]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
03c4fd0998945447f4075ddc1ec8ed05c5e1f074
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "error.h"
15 #include "extents.h"
16 #include "journal.h"
17 #include "journal_reclaim.h"
18 #include "keylist.h"
19 #include "recovery.h"
20 #include "replicas.h"
21 #include "super-io.h"
22
23 #include <linux/random.h>
24 #include <trace/events/bcachefs.h>
25
26 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
27                                   struct btree_path *, struct btree *,
28                                   struct keylist *, unsigned);
29 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
30
31 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans,
32                                                 enum btree_id btree_id,
33                                                 unsigned level,
34                                                 struct bpos pos)
35 {
36         struct btree_path *path;
37
38         path = bch2_path_get(trans, btree_id, pos, level + 1, level,
39                              BTREE_ITER_NOPRESERVE|
40                              BTREE_ITER_INTENT, _RET_IP_);
41         path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_);
42         bch2_btree_path_downgrade(trans, path);
43         __bch2_btree_path_unlock(trans, path);
44         return path;
45 }
46
47 /* Debug code: */
48
49 /*
50  * Verify that child nodes correctly span parent node's range:
51  */
52 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
53 {
54 #ifdef CONFIG_BCACHEFS_DEBUG
55         struct bpos next_node = b->data->min_key;
56         struct btree_node_iter iter;
57         struct bkey_s_c k;
58         struct bkey_s_c_btree_ptr_v2 bp;
59         struct bkey unpacked;
60         struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
61
62         BUG_ON(!b->c.level);
63
64         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
65                 return;
66
67         bch2_btree_node_iter_init_from_start(&iter, b);
68
69         while (1) {
70                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
71                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
72                         break;
73                 bp = bkey_s_c_to_btree_ptr_v2(k);
74
75                 if (bpos_cmp(next_node, bp.v->min_key)) {
76                         bch2_dump_btree_node(c, b);
77                         bch2_bpos_to_text(&buf1, next_node);
78                         bch2_bpos_to_text(&buf2, bp.v->min_key);
79                         panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
80                 }
81
82                 bch2_btree_node_iter_advance(&iter, b);
83
84                 if (bch2_btree_node_iter_end(&iter)) {
85                         if (bpos_cmp(k.k->p, b->key.k.p)) {
86                                 bch2_dump_btree_node(c, b);
87                                 bch2_bpos_to_text(&buf1, b->key.k.p);
88                                 bch2_bpos_to_text(&buf2, k.k->p);
89                                 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
90                         }
91                         break;
92                 }
93
94                 next_node = bpos_successor(k.k->p);
95         }
96 #endif
97 }
98
99 /* Calculate ideal packed bkey format for new btree nodes: */
100
101 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
102 {
103         struct bkey_packed *k;
104         struct bset_tree *t;
105         struct bkey uk;
106
107         for_each_bset(b, t)
108                 bset_tree_for_each_key(b, t, k)
109                         if (!bkey_deleted(k)) {
110                                 uk = bkey_unpack_key(b, k);
111                                 bch2_bkey_format_add_key(s, &uk);
112                         }
113 }
114
115 static struct bkey_format bch2_btree_calc_format(struct btree *b)
116 {
117         struct bkey_format_state s;
118
119         bch2_bkey_format_init(&s);
120         bch2_bkey_format_add_pos(&s, b->data->min_key);
121         bch2_bkey_format_add_pos(&s, b->data->max_key);
122         __bch2_btree_calc_format(&s, b);
123
124         return bch2_bkey_format_done(&s);
125 }
126
127 static size_t btree_node_u64s_with_format(struct btree *b,
128                                           struct bkey_format *new_f)
129 {
130         struct bkey_format *old_f = &b->format;
131
132         /* stupid integer promotion rules */
133         ssize_t delta =
134             (((int) new_f->key_u64s - old_f->key_u64s) *
135              (int) b->nr.packed_keys) +
136             (((int) new_f->key_u64s - BKEY_U64s) *
137              (int) b->nr.unpacked_keys);
138
139         BUG_ON(delta + b->nr.live_u64s < 0);
140
141         return b->nr.live_u64s + delta;
142 }
143
144 /**
145  * btree_node_format_fits - check if we could rewrite node with a new format
146  *
147  * This assumes all keys can pack with the new format -- it just checks if
148  * the re-packed keys would fit inside the node itself.
149  */
150 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
151                                  struct bkey_format *new_f)
152 {
153         size_t u64s = btree_node_u64s_with_format(b, new_f);
154
155         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
156 }
157
158 /* Btree node freeing/allocation: */
159
160 static void __btree_node_free(struct bch_fs *c, struct btree *b)
161 {
162         trace_and_count(c, btree_node_free, c, b);
163
164         BUG_ON(btree_node_dirty(b));
165         BUG_ON(btree_node_need_write(b));
166         BUG_ON(b == btree_node_root(c, b));
167         BUG_ON(b->ob.nr);
168         BUG_ON(!list_empty(&b->write_blocked));
169         BUG_ON(b->will_make_reachable);
170
171         clear_btree_node_noevict(b);
172
173         mutex_lock(&c->btree_cache.lock);
174         list_move(&b->list, &c->btree_cache.freeable);
175         mutex_unlock(&c->btree_cache.lock);
176 }
177
178 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
179                                        struct btree_path *path,
180                                        struct btree *b)
181 {
182         struct bch_fs *c = trans->c;
183         unsigned level = b->c.level;
184
185         bch2_btree_node_lock_write_nofail(trans, path, &b->c);
186         bch2_btree_node_hash_remove(&c->btree_cache, b);
187         __btree_node_free(c, b);
188         six_unlock_write(&b->c.lock);
189         mark_btree_node_locked_noreset(path, level, SIX_LOCK_intent);
190
191         trans_for_each_path(trans, path)
192                 if (path->l[level].b == b) {
193                         btree_node_unlock(trans, path, level);
194                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
195                 }
196 }
197
198 static void bch2_btree_node_free_never_used(struct btree_update *as,
199                                             struct btree_trans *trans,
200                                             struct btree *b)
201 {
202         struct bch_fs *c = as->c;
203         struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
204         struct btree_path *path;
205         unsigned level = b->c.level;
206
207         BUG_ON(!list_empty(&b->write_blocked));
208         BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
209
210         b->will_make_reachable = 0;
211         closure_put(&as->cl);
212
213         clear_btree_node_will_make_reachable(b);
214         clear_btree_node_accessed(b);
215         clear_btree_node_dirty_acct(c, b);
216         clear_btree_node_need_write(b);
217
218         mutex_lock(&c->btree_cache.lock);
219         list_del_init(&b->list);
220         bch2_btree_node_hash_remove(&c->btree_cache, b);
221         mutex_unlock(&c->btree_cache.lock);
222
223         BUG_ON(p->nr >= ARRAY_SIZE(p->b));
224         p->b[p->nr++] = b;
225
226         six_unlock_intent(&b->c.lock);
227
228         trans_for_each_path(trans, path)
229                 if (path->l[level].b == b) {
