]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_types.h
Update bcachefs sources to 275cba438e bcachefs: Fix inodes pass in fsck
[bcachefs-tools-debian] / libbcachefs / btree_types.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_TYPES_H
3 #define _BCACHEFS_BTREE_TYPES_H
4
5 #include <linux/list.h>
6 #include <linux/rhashtable.h>
7 #include <linux/six.h>
8
9 #include "bkey_methods.h"
10 #include "buckets_types.h"
11 #include "journal_types.h"
12
13 struct open_bucket;
14 struct btree_update;
15 struct btree_trans;
16
17 #define MAX_BSETS               3U
18
19 struct btree_nr_keys {
20
21         /*
22          * Amount of live metadata (i.e. size of node after a compaction) in
23          * units of u64s
24          */
25         u16                     live_u64s;
26         u16                     bset_u64s[MAX_BSETS];
27
28         /* live keys only: */
29         u16                     packed_keys;
30         u16                     unpacked_keys;
31 };
32
33 struct bset_tree {
34         /*
35          * We construct a binary tree in an array as if the array
36          * started at 1, so that things line up on the same cachelines
37          * better: see comments in bset.c at cacheline_to_bkey() for
38          * details
39          */
40
41         /* size of the binary tree and prev array */
42         u16                     size;
43
44         /* function of size - precalculated for to_inorder() */
45         u16                     extra;
46
47         u16                     data_offset;
48         u16                     aux_data_offset;
49         u16                     end_offset;
50
51         struct bpos             max_key;
52 };
53
54 struct btree_write {
55         struct journal_entry_pin        journal;
56 };
57
58 struct btree_alloc {
59         struct open_buckets     ob;
60         BKEY_PADDED(k);
61 };
62
63 struct btree {
64         /* Hottest entries first */
65         struct rhash_head       hash;
66         u64                     hash_val;
67
68         struct six_lock         lock;
69
70         unsigned long           flags;
71         u16                     written;
72         u8                      level;
73         u8                      btree_id;
74         u8                      nsets;
75         u8                      nr_key_bits;
76
77         struct bkey_format      format;
78
79         struct btree_node       *data;
80         void                    *aux_data;
81
82         /*
83          * Sets of sorted keys - the real btree node - plus a binary search tree
84          *
85          * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
86          * to the memory we have allocated for this btree node. Additionally,
87          * set[0]->data points to the entire btree node as it exists on disk.
88          */
89         struct bset_tree        set[MAX_BSETS];
90
91         struct btree_nr_keys    nr;
92         u16                     sib_u64s[2];
93         u16                     whiteout_u64s;
94         u8                      page_order;
95         u8                      unpack_fn_len;
96
97         /*
98          * XXX: add a delete sequence number, so when bch2_btree_node_relock()
99          * fails because the lock sequence number has changed - i.e. the
100          * contents were modified - we can still relock the node if it's still
101          * the one we want, without redoing the traversal
102          */
103
104         /*
105          * For asynchronous splits/interior node updates:
106          * When we do a split, we allocate new child nodes and update the parent
107          * node to point to them: we update the parent in memory immediately,
108          * but then we must wait until the children have been written out before
109          * the update to the parent can be written - this is a list of the
110          * btree_updates that are blocking this node from being
111          * written:
112          */
113         struct list_head        write_blocked;
114
115         /*
116          * Also for asynchronous splits/interior node updates:
117          * If a btree node isn't reachable yet, we don't want to kick off
118          * another write - because that write also won't yet be reachable and
119          * marking it as completed before it's reachable would be incorrect:
120          */
121         unsigned long           will_make_reachable;
122
123         struct open_buckets     ob;
124
125         /* lru list */
126         struct list_head        list;
127
128         struct btree_write      writes[2];
129
130 #ifdef CONFIG_BCACHEFS_DEBUG
131         bool                    *expensive_debug_checks;
132 #endif
133
134         /* Key/pointer for this btree node */
135         __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
136 };
137
138 struct btree_cache {
139         struct rhashtable       table;
140         bool                    table_init_done;
141         /*
142          * We never free a struct btree, except on shutdown - we just put it on
143          * the btree_cache_freed list and reuse it later. This simplifies the
144          * code, and it doesn't cost us much memory as the memory usage is
145          * dominated by buffers that hold the actual btree node data and those
146          * can be freed - and the number of struct btrees allocated is
147          * effectively bounded.
