]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_types.h
Update bcachefs sources to 0a9f0fc68a bcachefs: Don't unconditially version_upgrade...
[bcachefs-tools-debian] / libbcachefs / btree_types.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_TYPES_H
3 #define _BCACHEFS_BTREE_TYPES_H
4
5 #include <linux/list.h>
6 #include <linux/rhashtable.h>
7 #include <linux/six.h>
8
9 #include "bkey_methods.h"
10 #include "buckets_types.h"
11 #include "journal_types.h"
12
13 struct open_bucket;
14 struct btree_update;
15 struct btree_trans;
16
17 #define MAX_BSETS               3U
18
19 struct btree_nr_keys {
20
21         /*
22          * Amount of live metadata (i.e. size of node after a compaction) in
23          * units of u64s
24          */
25         u16                     live_u64s;
26         u16                     bset_u64s[MAX_BSETS];
27
28         /* live keys only: */
29         u16                     packed_keys;
30         u16                     unpacked_keys;
31 };
32
33 struct bset_tree {
34         /*
35          * We construct a binary tree in an array as if the array
36          * started at 1, so that things line up on the same cachelines
37          * better: see comments in bset.c at cacheline_to_bkey() for
38          * details
39          */
40
41         /* size of the binary tree and prev array */
42         u16                     size;
43
44         /* function of size - precalculated for to_inorder() */
45         u16                     extra;
46
47         u16                     data_offset;
48         u16                     aux_data_offset;
49         u16                     end_offset;
50
51         struct bpos             max_key;
52 };
53
54 struct btree_write {
55         struct journal_entry_pin        journal;
56 };
57
58 struct btree_alloc {
59         struct open_buckets     ob;
60         __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX);
61 };
62
63 struct btree_bkey_cached_common {
64         struct six_lock         lock;
65         u8                      level;
66         u8                      btree_id;
67 };
68
69 struct btree {
70         struct btree_bkey_cached_common c;
71
72         struct rhash_head       hash;
73         u64                     hash_val;
74
75         unsigned long           flags;
76         u16                     written;
77         u8                      nsets;
78         u8                      nr_key_bits;
79         u16                     version_ondisk;
80
81         struct bkey_format      format;
82
83         struct btree_node       *data;
84         void                    *aux_data;
85
86         /*
87          * Sets of sorted keys - the real btree node - plus a binary search tree
88          *
89          * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
90          * to the memory we have allocated for this btree node. Additionally,
91          * set[0]->data points to the entire btree node as it exists on disk.
92          */
93         struct bset_tree        set[MAX_BSETS];
94
95         struct btree_nr_keys    nr;
96         u16                     sib_u64s[2];
97         u16                     whiteout_u64s;
98         u8                      byte_order;
99         u8                      unpack_fn_len;
100
101         /*
102          * XXX: add a delete sequence number, so when bch2_btree_node_relock()
103          * fails because the lock sequence number has changed - i.e. the
104          * contents were modified - we can still relock the node if it's still
105          * the one we want, without redoing the traversal
106          */
107
108         /*
109          * For asynchronous splits/interior node updates:
110          * When we do a split, we allocate new child nodes and update the parent
111          * node to point to them: we update the parent in memory immediately,
112          * but then we must wait until the children have been written out before
113          * the update to the parent can be written - this is a list of the
114          * btree_updates that are blocking this node from being
115          * written:
116          */
117         struct list_head        write_blocked;
118
119         /*
120          * Also for asynchronous splits/interior node updates:
121          * If a btree node isn't reachable yet, we don't want to kick off
122          * another write - because that write also won't yet be reachable and
123          * marking it as completed before it's reachable would be incorrect:
124          */
125         unsigned long           will_make_reachable;
126
127         struct open_buckets     ob;
128
129         /* lru list */
130         struct list_head        list;
131
132         struct btree_write      writes[2];
133
134         /* Key/pointer for this btree node */
135         __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
136 };
137
138 struct btree_cache {
139         struct rhashtable       table;
140         bool                    table_init_done;
141         /*
142          * We never free a struct btree, except on shutdown - we just put it on
143          * the btree_cache_freed list and reuse it later. This simplifies the
144          * code, and it doesn't cost us much memory as the memory usage is
145          * dominated by buffers that hold the actual btree node data and those
146          * can be freed - and the number of struct btrees allocated is
147          * effectively bounded.
148          *
149          * btree_cache_freeable effectively is a small cache - we use it because
150          * high order page allocations can be rather expensive, and it's quite
151          * common to delete and allocate btree nodes in quick succession. It
152          * should never grow past ~2-3 nodes in practice.
