]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update.c
d3d625d4977aaa7c8fdff4e1c0d8ac6ee72818db
[bcachefs-tools-debian] / libbcachefs / btree_update.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_update.h"
5 #include "btree_iter.h"
6 #include "btree_journal_iter.h"
7 #include "btree_locking.h"
8 #include "buckets.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "extents.h"
13 #include "keylist.h"
14 #include "snapshot.h"
15 #include "trace.h"
16
17 #include <linux/darray.h>
18
19 static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
20                                          const struct btree_insert_entry *r)
21 {
22         return   cmp_int(l->btree_id,   r->btree_id) ?:
23                  cmp_int(l->cached,     r->cached) ?:
24                  -cmp_int(l->level,     r->level) ?:
25                  bpos_cmp(l->k->k.p,    r->k->k.p);
26 }
27
28 static int __must_check
29 bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
30                           struct bkey_i *, enum btree_update_flags,
31                           unsigned long ip);
32
33 static noinline int extent_front_merge(struct btree_trans *trans,
34                                        struct btree_iter *iter,
35                                        struct bkey_s_c k,
36                                        struct bkey_i **insert,
37                                        enum btree_update_flags flags)
38 {
39         struct bch_fs *c = trans->c;
40         struct bkey_i *update;
41         int ret;
42
43         update = bch2_bkey_make_mut_noupdate(trans, k);
44         ret = PTR_ERR_OR_ZERO(update);
45         if (ret)
46                 return ret;
47
48         if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
49                 return 0;
50
51         ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?:
52                 bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p);
53         if (ret < 0)
54                 return ret;
55         if (ret)
56                 return 0;
57
58         ret = bch2_btree_delete_at(trans, iter, flags);
59         if (ret)
60                 return ret;
61
62         *insert = update;
63         return 0;
64 }
65
66 static noinline int extent_back_merge(struct btree_trans *trans,
67                                       struct btree_iter *iter,
68                                       struct bkey_i *insert,
69                                       struct bkey_s_c k)
70 {
71         struct bch_fs *c = trans->c;
72         int ret;
73
74         ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?:
75                 bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p);
76         if (ret < 0)
77                 return ret;
78         if (ret)
79                 return 0;
80
81         bch2_bkey_merge(c, bkey_i_to_s(insert), k);
82         return 0;
83 }
84
85 static struct bkey_s_c peek_slot_including_whiteouts(struct btree_trans *trans, struct btree_iter *iter,
86                                                      enum btree_id btree, struct bpos pos)
87 {
88         struct bkey_s_c k;
89         int ret;
90
91         for_each_btree_key_norestart(trans, *iter, btree, pos,
92                            BTREE_ITER_ALL_SNAPSHOTS|
93                            BTREE_ITER_NOPRESERVE, k, ret) {
94                 if (!bkey_eq(k.k->p, pos))
95                         break;
96                 if (bch2_snapshot_is_ancestor(trans->c, pos.snapshot, k.k->p.snapshot))
97                         return k;
98         }
99         bch2_trans_iter_exit(trans, iter);
100
101         return ret ? bkey_s_c_err(ret) : bkey_s_c_null;
102 }
103
104 /*
105  * When deleting, check if we need to emit a whiteout (because we're overwriting
106  * something in an ancestor snapshot)
107  */
108 static int need_whiteout_for_snapshot(struct btree_trans *trans, enum btree_id btree, struct bpos pos)
109 {
110         pos.snapshot = bch2_snapshot_parent(trans->c, pos.snapshot);
111         if (!pos.snapshot)
112                 return 0;
113
114         struct btree_iter iter;
115         struct bkey_s_c k = peek_slot_including_whiteouts(trans, &iter, btree, pos);
116         int ret = bkey_err(k) ?: k.k && !bkey_whiteout(k.k);
117         bch2_trans_iter_exit(trans, &iter);
118
119         return ret;
120 }
121
122 /*
123  * We're overwriting a key at @pos in snapshot @snapshot, so we need to insert a
124  * whiteout: that might be in @snapshot, or if there are overwites in sibling
125  * snapshots, find the common ancestor where @pos is overwritten in every
126  * descendent and insert the whiteout there - which might be at @pos.