148          *
149          * btree_cache_freeable effectively is a small cache - we use it because
150          * high order page allocations can be rather expensive, and it's quite
151          * common to delete and allocate btree nodes in quick succession. It
152          * should never grow past ~2-3 nodes in practice.
153          */
154         struct mutex            lock;
155         struct list_head        live;
156         struct list_head        freeable;
157         struct list_head        freed;
158
159         /* Number of elements in live + freeable lists */
160         unsigned                used;
161         unsigned                reserve;
162         struct shrinker         shrink;
163
164         /*
165          * If we need to allocate memory for a new btree node and that
166          * allocation fails, we can cannibalize another node in the btree cache
167          * to satisfy the allocation - lock to guarantee only one thread does
168          * this at a time:
169          */
170         struct task_struct      *alloc_lock;
171         struct closure_waitlist alloc_wait;
172 };
173
174 struct btree_node_iter {
175         struct btree_node_iter_set {
176                 u16     k, end;
177         } data[MAX_BSETS];
178 };
179
180 enum btree_iter_type {
181         BTREE_ITER_KEYS,
182         BTREE_ITER_NODES,
183 };
184
185 #define BTREE_ITER_TYPE                 ((1 << 2) - 1)
186
187 /*
188  * Iterate over all possible positions, synthesizing deleted keys for holes:
189  */
190 #define BTREE_ITER_SLOTS                (1 << 2)
191 /*
192  * Indicates that intent locks should be taken on leaf nodes, because we expect
193  * to be doing updates:
194  */
195 #define BTREE_ITER_INTENT               (1 << 3)
196 /*
197  * Causes the btree iterator code to prefetch additional btree nodes from disk:
198  */
199 #define BTREE_ITER_PREFETCH             (1 << 4)
200 /*
201  * Indicates that this iterator should not be reused until transaction commit,
202  * either because a pending update references it or because the update depends
203  * on that particular key being locked (e.g. by the str_hash code, for hash
204  * table consistency)
205  */
206 #define BTREE_ITER_KEEP_UNTIL_COMMIT    (1 << 5)
207 /*
208  * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for
209  * @pos or the first key strictly greater than @pos
210  */
211 #define BTREE_ITER_IS_EXTENTS           (1 << 6)
212 #define BTREE_ITER_ERROR                (1 << 7)
213 #define BTREE_ITER_SET_POS_AFTER_COMMIT (1 << 8)
214
215 enum btree_iter_uptodate {
216         BTREE_ITER_UPTODATE             = 0,
217         BTREE_ITER_NEED_PEEK            = 1,
218         BTREE_ITER_NEED_RELOCK          = 2,
219         BTREE_ITER_NEED_TRAVERSE        = 3,
220 };
221
222 /*
223  * @pos                 - iterator's current position
224  * @level               - current btree depth
225  * @locks_want          - btree level below which we start taking intent locks
226  * @nodes_locked        - bitmask indicating which nodes in @nodes are locked
227  * @nodes_intent_locked - bitmask indicating which locks are intent locks
228  */
229 struct btree_iter {
230         struct btree_trans      *trans;
231         struct bpos             pos;
232         struct bpos             pos_after_commit;
233
234         u16                     flags;
235         u8                      idx;
236
237         enum btree_id           btree_id:4;
238         enum btree_iter_uptodate uptodate:4;
239         unsigned                level:4,
240                                 min_depth:4,
241                                 locks_want:4,
242                                 nodes_locked:4,
243                                 nodes_intent_locked:4;
244
245         struct btree_iter_level {
246                 struct btree    *b;
247                 struct btree_node_iter iter;
248                 u32             lock_seq;
249         }                       l[BTREE_MAX_DEPTH];
250
251         /*
252          * Current unpacked key - so that bch2_btree_iter_next()/
253          * bch2_btree_iter_next_slot() can correctly advance pos.