153          */
154         struct mutex            lock;
155         struct list_head        live;
156         struct list_head        freeable;
157         struct list_head        freed;
158
159         /* Number of elements in live + freeable lists */
160         unsigned                used;
161         unsigned                reserve;
162         atomic_t                dirty;
163         struct shrinker         shrink;
164
165         /*
166          * If we need to allocate memory for a new btree node and that
167          * allocation fails, we can cannibalize another node in the btree cache
168          * to satisfy the allocation - lock to guarantee only one thread does
169          * this at a time:
170          */
171         struct task_struct      *alloc_lock;
172         struct closure_waitlist alloc_wait;
173 };
174
175 struct btree_node_iter {
176         struct btree_node_iter_set {
177                 u16     k, end;
178         } data[MAX_BSETS];
179 };
180
181 enum btree_iter_type {
182         BTREE_ITER_KEYS,
183         BTREE_ITER_NODES,
184         BTREE_ITER_CACHED,
185 };
186
187 #define BTREE_ITER_TYPE                 ((1 << 2) - 1)
188
189 /*
190  * Iterate over all possible positions, synthesizing deleted keys for holes:
191  */
192 #define BTREE_ITER_SLOTS                (1 << 2)
193 /*
194  * Indicates that intent locks should be taken on leaf nodes, because we expect
195  * to be doing updates:
196  */
197 #define BTREE_ITER_INTENT               (1 << 3)
198 /*
199  * Causes the btree iterator code to prefetch additional btree nodes from disk:
200  */
201 #define BTREE_ITER_PREFETCH             (1 << 4)
202 /*
203  * Indicates that this iterator should not be reused until transaction commit,
204  * either because a pending update references it or because the update depends
205  * on that particular key being locked (e.g. by the str_hash code, for hash
206  * table consistency)
207  */
208 #define BTREE_ITER_KEEP_UNTIL_COMMIT    (1 << 5)
209 /*
210  * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for
211  * @pos or the first key strictly greater than @pos
212  */
213 #define BTREE_ITER_IS_EXTENTS           (1 << 6)
214 #define BTREE_ITER_ERROR                (1 << 7)
215 #define BTREE_ITER_SET_POS_AFTER_COMMIT (1 << 8)
216 #define BTREE_ITER_CACHED_NOFILL        (1 << 9)
217 #define BTREE_ITER_CACHED_NOCREATE      (1 << 10)
218 #define BTREE_ITER_NOT_EXTENTS          (1 << 11)
219
220 enum btree_iter_uptodate {
221         BTREE_ITER_UPTODATE             = 0,
222         BTREE_ITER_NEED_PEEK            = 1,
223         BTREE_ITER_NEED_RELOCK          = 2,
224         BTREE_ITER_NEED_TRAVERSE        = 3,
225 };
226
227 #define BTREE_ITER_NO_NODE_GET_LOCKS    ((struct btree *) 1)
228 #define BTREE_ITER_NO_NODE_DROP         ((struct btree *) 2)
229 #define BTREE_ITER_NO_NODE_LOCK_ROOT    ((struct btree *) 3)
230 #define BTREE_ITER_NO_NODE_UP           ((struct btree *) 4)
231 #define BTREE_ITER_NO_NODE_DOWN         ((struct btree *) 5)
232 #define BTREE_ITER_NO_NODE_INIT         ((struct btree *) 6)
233 #define BTREE_ITER_NO_NODE_ERROR        ((struct btree *) 7)
234
235 /*
236  * @pos                 - iterator's current position
237  * @level               - current btree depth
238  * @locks_want          - btree level below which we start taking intent locks
239  * @nodes_locked        - bitmask indicating which nodes in @nodes are locked
240  * @nodes_intent_locked - bitmask indicating which locks are intent locks
241  */
242 struct btree_iter {
243         struct btree_trans      *trans;
244         struct bpos             pos;
245         /* what we're searching for/what the iterator actually points to: */
246         struct bpos             real_pos;
247         struct bpos             pos_after_commit;
248
249         u16                     flags;
250         u8                      idx;
251
252         enum btree_id           btree_id:4;
253         enum btree_iter_uptodate uptodate:4;
254         unsigned                level:4,
255                                 min_depth:4,
256                                 locks_want:4,
257                                 nodes_locked:4,
258                                 nodes_intent_locked:4;
259
260         struct btree_iter_level {
261                 struct btree    *b;
262                 struct btree_node_iter iter;
263                 u32             lock_seq;
264         }                       l[BTREE_MAX_DEPTH];
265
266         /*
267          * Current unpacked key - so that bch2_btree_iter_next()/
268          * bch2_btree_iter_next_slot() can correctly advance pos.