230                         btree_node_unlock(trans, path, level);
231                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
232                 }
233 }
234
235 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
236                                              struct disk_reservation *res,
237                                              struct closure *cl,
238                                              bool interior_node,
239                                              unsigned flags)
240 {
241         struct bch_fs *c = trans->c;
242         struct write_point *wp;
243         struct btree *b;
244         __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
245         struct open_buckets ob = { .nr = 0 };
246         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
247         unsigned nr_reserve;
248         enum alloc_reserve alloc_reserve;
249
250         if (flags & BTREE_INSERT_USE_RESERVE) {
251                 nr_reserve      = 0;
252                 alloc_reserve   = RESERVE_btree_movinggc;
253         } else {
254                 nr_reserve      = BTREE_NODE_RESERVE;
255                 alloc_reserve   = RESERVE_btree;
256         }
257
258         mutex_lock(&c->btree_reserve_cache_lock);
259         if (c->btree_reserve_cache_nr > nr_reserve) {
260                 struct btree_alloc *a =
261                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
262
263                 ob = a->ob;
264                 bkey_copy(&tmp.k, &a->k);
265                 mutex_unlock(&c->btree_reserve_cache_lock);
266                 goto mem_alloc;
267         }
268         mutex_unlock(&c->btree_reserve_cache_lock);
269
270 retry:
271         wp = bch2_alloc_sectors_start_trans(trans,
272                                       c->opts.metadata_target ?:
273                                       c->opts.foreground_target,
274                                       0,
275                                       writepoint_ptr(&c->btree_write_point),
276                                       &devs_have,
277                                       res->nr_replicas,
278                                       c->opts.metadata_replicas_required,
279                                       alloc_reserve, 0, cl);
280         if (IS_ERR(wp))
281                 return ERR_CAST(wp);
282
283         if (wp->sectors_free < btree_sectors(c)) {
284                 struct open_bucket *ob;
285                 unsigned i;
286
287                 open_bucket_for_each(c, &wp->ptrs, ob, i)
288                         if (ob->sectors_free < btree_sectors(c))
289                                 ob->sectors_free = 0;
290
291                 bch2_alloc_sectors_done(c, wp);
292                 goto retry;
293         }
294
295         bkey_btree_ptr_v2_init(&tmp.k);
296         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
297
298         bch2_open_bucket_get(c, wp, &ob);
299         bch2_alloc_sectors_done(c, wp);
300 mem_alloc:
301         b = bch2_btree_node_mem_alloc(c, interior_node);
302         six_unlock_write(&b->c.lock);
303         six_unlock_intent(&b->c.lock);
304
305         /* we hold cannibalize_lock: */
306         BUG_ON(IS_ERR(b));
307         BUG_ON(b->ob.nr);
308
309         bkey_copy(&b->key, &tmp.k);
310         b->ob = ob;
311
312         return b;
313 }
314
315 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
316                                            struct btree_trans *trans,
317                                            unsigned level)
318 {
319         struct bch_fs *c = as->c;
320         struct btree *b;
321         struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
322         int ret;
323
324         BUG_ON(level >= BTREE_MAX_DEPTH);
325         BUG_ON(!p->nr);
326
327         b = p->b[--p->nr];
328
329         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
330         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
331
332         set_btree_node_accessed(b);
333         set_btree_node_dirty_acct(c, b);
334         set_btree_node_need_write(b);
335
336         bch2_bset_init_first(b, &b->data->keys);
337         b->c.level      = level;
338         b->c.btree_id   = as->btree_id;
339         b->version_ondisk = c->sb.version;
340
341         memset(&b->nr, 0, sizeof(b->nr));
342         b->data->magic = cpu_to_le64(bset_magic(c));
343         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
344         b->data->flags = 0;
345         SET_BTREE_NODE_ID(b->data, as->btree_id);
346         SET_BTREE_NODE_LEVEL(b->data, level);
347
348         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
349                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
350
351                 bp->v.mem_ptr           = 0;
352                 bp->v.seq               = b->data->keys.seq;
353                 bp->v.sectors_written   = 0;
354         }
355
356         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
357
358         bch2_btree_build_aux_trees(b);
359
360         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
361         BUG_ON(ret);
362
363         trace_and_count(c, btree_node_alloc, c, b);
364         return b;
365 }
366
367 static void btree_set_min(struct btree *b, struct bpos pos)
368 {
369         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
370                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
371         b->data->min_key = pos;
372 }
373
374 static void btree_set_max(struct btree *b, struct bpos pos)
375 {
376         b->key.k.p = pos;
377         b->data->max_key = pos;
378 }
379
380 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
381                                                   struct btree_trans *trans,
382                                                   struct btree *b,
383                                                   struct bkey_format format)
384 {
385         struct btree *n;
386
387         n = bch2_btree_node_alloc(as, trans, b->c.level);
388
389         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
390
391         btree_set_min(n, b->data->min_key);
392         btree_set_max(n, b->data->max_key);
393
394         n->data->format         = format;
395         btree_node_set_format(n, format);
396
397         bch2_btree_sort_into(as->c, n, b);
398
399         btree_node_reset_sib_u64s(n);
400
401         n->key.k.p = b->key.k.p;
402         return n;
403 }
404
405 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
406                                                        struct btree_trans *trans,
407                                                        struct btree *b)
408 {
409         struct bkey_format new_f = bch2_btree_calc_format(b);
410
411         /*
412          * The keys might expand with the new format - if they wouldn't fit in
413          * the btree node anymore, use the old format for now:
414          */
415         if (!bch2_btree_node_format_fits(as->c, b, &new_f))
416                 new_f = b->format;
417
418         return __bch2_btree_node_alloc_replacement(as, trans, b, new_f);
419 }
420
421 static struct btree *__btree_root_alloc(struct btree_update *as,
422                                 struct btree_trans *trans, unsigned level)
423 {
424         struct btree *b = bch2_btree_node_alloc(as, trans, level);
425
426         btree_set_min(b, POS_MIN);
427         btree_set_max(b, SPOS_MAX);
428         b->data->format = bch2_btree_calc_format(b);
429
430         btree_node_set_format(b, b->data->format);
431         bch2_btree_build_aux_trees(b);
432
433         return b;
434 }
435
436 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
437 {
438         struct bch_fs *c = as->c;
439         struct prealloc_nodes *p;
440
441         for (p = as->prealloc_nodes;
442              p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
443              p++) {
444                 while (p->nr) {
445                         struct btree *b = p->b[--p->nr];
446
447                         mutex_lock(&c->btree_reserve_cache_lock);