127  */
128 static int delete_interior_snapshot_key(struct btree_trans *trans,
129                                         enum btree_id btree,
130                                         struct bpos whiteout, bool deleting,
131                                         struct bpos overwrite, bool old_is_whiteout)
132 {
133         struct bch_fs *c = trans->c;
134         struct bpos orig_whiteout = whiteout, sib = whiteout;
135         struct btree_iter iter;
136         struct bkey_s_c k;
137         int ret;
138
139         sib.snapshot = bch2_snapshot_sibling(c, sib.snapshot);
140
141         for_each_btree_key_norestart(trans, iter, btree, sib,
142                                      BTREE_ITER_ALL_SNAPSHOTS|BTREE_ITER_INTENT, k, ret) {
143                 BUG_ON(bpos_gt(k.k->p, overwrite));
144
145                 if (bpos_lt(k.k->p, sib)) /* unrelated branch - skip */
146                         continue;
147                 if (bpos_gt(k.k->p, sib)) /* did not find @sib */
148                         break;
149
150                 /* @overwrite is also written in @sib, now check parent */
151                 whiteout.snapshot = bch2_snapshot_parent(c, whiteout.snapshot);
152                 if (bpos_eq(whiteout, overwrite))
153                         break;
154
155                 sib = whiteout;
156                 sib.snapshot = bch2_snapshot_sibling(c, sib.snapshot);
157         }
158
159         if (ret)
160                 goto err;
161
162         if (!deleting && bpos_eq(whiteout, orig_whiteout))
163                 goto out;
164
165         if (!bpos_eq(iter.pos, whiteout)) {
166                 bch2_trans_iter_exit(trans, &iter);
167                 bch2_trans_iter_init(trans, &iter, btree, whiteout, BTREE_ITER_INTENT);
168                 k = bch2_btree_iter_peek_slot(&iter);
169                 ret = bkey_err(k);
170                 if (ret)
171                         goto err;
172         }
173
174         iter.flags &= ~BTREE_ITER_ALL_SNAPSHOTS;
175         iter.flags |= BTREE_ITER_FILTER_SNAPSHOTS;
176
177         struct bkey_i *delete = bch2_trans_kmalloc(trans, sizeof(*delete));
178         ret = PTR_ERR_OR_ZERO(delete);
179         if (ret)
180                 goto err;
181
182         bkey_init(&delete->k);
183         delete->k.p = whiteout;
184
185         ret = !bpos_eq(whiteout, overwrite)
186                 ? !old_is_whiteout
187                 : need_whiteout_for_snapshot(trans, btree, whiteout);
188         if (ret < 0)
189                 goto err;
190         if (ret)
191                 delete->k.type = KEY_TYPE_whiteout;
192
193         ret = bch2_trans_update(trans, &iter, delete,
194                                 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
195                                 BTREE_UPDATE_SNAPSHOT_WHITEOUT_CHECKS_DONE);
196 out:
197 err:
198         bch2_trans_iter_exit(trans, &iter);
199         return ret;
200 }
201
202 /*
203  * We're overwriting a key in a snapshot that has ancestors: if we're
204  * overwriting a key in a different snapshot, we need to check if it is now
205  * fully overritten and can be deleted, and if we're deleting a key in the
206  * current snapshot we need to check if we need to leave a whiteout.