254          */
255         struct bkey             k;
256 };
257
258 static inline enum btree_iter_type btree_iter_type(struct btree_iter *iter)
259 {
260         return iter->flags & BTREE_ITER_TYPE;
261 }
262
263 static inline struct btree_iter_level *iter_l(struct btree_iter *iter)
264 {
265         return iter->l + iter->level;
266 }
267
268 struct btree_insert_entry {
269         unsigned                trigger_flags;
270         unsigned                trans_triggers_run:1;
271         struct bkey_i           *k;
272         struct btree_iter       *iter;
273 };
274
275 #ifndef CONFIG_LOCKDEP
276 #define BTREE_ITER_MAX          64
277 #else
278 #define BTREE_ITER_MAX          32
279 #endif
280
281 struct btree_trans {
282         struct bch_fs           *c;
283         unsigned long           ip;
284
285         u64                     iters_linked;
286         u64                     iters_live;
287         u64                     iters_touched;
288
289         u8                      nr_iters;
290         u8                      nr_updates;
291         u8                      nr_updates2;
292         u8                      size;
293         unsigned                used_mempool:1;
294         unsigned                error:1;
295         unsigned                nounlock:1;
296         unsigned                need_reset:1;
297
298         unsigned                mem_top;
299         unsigned                mem_bytes;
300         void                    *mem;
301
302         struct btree_iter       *iters;
303         struct btree_insert_entry *updates;
304         struct btree_insert_entry *updates2;
305
306         /* update path: */
307         struct journal_res      journal_res;
308         struct journal_preres   journal_preres;
309         u64                     *journal_seq;
310         struct disk_reservation *disk_res;
311         unsigned                flags;
312         unsigned                journal_u64s;
313         unsigned                journal_preres_u64s;
314         struct replicas_delta_list *fs_usage_deltas;
315
316         struct btree_iter       iters_onstack[2];
317         struct btree_insert_entry updates_onstack[2];
318         struct btree_insert_entry updates2_onstack[2];
319 };
320
321 #define BTREE_FLAG(flag)                                                \
322 static inline bool btree_node_ ## flag(struct btree *b)                 \
323 {       return test_bit(BTREE_NODE_ ## flag, &b->flags); }              \
324                                                                         \
325 static inline void set_btree_node_ ## flag(struct btree *b)             \
326 {       set_bit(BTREE_NODE_ ## flag, &b->flags); }                      \
327                                                                         \
328 static inline void clear_btree_node_ ## flag(struct btree *b)           \
329 {       clear_bit(BTREE_NODE_ ## flag, &b->flags); }
330
331 enum btree_flags {
332         BTREE_NODE_read_in_flight,
333         BTREE_NODE_read_error,
334         BTREE_NODE_dirty,
335         BTREE_NODE_need_write,
336         BTREE_NODE_noevict,
337         BTREE_NODE_write_idx,
338         BTREE_NODE_accessed,
339         BTREE_NODE_write_in_flight,
340         BTREE_NODE_just_written,
341         BTREE_NODE_dying,
342         BTREE_NODE_fake,
343         BTREE_NODE_old_extent_overwrite,
344 };
345
346 BTREE_FLAG(read_in_flight);
347 BTREE_FLAG(read_error);
348 BTREE_FLAG(dirty);
349 BTREE_FLAG(need_write);
350 BTREE_FLAG(noevict);
351 BTREE_FLAG(write_idx);
352 BTREE_FLAG(accessed);
353 BTREE_FLAG(write_in_flight);
354 BTREE_FLAG(just_written);
355 BTREE_FLAG(dying);
356 BTREE_FLAG(fake);
357 BTREE_FLAG(old_extent_overwrite);
358
359 static inline struct btree_write *btree_current_write(struct btree *b)
360 {
361         return b->writes + btree_node_write_idx(b);
362 }
363
364 static inline struct btree_write *btree_prev_write(struct btree *b)