448
449                         if (c->btree_reserve_cache_nr <
450                             ARRAY_SIZE(c->btree_reserve_cache)) {
451                                 struct btree_alloc *a =
452                                         &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
453
454                                 a->ob = b->ob;
455                                 b->ob.nr = 0;
456                                 bkey_copy(&a->k, &b->key);
457                         } else {
458                                 bch2_open_buckets_put(c, &b->ob);
459                         }
460
461                         mutex_unlock(&c->btree_reserve_cache_lock);
462
463                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
464                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
465                         __btree_node_free(c, b);
466                         six_unlock_write(&b->c.lock);
467                         six_unlock_intent(&b->c.lock);
468                 }
469         }
470 }
471
472 static int bch2_btree_reserve_get(struct btree_trans *trans,
473                                   struct btree_update *as,
474                                   unsigned nr_nodes[2],
475                                   unsigned flags,
476                                   struct closure *cl)
477 {
478         struct bch_fs *c = as->c;
479         struct btree *b;
480         unsigned interior;
481         int ret = 0;
482
483         BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
484
485         /*
486          * Protects reaping from the btree node cache and using the btree node
487          * open bucket reserve:
488          *
489          * BTREE_INSERT_NOWAIT only applies to btree node allocation, not
490          * blocking on this lock:
491          */
492         ret = bch2_btree_cache_cannibalize_lock(c, cl);
493         if (ret)
494                 return ret;
495
496         for (interior = 0; interior < 2; interior++) {
497                 struct prealloc_nodes *p = as->prealloc_nodes + interior;
498
499                 while (p->nr < nr_nodes[interior]) {
500                         b = __bch2_btree_node_alloc(trans, &as->disk_res,
501                                         flags & BTREE_INSERT_NOWAIT ? NULL : cl,
502                                         interior, flags);
503                         if (IS_ERR(b)) {
504                                 ret = PTR_ERR(b);
505                                 goto err;
506                         }
507
508                         p->b[p->nr++] = b;
509                 }
510         }
511 err:
512         bch2_btree_cache_cannibalize_unlock(c);
513         return ret;
514 }
515
516 /* Asynchronous interior node update machinery */
517
518 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
519 {
520         struct bch_fs *c = as->c;
521
522         if (as->took_gc_lock)
523                 up_read(&c->gc_lock);
524         as->took_gc_lock = false;
525
526         bch2_journal_preres_put(&c->journal, &as->journal_preres);
527
528         bch2_journal_pin_drop(&c->journal, &as->journal);
529         bch2_journal_pin_flush(&c->journal, &as->journal);
530         bch2_disk_reservation_put(c, &as->disk_res);
531         bch2_btree_reserve_put(as, trans);
532
533         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
534                                as->start_time);
535
536         mutex_lock(&c->btree_interior_update_lock);
537         list_del(&as->unwritten_list);
538         list_del(&as->list);
539
540         closure_debug_destroy(&as->cl);
541         mempool_free(as, &c->btree_interior_update_pool);
542
543         /*
544          * Have to do the wakeup with btree_interior_update_lock still held,
545          * since being on btree_interior_update_list is our ref on @c:
546          */
547         closure_wake_up(&c->btree_interior_update_wait);
548
549         mutex_unlock(&c->btree_interior_update_lock);
550 }
551
552 static void btree_update_add_key(struct btree_update *as,
553                                  struct keylist *keys, struct btree *b)
554 {
555         struct bkey_i *k = &b->key;
556
557         BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
558                ARRAY_SIZE(as->_old_keys));
559
560         bkey_copy(keys->top, k);
561         bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
562
563         bch2_keylist_push(keys);
564 }
565
566 /*
567  * The transactional part of an interior btree node update, where we journal the
568  * update we did to the interior node and update alloc info:
569  */
570 static int btree_update_nodes_written_trans(struct btree_trans *trans,
571                                             struct btree_update *as)
572 {
573         struct bkey_i *k;
574         int ret;
575
576         ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s);
577         if (ret)
578                 return ret;
579
580         memcpy(&darray_top(trans->extra_journal_entries),
581                as->journal_entries,
582                as->journal_u64s * sizeof(u64));
583         trans->extra_journal_entries.nr += as->journal_u64s;
584
585         trans->journal_pin = &as->journal;
586
587         for_each_keylist_key(&as->old_keys, k) {
588                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
589
590                 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0);
591                 if (ret)
592                         return ret;
593         }
594
595         for_each_keylist_key(&as->new_keys, k) {
596                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
597
598                 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0);
599                 if (ret)
600                         return ret;
601         }
602
603         return 0;
604 }
605
606 static void btree_update_nodes_written(struct btree_update *as)
607 {
608         struct bch_fs *c = as->c;
609         struct btree *b;
610         struct btree_trans trans;
611         u64 journal_seq = 0;
612         unsigned i;
613         int ret;
614
615         bch2_trans_init(&trans, c, 0, 512);
616         /*
617          * If we're already in an error state, it might be because a btree node
618          * was never written, and we might be trying to free that same btree
619          * node here, but it won't have been marked as allocated and we'll see
620          * spurious disk usage inconsistencies in the transactional part below
621          * if we don't skip it:
622          */
623         ret = bch2_journal_error(&c->journal);
624         if (ret)
625                 goto err;
626
627         /*
628          * Wait for any in flight writes to finish before we free the old nodes
629          * on disk:
630          */
631         for (i = 0; i < as->nr_old_nodes; i++) {
632                 __le64 seq;
633
634                 b = as->old_nodes[i];
635
636                 btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_read);
637                 seq = b->data ? b->data->keys.seq : 0;
638                 six_unlock_read(&b->c.lock);
639
640                 if (seq == as->old_nodes_seq[i])
641                         wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
642                                        TASK_UNINTERRUPTIBLE);
643         }
644
645         /*
646          * We did an update to a parent node where the pointers we added pointed
647          * to child nodes that weren't written yet: now, the child nodes have
648          * been written so we can write out the update to the interior node.
649          */
650
651         /*
652          * We can't call into journal reclaim here: we'd block on the journal
653          * reclaim lock, but we may need to release the open buckets we have
654          * pinned in order for other btree updates to make forward progress, and
655          * journal reclaim does btree updates when flushing bkey_cached entries,
656          * which may require allocations as well.