207  */
208 static noinline int
209 overwrite_interior_snapshot_key(struct btree_trans *trans,
210                                 struct btree_iter *iter,
211                                 struct bkey_i *k)
212 {
213         struct bkey_s_c old = bch2_btree_iter_peek_slot(iter);
214
215         int ret = bkey_err(old);
216         if (ret)
217                 return ret;
218
219         if (!bkey_deleted(old.k)) {
220                 if (old.k->p.snapshot != k->k.p.snapshot) {
221                         /*
222                          * We're overwriting a key in a different snapshot:
223                          * check if it's also been overwritten in siblings
224                          */
225                         ret = delete_interior_snapshot_key(trans, iter->btree_id,
226                                                            k->k.p,   bkey_deleted(&k->k),
227                                                            old.k->p, bkey_whiteout(old.k));
228                         if (ret)
229                                 return ret;
230                         if (bkey_deleted(&k->k))
231                                 return 1;
232                 } else if (bkey_deleted(&k->k)) {
233                         /*
234                          * We're deleting a key in the current snapshot:
235                          * check if we need to leave a whiteout
236                          */
237                         ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
238                         if (unlikely(ret < 0))
239                                 return ret;
240                         if (ret)
241                                 k->k.type = KEY_TYPE_whiteout;
242                 }
243         }
244
245         return 0;
246 }
247
248 int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
249                                    enum btree_id id,
250                                    struct bpos old_pos,
251                                    struct bpos new_pos)
252 {
253         struct bch_fs *c = trans->c;
254         struct btree_iter old_iter, new_iter = { NULL };
255         struct bkey_s_c old_k, new_k;
256         snapshot_id_list s;
257         struct bkey_i *update;
258         int ret = 0;
259
260         if (!bch2_snapshot_has_children(c, old_pos.snapshot))
261                 return 0;
262
263         darray_init(&s);
264
265         bch2_trans_iter_init(trans, &old_iter, id, old_pos,
266                              BTREE_ITER_NOT_EXTENTS|
267                              BTREE_ITER_ALL_SNAPSHOTS);
268         while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
269                !(ret = bkey_err(old_k)) &&
270                bkey_eq(old_pos, old_k.k->p)) {
271                 struct bpos whiteout_pos =
272                         SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);;
273
274                 if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
275                     snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
276                         continue;
277
278                 new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
279                                            BTREE_ITER_NOT_EXTENTS|
280                                            BTREE_ITER_INTENT);
281                 ret = bkey_err(new_k);
282                 if (ret)
283                         break;
284
285                 if (new_k.k->type == KEY_TYPE_deleted) {
286                         update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
287                         ret = PTR_ERR_OR_ZERO(update);
288                         if (ret)
289                                 break;
290
291                         bkey_init(&update->k);
292                         update->k.p             = whiteout_pos;
293                         update->k.type          = KEY_TYPE_whiteout;
294
295                         ret = bch2_trans_update(trans, &new_iter, update,
296                                                 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
297                 }
298                 bch2_trans_iter_exit(trans, &new_iter);
299
300                 ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
301                 if (ret)
302                         break;
303         }
304         bch2_trans_iter_exit(trans, &new_iter);
305         bch2_trans_iter_exit(trans, &old_iter);
306         darray_exit(&s);
307
308         return ret;
309 }
310
311 int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
312                                        struct btree_iter *iter,
313                                        enum btree_update_flags flags,
314                                        struct bkey_s_c old,
315                                        struct bkey_s_c new)
316 {
317         enum btree_id btree_id = iter->btree_id;
318         struct bkey_i *update;
319         struct bpos new_start = bkey_start_pos(new.k);
320         unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start);
321         unsigned back_split  = bkey_gt(old.k->p, new.k->p);
322         unsigned middle_split = (front_split || back_split) &&
323                 old.k->p.snapshot != new.k->p.snapshot;
324         unsigned nr_splits = front_split + back_split + middle_split;
325         int ret = 0, compressed_sectors;
326
327         /*
328          * If we're going to be splitting a compressed extent, note it
329          * so that __bch2_trans_commit() can increase our disk
330          * reservation:
331          */
332         if (nr_splits > 1 &&
333             (compressed_sectors = bch2_bkey_sectors_compressed(old)))
334                 trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
335
336         if (front_split) {
337                 update = bch2_bkey_make_mut_noupdate(trans, old);
338                 if ((ret = PTR_ERR_OR_ZERO(update)))
339                         return ret;
340
341                 bch2_cut_back(new_start, update);
342
343                 ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
344                                         old.k->p, update->k.p) ?:
