
1007
1008         list_for_each_entry_safe(ck, n, &items, list) {
1009                 cond_resched();
1010
1011                 bch2_journal_pin_drop(&c->journal, &ck->journal);
1012                 bch2_journal_preres_put(&c->journal, &ck->res);
1013
1014                 list_del(&ck->list);
1015                 kfree(ck->k);
1016                 six_lock_pcpu_free(&ck->c.lock);
1017                 kmem_cache_free(bch2_key_cache, ck);
1018         }
1019
1020         if (atomic_long_read(&bc->nr_dirty) &&
1021             !bch2_journal_error(&c->journal) &&
1022             test_bit(BCH_FS_WAS_RW, &c->flags))
1023                 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
1024                       atomic_long_read(&bc->nr_dirty));
1025
1026         if (atomic_long_read(&bc->nr_keys))
1027                 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
1028                       atomic_long_read(&bc->nr_keys));
1029
1030         if (bc->table_init_done)
1031                 rhashtable_destroy(&bc->table);
1032
1033         free_percpu(bc->pcpu_freed);
1034 }
1035
1036 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
1037 {
1038         mutex_init(&c->lock);
1039         INIT_LIST_HEAD(&c->freed_pcpu);
1040         INIT_LIST_HEAD(&c->freed_nonpcpu);
1041 }
1042
1043 static void bch2_btree_key_cache_shrinker_to_text(struct seq_buf *s, struct shrinker *shrink)
1044 {
1045         struct btree_key_cache *bc =
1046                 container_of(shrink, struct btree_key_cache, shrink);
1047         char *cbuf;
1048         size_t buflen = seq_buf_get_buf(s, &cbuf);
1049         struct printbuf out = PRINTBUF_EXTERN(cbuf, buflen);
1050
1051         bch2_btree_key_cache_to_text(&out, bc);
1052         seq_buf_commit(s, out.pos);
1053 }
1054
1055 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
1056 {
1057         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1058
1059 #ifdef __KERNEL__
1060         bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
1061         if (!bc->pcpu_freed)
1062                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1063 #endif
1064
1065         if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
1066                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1067
1068         bc->table_init_done = true;
1069
1070         bc->shrink.seeks                = 0;
1071         bc->shrink.count_objects        = bch2_btree_key_cache_count;
1072         bc->shrink.scan_objects         = bch2_btree_key_cache_scan;
1073         bc->shrink.to_text              = bch2_btree_key_cache_shrinker_to_text;
1074         if (register_shrinker(&bc->shrink, "%s/btree_key_cache", c->name))
1075                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1076         return 0;
1077 }
1078
1079 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
1080 {
1081         prt_printf(out, "nr_freed:\t%zu",       atomic_long_read(&c->nr_freed));
1082         prt_newline(out);
1083         prt_printf(out, "nr_keys:\t%lu",        atomic_long_read(&c->nr_keys));
1084         prt_newline(out);
1085         prt_printf(out, "nr_dirty:\t%lu",       atomic_long_read(&c->nr_dirty));
1086         prt_newline(out);
1087 }
1088
1089 void bch2_btree_key_cache_exit(void)
1090 {
1091         kmem_cache_destroy(bch2_key_cache);
1092 }
1093
1094 int __init bch2_btree_key_cache_init(void)
1095 {
1096         bch2_key_cache = KMEM_CACHE(bkey_cached, 0);
1097         if (!bch2_key_cache)
1098                 return -ENOMEM;
1099
1100         return 0;
1101 }