269          */
270         struct bkey             k;
271         unsigned long           ip_allocated;
272 };
273
274 static inline enum btree_iter_type
275 btree_iter_type(const struct btree_iter *iter)
276 {
277         return iter->flags & BTREE_ITER_TYPE;
278 }
279
280 static inline bool btree_iter_is_cached(const struct btree_iter *iter)
281 {
282         return btree_iter_type(iter) == BTREE_ITER_CACHED;
283 }
284
285 static inline struct btree_iter_level *iter_l(struct btree_iter *iter)
286 {
287         return iter->l + iter->level;
288 }
289
290 struct btree_key_cache {
291         struct mutex            lock;
292         struct rhashtable       table;
293         bool                    table_init_done;
294         struct list_head        freed;
295         struct list_head        clean;
296         struct list_head        dirty;
297         struct shrinker         shrink;
298
299         size_t                  nr_freed;
300         size_t                  nr_keys;
301         size_t                  nr_dirty;
302 };
303
304 struct bkey_cached_key {
305         u32                     btree_id;
306         struct bpos             pos;
307 } __attribute__((packed, aligned(4)));
308
309 #define BKEY_CACHED_ACCESSED            0
310 #define BKEY_CACHED_DIRTY               1
311
312 struct bkey_cached {
313         struct btree_bkey_cached_common c;
314
315         unsigned long           flags;
316         u8                      u64s;
317         bool                    valid;
318         u32                     btree_trans_barrier_seq;
319         struct bkey_cached_key  key;
320
321         struct rhash_head       hash;
322         struct list_head        list;
323
324         struct journal_preres   res;
325         struct journal_entry_pin journal;
326
327         struct bkey_i           *k;
328 };
329
330 struct btree_insert_entry {
331         unsigned                trigger_flags;
332         u8                      bkey_type;
333         u8                      btree_id;
334         u8                      level;
335         unsigned                trans_triggers_run:1;
336         unsigned                is_extent:1;
337         struct bkey_i           *k;
338         struct btree_iter       *iter;
339 };
340
341 #ifndef CONFIG_LOCKDEP
342 #define BTREE_ITER_MAX          64
343 #else
344 #define BTREE_ITER_MAX          32
345 #endif
346
347 struct btree_trans {
348         struct bch_fs           *c;
349 #ifdef CONFIG_BCACHEFS_DEBUG
350         struct list_head        list;
351         struct btree            *locking;
352         unsigned                locking_iter_idx;
353         struct bpos             locking_pos;
354         u8                      locking_btree_id;
355         u8                      locking_level;
356         pid_t                   pid;
357 #endif
358         unsigned long           ip;
359         int                     srcu_idx;
360
361         u8                      nr_updates;
362         u8                      nr_updates2;
363         unsigned                used_mempool:1;
364         unsigned                error:1;
365         unsigned                nounlock:1;
366         unsigned                in_traverse_all:1;
367
368         u64                     iters_linked;
369         u64                     iters_live;
370         u64                     iters_touched;
371
372         unsigned                mem_top;
373         unsigned                mem_bytes;
374         void                    *mem;
375
376         struct btree_iter       *iters;
377         struct btree_insert_entry *updates;
378         struct btree_insert_entry *updates2;
379
380         /* update path: */
381         struct jset_entry       *extra_journal_entries;
382         unsigned                extra_journal_entry_u64s;
383         struct journal_entry_pin *journal_pin;
384
385         struct journal_res      journal_res;
386         struct journal_preres   journal_preres;
387         u64                     *journal_seq;
388         struct disk_reservation *disk_res;
389         unsigned                flags;
390         unsigned                journal_u64s;
391         unsigned                journal_preres_u64s;
392         struct replicas_delta_list *fs_usage_deltas;
393 };
394
395 #define BTREE_FLAG(flag)                                                \
396 static inline bool btree_node_ ## flag(struct btree *b)                 \
397 {       return test_bit(BTREE_NODE_ ## flag, &b->flags); }              \
398                                                                         \
399 static inline void set_btree_node_ ## flag(struct btree *b)             \