345                         bch2_btree_insert_nonextent(trans, btree_id, update,
346                                         BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
347                 if (ret)
348                         return ret;
349         }
350
351         /* If we're overwriting in a different snapshot - middle split: */
352         if (middle_split) {
353                 update = bch2_bkey_make_mut_noupdate(trans, old);
354                 if ((ret = PTR_ERR_OR_ZERO(update)))
355                         return ret;
356
357                 bch2_cut_front(new_start, update);
358                 bch2_cut_back(new.k->p, update);
359
360                 ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
361                                         old.k->p, update->k.p) ?:
362                         bch2_btree_insert_nonextent(trans, btree_id, update,
363                                           BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
364                 if (ret)
365                         return ret;
366         }
367
368         if (bkey_le(old.k->p, new.k->p)) {
369                 update = bch2_trans_kmalloc(trans, sizeof(*update));
370                 if ((ret = PTR_ERR_OR_ZERO(update)))
371                         return ret;
372
373                 bkey_init(&update->k);
374                 update->k.p = old.k->p;
375                 update->k.p.snapshot = new.k->p.snapshot;
376
377                 if (new.k->p.snapshot != old.k->p.snapshot) {
378                         update->k.type = KEY_TYPE_whiteout;
379                 } else if (btree_type_has_snapshots(btree_id)) {
380                         ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
381                         if (ret < 0)
382                                 return ret;
383                         if (ret)
384                                 update->k.type = KEY_TYPE_whiteout;
385                 }
386
387                 ret = bch2_btree_insert_nonextent(trans, btree_id, update,
388                                           BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
389                 if (ret)
390                         return ret;
391         }
392
393         if (back_split) {
394                 update = bch2_bkey_make_mut_noupdate(trans, old);
395                 if ((ret = PTR_ERR_OR_ZERO(update)))
396                         return ret;
397
398                 bch2_cut_front(new.k->p, update);
399
400                 ret = bch2_trans_update_by_path(trans, iter->path, update,
401                                           BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
402                                           flags, _RET_IP_);
403                 if (ret)
404                         return ret;
405         }
406
407         return 0;
408 }
409
410 static int bch2_trans_update_extent(struct btree_trans *trans,
411                                     struct btree_iter *orig_iter,
412                                     struct bkey_i *insert,
413                                     enum btree_update_flags flags)
414 {
415         struct btree_iter iter;
416         struct bkey_s_c k;
417         enum btree_id btree_id = orig_iter->btree_id;
418         int ret = 0;
419
420         bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
421                              BTREE_ITER_INTENT|
422                              BTREE_ITER_WITH_UPDATES|
423                              BTREE_ITER_NOT_EXTENTS);
424         k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
425         if ((ret = bkey_err(k)))
426                 goto err;
427         if (!k.k)
428                 goto out;
429
430         if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
431                 if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
432                         ret = extent_front_merge(trans, &iter, k, &insert, flags);
433                         if (ret)
434                                 goto err;
435                 }
436
437                 goto next;
438         }
439
440         while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
441                 bool done = bkey_lt(insert->k.p, k.k->p);
442
443                 ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
444                 if (ret)
445                         goto err;
446
447                 if (done)
448                         goto out;
449 next:
450                 bch2_btree_iter_advance(&iter);
451                 k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
452                 if ((ret = bkey_err(k)))
453                         goto err;
454                 if (!k.k)
455                         goto out;
456         }
457
458         if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
459                 ret = extent_back_merge(trans, &iter, insert, k);
460                 if (ret)
461                         goto err;
462         }
463 out:
464         if (!bkey_deleted(&insert->k))
465                 ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
466 err:
467         bch2_trans_iter_exit(trans, &iter);
468
469         return ret;
470 }
471
472 static noinline int flush_new_cached_update(struct btree_trans *trans,
473                                             struct btree_insert_entry *i,
474                                             enum btree_update_flags flags,
475                                             unsigned long ip)
476 {
477         struct bkey k;
478         int ret;
479
480         btree_path_idx_t path_idx =
481                 bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
482                               BTREE_ITER_INTENT, _THIS_IP_);
483         ret = bch2_btree_path_traverse(trans, path_idx, 0);
484         if (ret)
485                 goto out;
486
487         struct btree_path *btree_path = trans->paths + path_idx;
488
489         /*
490          * The old key in the insert entry might actually refer to an existing
491          * key in the btree that has been deleted from cache and not yet
492          * flushed. Check for this and skip the flush so we don't run triggers
493          * against a stale key.