365 {
366         return b->writes + (btree_node_write_idx(b) ^ 1);
367 }
368
369 static inline struct bset_tree *bset_tree_last(struct btree *b)
370 {
371         EBUG_ON(!b->nsets);
372         return b->set + b->nsets - 1;
373 }
374
375 static inline void *
376 __btree_node_offset_to_ptr(const struct btree *b, u16 offset)
377 {
378         return (void *) ((u64 *) b->data + 1 + offset);
379 }
380
381 static inline u16
382 __btree_node_ptr_to_offset(const struct btree *b, const void *p)
383 {
384         u16 ret = (u64 *) p - 1 - (u64 *) b->data;
385
386         EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
387         return ret;
388 }
389
390 static inline struct bset *bset(const struct btree *b,
391                                 const struct bset_tree *t)
392 {
393         return __btree_node_offset_to_ptr(b, t->data_offset);
394 }
395
396 static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
397 {
398         t->end_offset =
399                 __btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
400 }
401
402 static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
403                                   const struct bset *i)
404 {
405         t->data_offset = __btree_node_ptr_to_offset(b, i);
406         set_btree_bset_end(b, t);
407 }
408
409 static inline struct bset *btree_bset_first(struct btree *b)
410 {
411         return bset(b, b->set);
412 }
413
414 static inline struct bset *btree_bset_last(struct btree *b)
415 {
416         return bset(b, bset_tree_last(b));
417 }
418
419 static inline u16
420 __btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
421 {
422         return __btree_node_ptr_to_offset(b, k);
423 }
424
425 static inline struct bkey_packed *
426 __btree_node_offset_to_key(const struct btree *b, u16 k)
427 {
428         return __btree_node_offset_to_ptr(b, k);
429 }
430
431 static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
432 {
433         return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
434 }
435
436 #define btree_bkey_first(_b, _t)                                        \
437 ({                                                                      \
438         EBUG_ON(bset(_b, _t)->start !=                                  \
439                 __btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
440                                                                         \
441         bset(_b, _t)->start;                                            \
442 })
443
444 #define btree_bkey_last(_b, _t)                                         \
445 ({                                                                      \
446         EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) !=     \
447                 vstruct_last(bset(_b, _t)));                            \
448                                                                         \
449         __btree_node_offset_to_key(_b, (_t)->end_offset);               \
450 })
451
452 static inline unsigned bset_u64s(struct bset_tree *t)
453 {
454         return t->end_offset - t->data_offset -
455                 sizeof(struct bset) / sizeof(u64);
456 }
457
458 static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t)
459 {
460         return bset_u64s(t) - b->nr.bset_u64s[t - b->set];
461 }
462
463 static inline unsigned bset_byte_offset(struct btree *b, void *i)
464 {
465         return i - (void *) b->data;
466 }
467
468 enum btree_node_type {
469 #define x(kwd, val, name) BKEY_TYPE_##kwd = val,
470         BCH_BTREE_IDS()
471 #undef x
472         BKEY_TYPE_BTREE,
473 };
474
475 /* Type of a key in btree @id at level @level: */
476 static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id)
477 {
478         return level ? BKEY_TYPE_BTREE : (enum btree_node_type) id;
479 }
480
481 /* Type of keys @b contains: */
482 static inline enum btree_node_type btree_node_type(struct btree *b)
483 {