657          */
658         ret = commit_do(&trans, &as->disk_res, &journal_seq,
659                         BTREE_INSERT_NOFAIL|
660                         BTREE_INSERT_NOCHECK_RW|
661                         BTREE_INSERT_USE_RESERVE|
662                         BTREE_INSERT_JOURNAL_RECLAIM|
663                         JOURNAL_WATERMARK_reserved,
664                         btree_update_nodes_written_trans(&trans, as));
665         bch2_trans_unlock(&trans);
666
667         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
668                              "error %i in btree_update_nodes_written()", ret);
669 err:
670         if (as->b) {
671                 struct btree_path *path;
672
673                 b = as->b;
674                 path = get_unlocked_mut_path(&trans, as->btree_id, b->c.level, b->key.k.p);
675                 /*
676                  * @b is the node we did the final insert into:
677                  *
678                  * On failure to get a journal reservation, we still have to
679                  * unblock the write and allow most of the write path to happen
680                  * so that shutdown works, but the i->journal_seq mechanism
681                  * won't work to prevent the btree write from being visible (we
682                  * didn't get a journal sequence number) - instead
683                  * __bch2_btree_node_write() doesn't do the actual write if
684                  * we're in journal error state:
685                  */
686
687                 /*
688                  * Ensure transaction is unlocked before using
689                  * btree_node_lock_nopath() (the use of which is always suspect,
690                  * we need to work on removing this in the future)
691                  *
692                  * It should be, but get_unlocked_mut_path() -> bch2_path_get()
693                  * calls bch2_path_upgrade(), before we call path_make_mut(), so
694                  * we may rarely end up with a locked path besides the one we
695                  * have here:
696                  */
697                 bch2_trans_unlock(&trans);
698                 btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_intent);
699                 mark_btree_node_locked(&trans, path, b->c.level, SIX_LOCK_intent);
700                 bch2_btree_path_level_init(&trans, path, b);
701
702                 bch2_btree_node_lock_write_nofail(&trans, path, &b->c);
703
704                 mutex_lock(&c->btree_interior_update_lock);
705
706                 list_del(&as->write_blocked_list);
707                 if (list_empty(&b->write_blocked))
708                         clear_btree_node_write_blocked(b);
709
710                 /*
711                  * Node might have been freed, recheck under
712                  * btree_interior_update_lock:
713                  */
714                 if (as->b == b) {
715                         struct bset *i = btree_bset_last(b);
716
717                         BUG_ON(!b->c.level);
718                         BUG_ON(!btree_node_dirty(b));
719
720                         if (!ret) {
721                                 i->journal_seq = cpu_to_le64(
722                                                              max(journal_seq,
723                                                                  le64_to_cpu(i->journal_seq)));
724
725                                 bch2_btree_add_journal_pin(c, b, journal_seq);
726                         } else {
727                                 /*
728                                  * If we didn't get a journal sequence number we
729                                  * can't write this btree node, because recovery
730                                  * won't know to ignore this write:
731                                  */
732                                 set_btree_node_never_write(b);
733                         }
734                 }
735
736                 mutex_unlock(&c->btree_interior_update_lock);
737
738                 mark_btree_node_locked_noreset(path, b->c.level, SIX_LOCK_intent);
739                 six_unlock_write(&b->c.lock);
740
741                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
742                 btree_node_unlock(&trans, path, b->c.level);
743                 bch2_path_put(&trans, path, true);
744         }
745
746         bch2_journal_pin_drop(&c->journal, &as->journal);
747
748         bch2_journal_preres_put(&c->journal, &as->journal_preres);
749
750         mutex_lock(&c->btree_interior_update_lock);
751         for (i = 0; i < as->nr_new_nodes; i++) {
752                 b = as->new_nodes[i];
753
754                 BUG_ON(b->will_make_reachable != (unsigned long) as);
755                 b->will_make_reachable = 0;
756                 clear_btree_node_will_make_reachable(b);
757         }
758         mutex_unlock(&c->btree_interior_update_lock);
759
760         for (i = 0; i < as->nr_new_nodes; i++) {
761                 b = as->new_nodes[i];
762
763                 btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_read);
764                 btree_node_write_if_need(c, b, SIX_LOCK_read);
765                 six_unlock_read(&b->c.lock);
766         }
767
768         for (i = 0; i < as->nr_open_buckets; i++)
769                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
770
771         bch2_btree_update_free(as, &trans);
772         bch2_trans_exit(&trans);
773 }
774
775 static void btree_interior_update_work(struct work_struct *work)
776 {
777         struct bch_fs *c =
778                 container_of(work, struct bch_fs, btree_interior_update_work);
779         struct btree_update *as;
780
781         while (1) {
782                 mutex_lock(&c->btree_interior_update_lock);
783                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
784                                               struct btree_update, unwritten_list);
785                 if (as && !as->nodes_written)
786                         as = NULL;
787                 mutex_unlock(&c->btree_interior_update_lock);
788
789                 if (!as)
790                         break;
791
792                 btree_update_nodes_written(as);
793         }
794 }
795
796 static void btree_update_set_nodes_written(struct closure *cl)
797 {
798         struct btree_update *as = container_of(cl, struct btree_update, cl);
799         struct bch_fs *c = as->c;
800
801         mutex_lock(&c->btree_interior_update_lock);
802         as->nodes_written = true;
803         mutex_unlock(&c->btree_interior_update_lock);
804
805         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
806 }
807
808 /*
809  * We're updating @b with pointers to nodes that haven't finished writing yet:
810  * block @b from being written until @as completes
811  */
812 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
813 {
814         struct bch_fs *c = as->c;
815
816         mutex_lock(&c->btree_interior_update_lock);
817         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
818
819         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
820         BUG_ON(!btree_node_dirty(b));
821
822         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
823         as->b           = b;
824
825         set_btree_node_write_blocked(b);
826         list_add(&as->write_blocked_list, &b->write_blocked);
827
828         mutex_unlock(&c->btree_interior_update_lock);
829 }
830
831 static void btree_update_reparent(struct btree_update *as,
832                                   struct btree_update *child)
833 {
834         struct bch_fs *c = as->c;
835
836         lockdep_assert_held(&c->btree_interior_update_lock);
837
838         child->b = NULL;
839         child->mode = BTREE_INTERIOR_UPDATING_AS;
840
841         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
842 }
843
844 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
845 {
846         struct bkey_i *insert = &b->key;
847         struct bch_fs *c = as->c;