494          */
495         bch2_btree_path_peek_slot_exact(btree_path, &k);
496         if (!bkey_deleted(&k))
497                 goto out;
498
499         i->key_cache_already_flushed = true;
500         i->flags |= BTREE_TRIGGER_NORUN;
501
502         btree_path_set_should_be_locked(btree_path);
503         ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
504 out:
505         bch2_path_put(trans, path_idx, true);
506         return ret;
507 }
508
509 static int __must_check
510 bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
511                           struct bkey_i *k, enum btree_update_flags flags,
512                           unsigned long ip)
513 {
514         struct bch_fs *c = trans->c;
515         struct btree_insert_entry *i, n;
516         int cmp;
517
518         struct btree_path *path = trans->paths + path_idx;
519         EBUG_ON(!path->should_be_locked);
520         EBUG_ON(trans->nr_updates >= trans->nr_paths);
521         EBUG_ON(!bpos_eq(k->k.p, path->pos));
522
523         n = (struct btree_insert_entry) {
524                 .flags          = flags,
525                 .bkey_type      = __btree_node_type(path->level, path->btree_id),
526                 .btree_id       = path->btree_id,
527                 .level          = path->level,
528                 .cached         = path->cached,
529                 .path           = path_idx,
530                 .k              = k,
531                 .ip_allocated   = ip,
532         };
533
534 #ifdef CONFIG_BCACHEFS_DEBUG
535         trans_for_each_update(trans, i)
536                 BUG_ON(i != trans->updates &&
537                        btree_insert_entry_cmp(i - 1, i) >= 0);
538 #endif
539
540         /*
541          * Pending updates are kept sorted: first, find position of new update,
542          * then delete/trim any updates the new update overwrites:
543          */
544         for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
545                 cmp = btree_insert_entry_cmp(&n, i);
546                 if (cmp <= 0)
547                         break;
548         }
549
550         if (!cmp && i < trans->updates + trans->nr_updates) {
551                 EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
552
553                 bch2_path_put(trans, i->path, true);
554                 i->flags        = n.flags;
555                 i->cached       = n.cached;
556                 i->k            = n.k;
557                 i->path         = n.path;
558                 i->ip_allocated = n.ip_allocated;
559         } else {
560                 array_insert_item(trans->updates, trans->nr_updates,
561                                   i - trans->updates, n);
562
563                 i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
564                 i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
565
566                 if (unlikely(trans->journal_replay_not_finished)) {
567                         struct bkey_i *j_k =
568                                 bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
569
570                         if (j_k) {
571                                 i->old_k = j_k->k;
572                                 i->old_v = &j_k->v;
573                         }
574                 }
575         }
576
577         __btree_path_get(trans->paths + i->path, true);
578
579         /*
580          * If a key is present in the key cache, it must also exist in the
581          * btree - this is necessary for cache coherency. When iterating over
582          * a btree that's cached in the key cache, the btree iter code checks
583          * the key cache - but the key has to exist in the btree for that to
584          * work:
585          */
586         if (path->cached && bkey_deleted(&i->old_k))
587                 return flush_new_cached_update(trans, i, flags, ip);
588
589         return 0;
590 }
591
592 static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
593                                                     struct btree_iter *iter,
594                                                     struct btree_path *path)
595 {
596         struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
597
598         if (!key_cache_path ||
599             !key_cache_path->should_be_locked ||
600             !bpos_eq(key_cache_path->pos, iter->pos)) {
601                 struct bkey_cached *ck;
602                 int ret;
603
604                 if (!iter->key_cache_path)
605                         iter->key_cache_path =
606                                 bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
607                                               BTREE_ITER_INTENT|
608                                               BTREE_ITER_CACHED, _THIS_IP_);
609
610                 iter->key_cache_path =
611                         bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