400 {       set_bit(BTREE_NODE_ ## flag, &b->flags); }                      \
401                                                                         \
402 static inline void clear_btree_node_ ## flag(struct btree *b)           \
403 {       clear_bit(BTREE_NODE_ ## flag, &b->flags); }
404
405 enum btree_flags {
406         BTREE_NODE_read_in_flight,
407         BTREE_NODE_read_error,
408         BTREE_NODE_dirty,
409         BTREE_NODE_need_write,
410         BTREE_NODE_noevict,
411         BTREE_NODE_write_idx,
412         BTREE_NODE_accessed,
413         BTREE_NODE_write_in_flight,
414         BTREE_NODE_just_written,
415         BTREE_NODE_dying,
416         BTREE_NODE_fake,
417         BTREE_NODE_need_rewrite,
418         BTREE_NODE_never_write,
419 };
420
421 BTREE_FLAG(read_in_flight);
422 BTREE_FLAG(read_error);
423 BTREE_FLAG(need_write);
424 BTREE_FLAG(noevict);
425 BTREE_FLAG(write_idx);
426 BTREE_FLAG(accessed);
427 BTREE_FLAG(write_in_flight);
428 BTREE_FLAG(just_written);
429 BTREE_FLAG(dying);
430 BTREE_FLAG(fake);
431 BTREE_FLAG(need_rewrite);
432 BTREE_FLAG(never_write);
433
434 static inline struct btree_write *btree_current_write(struct btree *b)
435 {
436         return b->writes + btree_node_write_idx(b);
437 }
438
439 static inline struct btree_write *btree_prev_write(struct btree *b)
440 {
441         return b->writes + (btree_node_write_idx(b) ^ 1);
442 }
443
444 static inline struct bset_tree *bset_tree_last(struct btree *b)
445 {
446         EBUG_ON(!b->nsets);
447         return b->set + b->nsets - 1;
448 }
449
450 static inline void *
451 __btree_node_offset_to_ptr(const struct btree *b, u16 offset)
452 {
453         return (void *) ((u64 *) b->data + 1 + offset);
454 }
455
456 static inline u16
457 __btree_node_ptr_to_offset(const struct btree *b, const void *p)
458 {
459         u16 ret = (u64 *) p - 1 - (u64 *) b->data;
460
461         EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
462         return ret;
463 }
464
465 static inline struct bset *bset(const struct btree *b,
466                                 const struct bset_tree *t)
467 {
468         return __btree_node_offset_to_ptr(b, t->data_offset);
469 }
470
471 static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
472 {
473         t->end_offset =
474                 __btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
475 }
476
477 static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
478                                   const struct bset *i)
479 {
480         t->data_offset = __btree_node_ptr_to_offset(b, i);
481         set_btree_bset_end(b, t);
482 }
483
484 static inline struct bset *btree_bset_first(struct btree *b)
485 {
486         return bset(b, b->set);
487 }
488
489 static inline struct bset *btree_bset_last(struct btree *b)
490 {
491         return bset(b, bset_tree_last(b));
492 }
493
494 static inline u16
495 __btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
496 {
497         return __btree_node_ptr_to_offset(b, k);
498 }
499
500 static inline struct bkey_packed *
501 __btree_node_offset_to_key(const struct btree *b, u16 k)
502 {
503         return __btree_node_offset_to_ptr(b, k);
504 }
505
506 static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
507 {
508         return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
509 }
510
511 #define btree_bkey_first(_b, _t)                                        \
512 ({                                                                      \
513         EBUG_ON(bset(_b, _t)->start !=                                  \
514                 __btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
515                                                                         \
516         bset(_b, _t)->start;                                            \
517 })
518
519 #define btree_bkey_last(_b, _t)                                         \
520 ({                                                                      \
521         EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) !=     \
522                 vstruct_last(bset(_b, _t)));                            \
523                                                                         \
524         __btree_node_offset_to_key(_b, (_t)->end_offset);               \
525 })
526
527 static inline unsigned bset_u64s(struct bset_tree *t)
528 {
529         return t->end_offset - t->data_offset -
530                 sizeof(struct bset) / sizeof(u64);
531 }
532
533 static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t)
534 {
535         return bset_u64s(t) - b->nr.bset_u64s[t - b->set];
536 }
537