848
849         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
850
851         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
852                ARRAY_SIZE(as->journal_entries));
853
854         as->journal_u64s +=
855                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
856                                   BCH_JSET_ENTRY_btree_root,
857                                   b->c.btree_id, b->c.level,
858                                   insert, insert->k.u64s);
859
860         mutex_lock(&c->btree_interior_update_lock);
861         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
862
863         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
864         mutex_unlock(&c->btree_interior_update_lock);
865 }
866
867 /*
868  * bch2_btree_update_add_new_node:
869  *
870  * This causes @as to wait on @b to be written, before it gets to
871  * bch2_btree_update_nodes_written
872  *
873  * Additionally, it sets b->will_make_reachable to prevent any additional writes
874  * to @b from happening besides the first until @b is reachable on disk
875  *
876  * And it adds @b to the list of @as's new nodes, so that we can update sector
877  * counts in bch2_btree_update_nodes_written:
878  */
879 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
880 {
881         struct bch_fs *c = as->c;
882
883         closure_get(&as->cl);
884
885         mutex_lock(&c->btree_interior_update_lock);
886         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
887         BUG_ON(b->will_make_reachable);
888
889         as->new_nodes[as->nr_new_nodes++] = b;
890         b->will_make_reachable = 1UL|(unsigned long) as;
891         set_btree_node_will_make_reachable(b);
892
893         mutex_unlock(&c->btree_interior_update_lock);
894
895         btree_update_add_key(as, &as->new_keys, b);
896
897         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
898                 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
899                 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
900
901                 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
902                         cpu_to_le16(sectors);
903         }
904 }
905
906 /*
907  * returns true if @b was a new node
908  */
909 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
910 {
911         struct btree_update *as;
912         unsigned long v;
913         unsigned i;
914
915         mutex_lock(&c->btree_interior_update_lock);
916         /*
917          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
918          * dropped when it gets written by bch2_btree_complete_write - the
919          * xchg() is for synchronization with bch2_btree_complete_write:
920          */
921         v = xchg(&b->will_make_reachable, 0);
922         clear_btree_node_will_make_reachable(b);
923         as = (struct btree_update *) (v & ~1UL);
924
925         if (!as) {
926                 mutex_unlock(&c->btree_interior_update_lock);
927                 return;
928         }
929
930         for (i = 0; i < as->nr_new_nodes; i++)
931                 if (as->new_nodes[i] == b)
932                         goto found;
933
934         BUG();
935 found:
936         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
937         mutex_unlock(&c->btree_interior_update_lock);
938
939         if (v & 1)
940                 closure_put(&as->cl);
941 }
942
943 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
944 {
945         while (b->ob.nr)
946                 as->open_buckets[as->nr_open_buckets++] =
947                         b->ob.v[--b->ob.nr];
948 }
949
950 /*
951  * @b is being split/rewritten: it may have pointers to not-yet-written btree
952  * nodes and thus outstanding btree_updates - redirect @b's
953  * btree_updates to point to this btree_update:
954  */
955 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
956                                                       struct btree *b)
957 {
958         struct bch_fs *c = as->c;
959         struct btree_update *p, *n;
960         struct btree_write *w;
961
962         set_btree_node_dying(b);
963
964         if (btree_node_fake(b))
965                 return;
966
967         mutex_lock(&c->btree_interior_update_lock);
968
969         /*
970          * Does this node have any btree_update operations preventing
971          * it from being written?
972          *
973          * If so, redirect them to point to this btree_update: we can
974          * write out our new nodes, but we won't make them visible until those
975          * operations complete
976          */
977         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
978                 list_del_init(&p->write_blocked_list);
979                 btree_update_reparent(as, p);
980
981                 /*
982                  * for flush_held_btree_writes() waiting on updates to flush or
983                  * nodes to be writeable:
984                  */
985                 closure_wake_up(&c->btree_interior_update_wait);
986         }
987
988         clear_btree_node_dirty_acct(c, b);
989         clear_btree_node_need_write(b);
990
991         /*
992          * Does this node have unwritten data that has a pin on the journal?
993          *
994          * If so, transfer that pin to the btree_update operation -
995          * note that if we're freeing multiple nodes, we only need to keep the
996          * oldest pin of any of the nodes we're freeing. We'll release the pin
997          * when the new nodes are persistent and reachable on disk:
998          */
999         w = btree_current_write(b);
1000         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
1001         bch2_journal_pin_drop(&c->journal, &w->journal);
1002
1003         w = btree_prev_write(b);
1004         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
1005         bch2_journal_pin_drop(&c->journal, &w->journal);
1006
1007         mutex_unlock(&c->btree_interior_update_lock);
1008
1009         /*
1010          * Is this a node that isn't reachable on disk yet?
1011          *
1012          * Nodes that aren't reachable yet have writes blocked until they're
1013          * reachable - now that we've cancelled any pending writes and moved
1014          * things waiting on that write to wait on this update, we can drop this
1015          * node from the list of nodes that the other update is making
1016          * reachable, prior to freeing it:
1017          */
1018         btree_update_drop_new_node(c, b);
1019
1020         btree_update_add_key(as, &as->old_keys, b);
1021
1022         as->old_nodes[as->nr_old_nodes] = b;
1023         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1024         as->nr_old_nodes++;
1025 }
1026
1027 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1028 {
1029         struct bch_fs *c = as->c;
1030         u64 start_time = as->start_time;
1031
1032         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1033
1034         if (as->took_gc_lock)
1035                 up_read(&as->c->gc_lock);
1036         as->took_gc_lock = false;
1037
1038         bch2_btree_reserve_put(as, trans);
1039
1040         continue_at(&as->cl, btree_update_set_nodes_written,
1041                     as->c->btree_interior_update_worker);
1042
1043         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1044                                start_time);
1045 }
1046
1047 static struct btree_update *
1048 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1049                         unsigned level, bool split, unsigned flags)
1050 {
1051         struct bch_fs *c = trans->c;
1052         struct btree_update *as;
1053         u64 start_time = local_clock();
1054         int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
1055                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1056         unsigned nr_nodes[2] = { 0, 0 };
1057         unsigned update_level = level;