612                                                 iter->flags & BTREE_ITER_INTENT,
613                                                 _THIS_IP_);
614
615                 ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_CACHED);
616                 if (unlikely(ret))
617                         return ret;
618
619                 ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
620
621                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
622                         trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
623                         return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
624                 }
625
626                 btree_path_set_should_be_locked(trans->paths + iter->key_cache_path);
627         }
628
629         return 0;
630 }
631
632 int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
633                                    struct bkey_i *k, enum btree_update_flags flags)
634 {
635         if (iter->flags & BTREE_ITER_IS_EXTENTS)
636                 return bch2_trans_update_extent(trans, iter, k, flags);
637
638         if (!(flags & (BTREE_UPDATE_SNAPSHOT_WHITEOUT_CHECKS_DONE|
639                        BTREE_UPDATE_KEY_CACHE_RECLAIM)) &&
640             (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) &&
641             bch2_snapshot_parent(trans->c, k->k.p.snapshot)) {
642                 int ret = overwrite_interior_snapshot_key(trans, iter, k);
643                 if (ret)
644                         return ret < 0 ? ret : 0;
645         }
646
647         /*
648          * Ensure that updates to cached btrees go to the key cache:
649          */
650         btree_path_idx_t path_idx = iter->update_path ?: iter->path;
651         struct btree_path *path = trans->paths + path_idx;
652
653         if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
654             !path->cached &&
655             !path->level &&
656             btree_id_cached(trans->c, path->btree_id)) {
657                 int ret = bch2_trans_update_get_key_cache(trans, iter, path);
658                 if (ret)
659                         return ret;
660
661                 path_idx = iter->key_cache_path;
662         }
663
664         return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_);
665 }
666
667 int bch2_btree_insert_clone_trans(struct btree_trans *trans,
668                                   enum btree_id btree,
669                                   struct bkey_i *k)
670 {
671         struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
672         int ret = PTR_ERR_OR_ZERO(n);
673         if (ret)
674                 return ret;
675
676         bkey_copy(n, k);
677         return bch2_btree_insert_trans(trans, btree, n, 0);
678 }
679
680 struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s)
681 {
682         unsigned new_top = trans->journal_entries_u64s + u64s;
683         unsigned old_size = trans->journal_entries_size;
684
685         if (new_top > trans->journal_entries_size) {
686                 trans->journal_entries_size = roundup_pow_of_two(new_top);
687
688                 btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size;
689         }
690
691         struct jset_entry *n =
692                 bch2_trans_kmalloc_nomemzero(trans,
693                                 trans->journal_entries_size * sizeof(u64));
694         if (IS_ERR(n))
695                 return ERR_CAST(n);
696
697         if (trans->journal_entries)
698                 memcpy(n, trans->journal_entries, old_size * sizeof(u64));
699         trans->journal_entries = n;
700
701         struct jset_entry *e = btree_trans_journal_entries_top(trans);
702         trans->journal_entries_u64s = new_top;
703         return e;
704 }
705
706 int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
707                              enum btree_id btree, struct bpos end)
708 {
709         struct bkey_s_c k;
710         int ret = 0;
711
712         bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_INTENT);
713         k = bch2_btree_iter_prev(iter);
714         ret = bkey_err(k);
715         if (ret)
716                 goto err;
717
718         bch2_btree_iter_advance(iter);
719         k = bch2_btree_iter_peek_slot(iter);
720         ret = bkey_err(k);
721         if (ret)
722                 goto err;
723
724         BUG_ON(k.k->type != KEY_TYPE_deleted);
725
726         if (bkey_gt(k.k->p, end)) {
727                 ret = -BCH_ERR_ENOSPC_btree_slot;
728                 goto err;
729         }
730
731         return 0;
732 err:
733         bch2_trans_iter_exit(trans, iter);
734         return ret;
735 }
736
737 void bch2_trans_commit_hook(struct btree_trans *trans,
738                             struct btree_trans_commit_hook *h)
739 {
740         h->next = trans->hooks;
741         trans->hooks = h;
742 }