538 static inline unsigned bset_byte_offset(struct btree *b, void *i)
539 {
540         return i - (void *) b->data;
541 }
542
543 enum btree_node_type {
544 #define x(kwd, val) BKEY_TYPE_##kwd = val,
545         BCH_BTREE_IDS()
546 #undef x
547         BKEY_TYPE_btree,
548 };
549
550 /* Type of a key in btree @id at level @level: */
551 static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id)
552 {
553         return level ? BKEY_TYPE_btree : (enum btree_node_type) id;
554 }
555
556 /* Type of keys @b contains: */
557 static inline enum btree_node_type btree_node_type(struct btree *b)
558 {
559         return __btree_node_type(b->c.level, b->c.btree_id);
560 }
561
562 static inline bool btree_node_type_is_extents(enum btree_node_type type)
563 {
564         switch (type) {
565         case BKEY_TYPE_extents:
566         case BKEY_TYPE_reflink:
567                 return true;
568         default:
569                 return false;
570         }
571 }
572
573 static inline bool btree_node_is_extents(struct btree *b)
574 {
575         return btree_node_type_is_extents(btree_node_type(b));
576 }
577
578 static inline enum btree_node_type btree_iter_key_type(struct btree_iter *iter)
579 {
580         return __btree_node_type(iter->level, iter->btree_id);
581 }
582
583 static inline bool btree_iter_is_extents(struct btree_iter *iter)
584 {
585         return btree_node_type_is_extents(btree_iter_key_type(iter));
586 }
587
588 #define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS              \
589         ((1U << BKEY_TYPE_extents)|                     \
590          (1U << BKEY_TYPE_inodes)|                      \
591          (1U << BKEY_TYPE_stripes)|                     \
592          (1U << BKEY_TYPE_reflink)|                     \
593          (1U << BKEY_TYPE_btree))
594
595 #define BTREE_NODE_TYPE_HAS_MEM_TRIGGERS                \
596         ((1U << BKEY_TYPE_alloc)|                       \
597          (1U << BKEY_TYPE_stripes))
598
599 #define BTREE_NODE_TYPE_HAS_TRIGGERS                    \
600         (BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS|            \
601          BTREE_NODE_TYPE_HAS_MEM_TRIGGERS)
602
603 enum btree_trigger_flags {
604         __BTREE_TRIGGER_NORUN,          /* Don't run triggers at all */
605
606         __BTREE_TRIGGER_INSERT,
607         __BTREE_TRIGGER_OVERWRITE,
608         __BTREE_TRIGGER_OVERWRITE_SPLIT,
609
610         __BTREE_TRIGGER_GC,
611         __BTREE_TRIGGER_BUCKET_INVALIDATE,
612         __BTREE_TRIGGER_NOATOMIC,
613 };
614
615 #define BTREE_TRIGGER_NORUN             (1U << __BTREE_TRIGGER_NORUN)
616
617 #define BTREE_TRIGGER_INSERT            (1U << __BTREE_TRIGGER_INSERT)
618 #define BTREE_TRIGGER_OVERWRITE         (1U << __BTREE_TRIGGER_OVERWRITE)
619 #define BTREE_TRIGGER_OVERWRITE_SPLIT   (1U << __BTREE_TRIGGER_OVERWRITE_SPLIT)
620
621 #define BTREE_TRIGGER_GC                (1U << __BTREE_TRIGGER_GC)
622 #define BTREE_TRIGGER_BUCKET_INVALIDATE (1U << __BTREE_TRIGGER_BUCKET_INVALIDATE)
623 #define BTREE_TRIGGER_NOATOMIC          (1U << __BTREE_TRIGGER_NOATOMIC)
624
625 static inline bool btree_node_type_needs_gc(enum btree_node_type type)
626 {
627         return BTREE_NODE_TYPE_HAS_TRIGGERS & (1U << type);
628 }
629
630 struct btree_root {
631         struct btree            *b;
632
633         /* On disk root - see async splits: */
634         __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
635         u8                      level;
636         u8                      alive;
637         s8                      error;
638 };
639
640 /*
641  * Optional hook that will be called just prior to a btree node update, when
642  * we're holding the write lock and we know what key is about to be overwritten:
643  */
644
645 enum btree_insert_ret {
646         BTREE_INSERT_OK,
647         /* leaf node needs to be split */
648         BTREE_INSERT_BTREE_NODE_FULL,
649         BTREE_INSERT_ENOSPC,
650         BTREE_INSERT_NEED_MARK_REPLICAS,
651         BTREE_INSERT_NEED_JOURNAL_RES,
652         BTREE_INSERT_NEED_JOURNAL_RECLAIM,
653 };
654
655 enum btree_gc_coalesce_fail_reason {
656         BTREE_GC_COALESCE_FAIL_RESERVE_GET,
657         BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
658         BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
659 };
660
661 enum btree_node_sibling {
662         btree_prev_sib,
663         btree_next_sib,
664 };
665
666 typedef struct btree_nr_keys (*sort_fix_overlapping_fn)(struct bset *,
667                                                         struct btree *,
668                                                         struct btree_node_iter *);
669
670 #endif /* _BCACHEFS_BTREE_TYPES_H */