1058         int journal_flags = flags & JOURNAL_WATERMARK_MASK;
1059         int ret = 0;
1060         u32 restart_count = trans->restart_count;
1061
1062         BUG_ON(!path->should_be_locked);
1063
1064         if (flags & BTREE_INSERT_JOURNAL_RECLAIM)
1065                 journal_flags |= JOURNAL_RES_GET_NONBLOCK;
1066
1067         while (1) {
1068                 nr_nodes[!!update_level] += 1 + split;
1069                 update_level++;
1070
1071                 ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1072                 if (ret)
1073                         return ERR_PTR(ret);
1074
1075                 if (!btree_path_node(path, update_level)) {
1076                         /* Allocating new root? */
1077                         nr_nodes[1] += split;
1078                         update_level = BTREE_MAX_DEPTH;
1079                         break;
1080                 }
1081
1082                 if (bch2_btree_node_insert_fits(c, path->l[update_level].b,
1083                                         BKEY_BTREE_PTR_U64s_MAX * (1 + split)))
1084                         break;
1085
1086                 split = true;
1087         }
1088
1089         if (flags & BTREE_INSERT_GC_LOCK_HELD)
1090                 lockdep_assert_held(&c->gc_lock);
1091         else if (!down_read_trylock(&c->gc_lock)) {
1092                 bch2_trans_unlock(trans);
1093                 down_read(&c->gc_lock);
1094                 ret = bch2_trans_relock(trans);
1095                 if (ret) {
1096                         up_read(&c->gc_lock);
1097                         return ERR_PTR(ret);
1098                 }
1099         }
1100
1101         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
1102         memset(as, 0, sizeof(*as));
1103         closure_init(&as->cl, NULL);
1104         as->c           = c;
1105         as->start_time  = start_time;
1106         as->mode        = BTREE_INTERIOR_NO_UPDATE;
1107         as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
1108         as->btree_id    = path->btree_id;
1109         as->update_level = update_level;
1110         INIT_LIST_HEAD(&as->list);
1111         INIT_LIST_HEAD(&as->unwritten_list);
1112         INIT_LIST_HEAD(&as->write_blocked_list);
1113         bch2_keylist_init(&as->old_keys, as->_old_keys);
1114         bch2_keylist_init(&as->new_keys, as->_new_keys);
1115         bch2_keylist_init(&as->parent_keys, as->inline_keys);
1116
1117         mutex_lock(&c->btree_interior_update_lock);
1118         list_add_tail(&as->list, &c->btree_interior_update_list);
1119         mutex_unlock(&c->btree_interior_update_lock);
1120
1121         /*
1122          * We don't want to allocate if we're in an error state, that can cause
1123          * deadlock on emergency shutdown due to open buckets getting stuck in
1124          * the btree_reserve_cache after allocator shutdown has cleared it out.
1125          * This check needs to come after adding us to the btree_interior_update
1126          * list but before calling bch2_btree_reserve_get, to synchronize with
1127          * __bch2_fs_read_only().
1128          */
1129         ret = bch2_journal_error(&c->journal);
1130         if (ret)
1131                 goto err;
1132
1133         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1134                                       BTREE_UPDATE_JOURNAL_RES,
1135                                       journal_flags|JOURNAL_RES_GET_NONBLOCK);
1136         if (ret) {
1137                 bch2_trans_unlock(trans);
1138
1139                 if (flags & BTREE_INSERT_JOURNAL_RECLAIM) {
1140                         ret = -BCH_ERR_journal_reclaim_would_deadlock;
1141                         goto err;
1142                 }
1143
1144                 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1145                                               BTREE_UPDATE_JOURNAL_RES,
1146                                               journal_flags);
1147                 if (ret) {
1148                         trace_and_count(c, trans_restart_journal_preres_get, trans, _RET_IP_, journal_flags);
1149                         ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_journal_preres_get);
1150                         goto err;
1151                 }
1152
1153                 ret = bch2_trans_relock(trans);
1154                 if (ret)
1155                         goto err;
1156         }
1157
1158         ret = bch2_disk_reservation_get(c, &as->disk_res,
1159                         (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1160                         c->opts.metadata_replicas,
1161                         disk_res_flags);
1162         if (ret)
1163                 goto err;
1164
1165         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1166         if (bch2_err_matches(ret, ENOSPC) ||
1167             bch2_err_matches(ret, ENOMEM)) {
1168                 struct closure cl;
1169
1170                 closure_init_stack(&cl);
1171
1172                 do {
1173                         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1174
1175                         bch2_trans_unlock(trans);
1176                         closure_sync(&cl);
1177                 } while (ret == -EAGAIN);
1178         }
1179
1180         if (ret) {
1181                 trace_and_count(c, btree_reserve_get_fail, trans->fn, _RET_IP_, nr_nodes[0] + nr_nodes[1]);
1182                 goto err;
1183         }
1184
1185         ret = bch2_trans_relock(trans);
1186         if (ret)
1187                 goto err;
1188
1189         bch2_trans_verify_not_restarted(trans, restart_count);
1190         return as;
1191 err:
1192         bch2_btree_update_free(as, trans);
1193         return ERR_PTR(ret);
1194 }
1195
1196 /* Btree root updates: */
1197
1198 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1199 {
1200         /* Root nodes cannot be reaped */
1201         mutex_lock(&c->btree_cache.lock);
1202         list_del_init(&b->list);
1203         mutex_unlock(&c->btree_cache.lock);
1204
1205         mutex_lock(&c->btree_root_lock);
1206         BUG_ON(btree_node_root(c, b) &&
1207                (b->c.level < btree_node_root(c, b)->c.level ||
1208                 !btree_node_dying(btree_node_root(c, b))));
1209
1210         btree_node_root(c, b) = b;
1211         mutex_unlock(&c->btree_root_lock);
1212
1213         bch2_recalc_btree_reserve(c);
1214 }
1215
1216 /**
1217  * bch_btree_set_root - update the root in memory and on disk
1218  *
1219  * To ensure forward progress, the current task must not be holding any
1220  * btree node write locks. However, you must hold an intent lock on the
1221  * old root.
1222  *
1223  * Note: This allocates a journal entry but doesn't add any keys to
1224  * it.  All the btree roots are part of every journal write, so there
1225  * is nothing new to be done.  This just guarantees that there is a
1226  * journal write.
1227  */
1228 static void bch2_btree_set_root(struct btree_update *as,
1229                                 struct btree_trans *trans,
1230                                 struct btree_path *path,
1231                                 struct btree *b)
1232 {
1233         struct bch_fs *c = as->c;
1234         struct btree *old;
1235
1236         trace_and_count(c, btree_node_set_root, c, b);
1237
1238         old = btree_node_root(c, b);
1239
1240         /*
1241          * Ensure no one is using the old root while we switch to the
1242          * new root:
1243          */
1244         bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1245
1246         bch2_btree_set_root_inmem(c, b);
1247
1248         btree_update_updated_root(as, b);
1249
1250         /*
1251          * Unlock old root after new root is visible:
1252          *
1253          * The new root isn't persistent, but that's ok: we still have
1254          * an intent lock on the new root, and any updates that would
1255          * depend on the new root would have to update the new root.