743
744 int bch2_btree_insert_nonextent(struct btree_trans *trans,
745                                 enum btree_id btree, struct bkey_i *k,
746                                 enum btree_update_flags flags)
747 {
748         struct btree_iter iter;
749         int ret;
750
751         bch2_trans_iter_init(trans, &iter, btree, k->k.p,
752                              BTREE_ITER_CACHED|
753                              BTREE_ITER_NOT_EXTENTS|
754                              BTREE_ITER_INTENT);
755         ret   = bch2_btree_iter_traverse(&iter) ?:
756                 bch2_trans_update(trans, &iter, k, flags);
757         bch2_trans_iter_exit(trans, &iter);
758         return ret;
759 }
760
761 int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
762                             struct bkey_i *k, enum btree_update_flags flags)
763 {
764         struct btree_iter iter;
765         int ret;
766
767         bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
768                              BTREE_ITER_CACHED|
769                              BTREE_ITER_INTENT);
770         ret   = bch2_btree_iter_traverse(&iter) ?:
771                 bch2_trans_update(trans, &iter, k, flags);
772         bch2_trans_iter_exit(trans, &iter);
773         return ret;
774 }
775
776 /**
777  * bch2_btree_insert - insert keys into the extent btree
778  * @c:                  pointer to struct bch_fs
779  * @id:                 btree to insert into
780  * @k:                  key to insert
781  * @disk_res:           must be non-NULL whenever inserting or potentially
782  *                      splitting data extents
783  * @flags:              transaction commit flags
784  *
785  * Returns:             0 on success, error code on failure
786  */
787 int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
788                       struct disk_reservation *disk_res, int flags)
789 {
790         return bch2_trans_do(c, disk_res, NULL, flags,
791                              bch2_btree_insert_trans(trans, id, k, 0));
792 }
793
794 int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
795                                 unsigned len, unsigned update_flags)
796 {
797         struct bkey_i *k;
798
799         k = bch2_trans_kmalloc(trans, sizeof(*k));
800         if (IS_ERR(k))
801                 return PTR_ERR(k);
802
803         bkey_init(&k->k);
804         k->k.p = iter->pos;
805         bch2_key_resize(&k->k, len);
806         return bch2_trans_update(trans, iter, k, update_flags);
807 }
808
809 int bch2_btree_delete_at(struct btree_trans *trans,
810                          struct btree_iter *iter, unsigned update_flags)
811 {
812         return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
813 }
814
815 int bch2_btree_delete(struct btree_trans *trans,
816                       enum btree_id btree, struct bpos pos,
817                       unsigned update_flags)
818 {
819         struct btree_iter iter;
820         int ret;
821
822         bch2_trans_iter_init(trans, &iter, btree, pos,
823                              BTREE_ITER_CACHED|
824                              BTREE_ITER_INTENT);
825         ret   = bch2_btree_iter_traverse(&iter) ?:
826                 bch2_btree_delete_at(trans, &iter, update_flags);
827         bch2_trans_iter_exit(trans, &iter);
828
829         return ret;
830 }
831
832 int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
833                                   struct bpos start, struct bpos end,
834                                   unsigned update_flags,
835                                   u64 *journal_seq)
836 {
837         u32 restart_count = trans->restart_count;
838         struct btree_iter iter;
839         struct bkey_s_c k;
840         int ret = 0;
841
842         bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT);
843         while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
844                 struct disk_reservation disk_res =
845                         bch2_disk_reservation_init(trans->c, 0);
846                 struct bkey_i delete;
847
848                 ret = bkey_err(k);
849                 if (ret)
850                         goto err;
851
852                 bkey_init(&delete.k);
853
854                 /*
855                  * This could probably be more efficient for extents:
856                  */
857
858                 /*
859                  * For extents, iter.pos won't necessarily be the same as
860                  * bkey_start_pos(k.k) (for non extents they always will be the
861                  * same). It's important that we delete starting from iter.pos
862                  * because the range we want to delete could start in the middle
863                  * of k.
864                  *
865                  * (bch2_btree_iter_peek() does guarantee that iter.pos >=
866                  * bkey_start_pos(k.k)).