484         return __btree_node_type(b->level, b->btree_id);
485 }
486
487 static inline bool btree_node_type_is_extents(enum btree_node_type type)
488 {
489         switch (type) {
490         case BKEY_TYPE_EXTENTS:
491         case BKEY_TYPE_REFLINK:
492                 return true;
493         default:
494                 return false;
495         }
496 }
497
498 static inline bool btree_node_is_extents(struct btree *b)
499 {
500         return btree_node_type_is_extents(btree_node_type(b));
501 }
502
503 #define BTREE_NODE_TYPE_HAS_TRIGGERS                    \
504         ((1U << BKEY_TYPE_EXTENTS)|                     \
505          (1U << BKEY_TYPE_ALLOC)|                       \
506          (1U << BKEY_TYPE_INODES)|                      \
507          (1U << BKEY_TYPE_REFLINK)|                     \
508          (1U << BKEY_TYPE_EC)|                          \
509          (1U << BKEY_TYPE_BTREE))
510
511 #define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS              \
512         ((1U << BKEY_TYPE_EXTENTS)|                     \
513          (1U << BKEY_TYPE_INODES)|                      \
514          (1U << BKEY_TYPE_REFLINK))
515
516 enum btree_trigger_flags {
517         __BTREE_TRIGGER_NORUN,          /* Don't run triggers at all */
518         __BTREE_TRIGGER_NOOVERWRITES,   /* Don't run triggers on overwrites */
519
520         __BTREE_TRIGGER_INSERT,
521         __BTREE_TRIGGER_OVERWRITE,
522         __BTREE_TRIGGER_OVERWRITE_SPLIT,
523
524         __BTREE_TRIGGER_GC,
525         __BTREE_TRIGGER_BUCKET_INVALIDATE,
526         __BTREE_TRIGGER_ALLOC_READ,
527         __BTREE_TRIGGER_NOATOMIC,
528 };
529
530 #define BTREE_TRIGGER_NORUN             (1U << __BTREE_TRIGGER_NORUN)
531 #define BTREE_TRIGGER_NOOVERWRITES      (1U << __BTREE_TRIGGER_NOOVERWRITES)
532
533 #define BTREE_TRIGGER_INSERT            (1U << __BTREE_TRIGGER_INSERT)
534 #define BTREE_TRIGGER_OVERWRITE         (1U << __BTREE_TRIGGER_OVERWRITE)
535 #define BTREE_TRIGGER_OVERWRITE_SPLIT   (1U << __BTREE_TRIGGER_OVERWRITE_SPLIT)
536
537 #define BTREE_TRIGGER_GC                (1U << __BTREE_TRIGGER_GC)
538 #define BTREE_TRIGGER_BUCKET_INVALIDATE (1U << __BTREE_TRIGGER_BUCKET_INVALIDATE)
539 #define BTREE_TRIGGER_ALLOC_READ        (1U << __BTREE_TRIGGER_ALLOC_READ)
540 #define BTREE_TRIGGER_NOATOMIC          (1U << __BTREE_TRIGGER_NOATOMIC)
541
542 static inline bool btree_node_type_needs_gc(enum btree_node_type type)
543 {
544         return BTREE_NODE_TYPE_HAS_TRIGGERS & (1U << type);
545 }
546
547 struct btree_root {
548         struct btree            *b;
549
550         /* On disk root - see async splits: */
551         __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
552         u8                      level;
553         u8                      alive;
554         s8                      error;
555 };
556
557 /*
558  * Optional hook that will be called just prior to a btree node update, when
559  * we're holding the write lock and we know what key is about to be overwritten:
560  */
561
562 enum btree_insert_ret {
563         BTREE_INSERT_OK,
564         /* leaf node needs to be split */
565         BTREE_INSERT_BTREE_NODE_FULL,
566         BTREE_INSERT_ENOSPC,
567         BTREE_INSERT_NEED_MARK_REPLICAS,
568         BTREE_INSERT_NEED_JOURNAL_RES,
569 };
570
571 enum btree_gc_coalesce_fail_reason {
572         BTREE_GC_COALESCE_FAIL_RESERVE_GET,
573         BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
574         BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
575 };
576
577 enum btree_node_sibling {
578         btree_prev_sib,
579         btree_next_sib,
580 };
581
582 typedef struct btree_nr_keys (*sort_fix_overlapping_fn)(struct bset *,
583                                                         struct btree *,
584                                                         struct btree_node_iter *);
585
586 #endif /* _BCACHEFS_BTREE_TYPES_H */