1256          */
1257         bch2_btree_node_unlock_write(trans, path, old);
1258 }
1259
1260 /* Interior node updates: */
1261
1262 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1263                                         struct btree_trans *trans,
1264                                         struct btree_path *path,
1265                                         struct btree *b,
1266                                         struct btree_node_iter *node_iter,
1267                                         struct bkey_i *insert)
1268 {
1269         struct bch_fs *c = as->c;
1270         struct bkey_packed *k;
1271         struct printbuf buf = PRINTBUF;
1272
1273         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1274                !btree_ptr_sectors_written(insert));
1275
1276         if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1277                 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1278
1279         if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1280                               btree_node_type(b), WRITE, &buf) ?:
1281             bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf)) {
1282                 printbuf_reset(&buf);
1283                 prt_printf(&buf, "inserting invalid bkey\n  ");
1284                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1285                 prt_printf(&buf, "\n  ");
1286                 bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1287                                   btree_node_type(b), WRITE, &buf);
1288                 bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf);
1289
1290                 bch2_fs_inconsistent(c, "%s", buf.buf);
1291                 dump_stack();
1292         }
1293
1294         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1295                ARRAY_SIZE(as->journal_entries));
1296
1297         as->journal_u64s +=
1298                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1299                                   BCH_JSET_ENTRY_btree_keys,
1300                                   b->c.btree_id, b->c.level,
1301                                   insert, insert->k.u64s);
1302
1303         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1304                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1305                 bch2_btree_node_iter_advance(node_iter, b);
1306
1307         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1308         set_btree_node_dirty_acct(c, b);
1309         set_btree_node_need_write(b);
1310
1311         printbuf_exit(&buf);
1312 }
1313
1314 static void
1315 __bch2_btree_insert_keys_interior(struct btree_update *as,
1316                                   struct btree_trans *trans,
1317                                   struct btree_path *path,
1318                                   struct btree *b,
1319                                   struct btree_node_iter node_iter,
1320                                   struct keylist *keys)
1321 {
1322         struct bkey_i *insert = bch2_keylist_front(keys);
1323         struct bkey_packed *k;
1324
1325         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1326
1327         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1328                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1329                 ;
1330
1331         while (!bch2_keylist_empty(keys)) {
1332                 bch2_insert_fixup_btree_ptr(as, trans, path, b,
1333                                 &node_iter, bch2_keylist_front(keys));
1334                 bch2_keylist_pop_front(keys);
1335         }
1336 }
1337
1338 /*
1339  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1340  * node)
1341  */
1342 static struct btree *__btree_split_node(struct btree_update *as,
1343                                         struct btree_trans *trans,
1344                                         struct btree *n1)
1345 {
1346         struct bkey_format_state s;
1347         size_t nr_packed = 0, nr_unpacked = 0;
1348         struct btree *n2;
1349         struct bset *set1, *set2;
1350         struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL;
1351         struct bpos n1_pos;
1352
1353         n2 = bch2_btree_node_alloc(as, trans, n1->c.level);
1354
1355         n2->data->max_key       = n1->data->max_key;
1356         n2->data->format        = n1->format;
1357         SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
1358         n2->key.k.p = n1->key.k.p;
1359
1360         set1 = btree_bset_first(n1);
1361         set2 = btree_bset_first(n2);
1362
1363         /*
1364          * Has to be a linear search because we don't have an auxiliary
1365          * search tree yet
1366          */
1367         k = set1->start;
1368         while (1) {
1369                 struct bkey_packed *n = bkey_next(k);
1370
1371                 if (n == vstruct_last(set1))
1372                         break;
1373                 if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
1374                         break;
1375
1376                 if (bkey_packed(k))
1377                         nr_packed++;
1378                 else
1379                         nr_unpacked++;
1380
1381                 prev = k;
1382                 k = n;
1383         }
1384
1385         BUG_ON(!prev);
1386         set2_start      = k;
1387         set2_end        = vstruct_last(set1);
1388
1389         set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data);
1390         set_btree_bset_end(n1, n1->set);
1391
1392         n1->nr.live_u64s        = le16_to_cpu(set1->u64s);
1393         n1->nr.bset_u64s[0]     = le16_to_cpu(set1->u64s);
1394         n1->nr.packed_keys      = nr_packed;
1395         n1->nr.unpacked_keys    = nr_unpacked;
1396
1397         n1_pos = bkey_unpack_pos(n1, prev);
1398         if (as->c->sb.version < bcachefs_metadata_version_snapshot)
1399                 n1_pos.snapshot = U32_MAX;
1400
1401         btree_set_max(n1, n1_pos);
1402         btree_set_min(n2, bpos_successor(n1->key.k.p));
1403
1404         bch2_bkey_format_init(&s);
1405         bch2_bkey_format_add_pos(&s, n2->data->min_key);
1406         bch2_bkey_format_add_pos(&s, n2->data->max_key);
1407
1408         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1409                 struct bkey uk = bkey_unpack_key(n1, k);
1410                 bch2_bkey_format_add_key(&s, &uk);
1411         }
1412
1413         n2->data->format = bch2_bkey_format_done(&s);
1414         btree_node_set_format(n2, n2->data->format);
1415
1416         out = set2->start;
1417         memset(&n2->nr, 0, sizeof(n2->nr));
1418
1419         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1420                 BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k)
1421                                        ? &n1->format : &bch2_bkey_format_current, k));
1422                 out->format = KEY_FORMAT_LOCAL_BTREE;
1423                 btree_keys_account_key_add(&n2->nr, 0, out);
1424                 out = bkey_next(out);
1425         }
1426
1427         set2->u64s = cpu_to_le16((u64 *) out - set2->_data);
1428         set_btree_bset_end(n2, n2->set);
1429
1430         BUG_ON(!set1->u64s);
1431         BUG_ON(!set2->u64s);
1432
1433         btree_node_reset_sib_u64s(n1);
1434         btree_node_reset_sib_u64s(n2);
1435
1436         bch2_verify_btree_nr_keys(n1);
1437         bch2_verify_btree_nr_keys(n2);
1438
1439         if (n1->c.level) {
1440                 btree_node_interior_verify(as->c, n1);
1441                 btree_node_interior_verify(as->c, n2);
1442         }
1443
1444         return n2;
1445 }
1446
1447 /*
1448  * For updates to interior nodes, we've got to do the insert before we split
1449  * because the stuff we're inserting has to be inserted atomically. Post split,
1450  * the keys might have to go in different nodes and the split would no longer be
1451  * atomic.