867                  */
868                 delete.k.p = iter.pos;
869
870                 if (iter.flags & BTREE_ITER_IS_EXTENTS)
871                         bch2_key_resize(&delete.k,
872                                         bpos_min(end, k.k->p).offset -
873                                         iter.pos.offset);
874
875                 ret   = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
876                         bch2_trans_commit(trans, &disk_res, journal_seq,
877                                           BCH_TRANS_COMMIT_no_enospc);
878                 bch2_disk_reservation_put(trans->c, &disk_res);
879 err:
880                 /*
881                  * the bch2_trans_begin() call is in a weird place because we
882                  * need to call it after every transaction commit, to avoid path
883                  * overflow, but don't want to call it if the delete operation
884                  * is a no-op and we have no work to do:
885                  */
886                 bch2_trans_begin(trans);
887
888                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
889                         ret = 0;
890                 if (ret)
891                         break;
892         }
893         bch2_trans_iter_exit(trans, &iter);
894
895         return ret ?: trans_was_restarted(trans, restart_count);
896 }
897
898 /*
899  * bch_btree_delete_range - delete everything within a given range
900  *
901  * Range is a half open interval - [start, end)
902  */
903 int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
904                             struct bpos start, struct bpos end,
905                             unsigned update_flags,
906                             u64 *journal_seq)
907 {
908         int ret = bch2_trans_run(c,
909                         bch2_btree_delete_range_trans(trans, id, start, end,
910                                                       update_flags, journal_seq));
911         if (ret == -BCH_ERR_transaction_restart_nested)
912                 ret = 0;
913         return ret;
914 }
915
916 int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
917                        struct bpos pos, bool set)
918 {
919         struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
920         int ret = PTR_ERR_OR_ZERO(k);
921         if (ret)
922                 return ret;
923
924         bkey_init(&k->k);
925         k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
926         k->k.p = pos;
927
928         struct btree_iter iter;
929         bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_INTENT);
930
931         ret   = bch2_btree_iter_traverse(&iter) ?:
932                 bch2_trans_update(trans, &iter, k, 0);
933         bch2_trans_iter_exit(trans, &iter);
934         return ret;
935 }
936
937 int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
938                                 struct bpos pos, bool set)
939 {
940         struct bkey_i k;
941
942         bkey_init(&k.k);
943         k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
944         k.k.p = pos;
945
946         return bch2_trans_update_buffered(trans, btree, &k);
947 }
948
949 static int __bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf, unsigned u64s)
950 {
951         struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s));
952         int ret = PTR_ERR_OR_ZERO(e);
953         if (ret)
954                 return ret;
955
956         struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
957         journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s);
958         memcpy(l->d, buf->buf, buf->pos);
959         return 0;
960 }
961
962 __printf(3, 0)
963 static int
964 __bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
965                   va_list args)
966 {
967         struct printbuf buf = PRINTBUF;
968         prt_vprintf(&buf, fmt, args);
969
970         unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
971         prt_chars(&buf, '\0', u64s * sizeof(u64) - buf.pos);
972
973         int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
974         if (ret)
975                 goto err;
976
977         if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) {
978                 ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
979                 if (ret)
980                         goto err;
981
982                 struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
983                 journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s);
984                 memcpy(l->d, buf.buf, buf.pos);
985                 c->journal.early_journal_entries.nr += jset_u64s(u64s);
986         } else {
987                 ret = bch2_trans_do(c, NULL, NULL,
988                         BCH_TRANS_COMMIT_lazy_rw|commit_flags,
989                         __bch2_trans_log_msg(trans, &buf, u64s));
990         }
991 err:
992         printbuf_exit(&buf);
993         return ret;
994 }
995
996 __printf(2, 3)
997 int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
998 {
999         va_list args;
1000         int ret;
1001
1002         va_start(args, fmt);
1003         ret = __bch2_fs_log_msg(c, 0, fmt, args);
1004         va_end(args);
1005         return ret;
1006 }
1007
1008 /*
1009  * Use for logging messages during recovery to enable reserved space and avoid
1010  * blocking.
1011  */
1012 __printf(2, 3)
1013 int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
1014 {
1015         va_list args;
1016         int ret;
1017
1018         va_start(args, fmt);
1019         ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
1020         va_end(args);
1021         return ret;
1022 }