1452  *
1453  * Worse, if the insert is from btree node coalescing, if we do the insert after
1454  * we do the split (and pick the pivot) - the pivot we pick might be between
1455  * nodes that were coalesced, and thus in the middle of a child node post
1456  * coalescing:
1457  */
1458 static void btree_split_insert_keys(struct btree_update *as,
1459                                     struct btree_trans *trans,
1460                                     struct btree_path *path,
1461                                     struct btree *b,
1462                                     struct keylist *keys)
1463 {
1464         struct btree_node_iter node_iter;
1465         struct bkey_i *k = bch2_keylist_front(keys);
1466         struct bkey_packed *src, *dst, *n;
1467         struct bset *i;
1468
1469         bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
1470
1471         __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1472
1473         /*
1474          * We can't tolerate whiteouts here - with whiteouts there can be
1475          * duplicate keys, and it would be rather bad if we picked a duplicate
1476          * for the pivot:
1477          */
1478         i = btree_bset_first(b);
1479         src = dst = i->start;
1480         while (src != vstruct_last(i)) {
1481                 n = bkey_next(src);
1482                 if (!bkey_deleted(src)) {
1483                         memmove_u64s_down(dst, src, src->u64s);
1484                         dst = bkey_next(dst);
1485                 }
1486                 src = n;
1487         }
1488
1489         /* Also clear out the unwritten whiteouts area: */
1490         b->whiteout_u64s = 0;
1491
1492         i->u64s = cpu_to_le16((u64 *) dst - i->_data);
1493         set_btree_bset_end(b, b->set);
1494
1495         BUG_ON(b->nsets != 1 ||
1496                b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
1497
1498         btree_node_interior_verify(as->c, b);
1499 }
1500
1501 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1502                        struct btree_path *path, struct btree *b,
1503                        struct keylist *keys, unsigned flags)
1504 {
1505         struct bch_fs *c = as->c;
1506         struct btree *parent = btree_node_parent(path, b);
1507         struct btree *n1, *n2 = NULL, *n3 = NULL;
1508         struct btree_path *path1 = NULL, *path2 = NULL;
1509         u64 start_time = local_clock();
1510         int ret = 0;
1511
1512         BUG_ON(!parent && (b != btree_node_root(c, b)));
1513         BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1));
1514
1515         bch2_btree_interior_update_will_free_node(as, b);
1516
1517         n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1518
1519         if (keys)
1520                 btree_split_insert_keys(as, trans, path, n1, keys);
1521
1522         if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
1523                 trace_and_count(c, btree_node_split, c, b);
1524
1525                 n2 = __btree_split_node(as, trans, n1);
1526
1527                 bch2_btree_build_aux_trees(n2);
1528                 bch2_btree_build_aux_trees(n1);
1529
1530                 bch2_btree_update_add_new_node(as, n1);
1531                 bch2_btree_update_add_new_node(as, n2);
1532                 six_unlock_write(&n2->c.lock);
1533                 six_unlock_write(&n1->c.lock);
1534
1535                 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1536                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1537                 mark_btree_node_locked(trans, path1, n1->c.level, SIX_LOCK_intent);
1538                 bch2_btree_path_level_init(trans, path1, n1);
1539
1540                 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p);
1541                 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1542                 mark_btree_node_locked(trans, path2, n2->c.level, SIX_LOCK_intent);
1543                 bch2_btree_path_level_init(trans, path2, n2);
1544
1545                 /*
1546                  * Note that on recursive parent_keys == keys, so we
1547                  * can't start adding new keys to parent_keys before emptying it
1548                  * out (which we did with btree_split_insert_keys() above)
1549                  */
1550                 bch2_keylist_add(&as->parent_keys, &n1->key);
1551                 bch2_keylist_add(&as->parent_keys, &n2->key);
1552
1553                 if (!parent) {
1554                         /* Depth increases, make a new root */
1555                         n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1556
1557                         bch2_btree_update_add_new_node(as, n3);
1558                         six_unlock_write(&n3->c.lock);
1559
1560                         path2->locks_want++;
1561                         BUG_ON(btree_node_locked(path2, n3->c.level));
1562                         six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1563                         mark_btree_node_locked(trans, path2, n3->c.level, SIX_LOCK_intent);
1564                         bch2_btree_path_level_init(trans, path2, n3);
1565
1566                         n3->sib_u64s[0] = U16_MAX;
1567                         n3->sib_u64s[1] = U16_MAX;
1568
1569                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1570                 }
1571         } else {
1572                 trace_and_count(c, btree_node_compact, c, b);
1573
1574                 bch2_btree_build_aux_trees(n1);
1575                 bch2_btree_update_add_new_node(as, n1);
1576                 six_unlock_write(&n1->c.lock);
1577
1578                 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1579                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1580                 mark_btree_node_locked(trans, path1, n1->c.level, SIX_LOCK_intent);
1581                 bch2_btree_path_level_init(trans, path1, n1);
1582
1583                 if (parent)
1584                         bch2_keylist_add(&as->parent_keys, &n1->key);
1585         }
1586
1587         /* New nodes all written, now make them visible: */
1588
1589         if (parent) {
1590                 /* Split a non root node */
1591                 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1592                 if (ret)
1593                         goto err;
1594         } else if (n3) {
1595                 bch2_btree_set_root(as, trans, path, n3);
1596         } else {
1597                 /* Root filled up but didn't need to be split */
1598                 bch2_btree_set_root(as, trans, path, n1);
1599         }
1600
1601         if (n3) {
1602                 bch2_btree_update_get_open_buckets(as, n3);
1603                 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1604         }
1605         if (n2) {
1606                 bch2_btree_update_get_open_buckets(as, n2);
1607                 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1608         }
1609         bch2_btree_update_get_open_buckets(as, n1);
1610         bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1611
1612         /*
1613          * The old node must be freed (in memory) _before_ unlocking the new
1614          * nodes - else another thread could re-acquire a read lock on the old
1615          * node after another thread has locked and updated the new node, thus
1616          * seeing stale data:
1617          */
1618         bch2_btree_node_free_inmem(trans, path, b);
1619
1620         if (n3)
1621                 bch2_trans_node_add(trans, n3);
1622         if (n2)
1623                 bch2_trans_node_add(trans, n2);
1624         bch2_trans_node_add(trans, n1);
1625
1626         if (n3)
1627                 six_unlock_intent(&n3->c.lock);
1628         if (n2)
1629                 six_unlock_intent(&n2->c.lock);
1630         six_unlock_intent(&n1->c.lock);
1631 out:
1632         if (path2) {
1633                 __bch2_btree_path_unlock(trans, path2);
1634                 bch2_path_put(trans, path2, true);
1635         }
1636         if (path1) {
1637                 __bch2_btree_path_unlock(trans, path1);
1638                 bch2_path_put(trans, path1, true);
1639         }
1640
1641         bch2_trans_verify_locks(trans);
1642
1643         bch2_time_stats_update(&c->times[n2
1644                                ? BCH_TIME_btree_node_split
1645                                : BCH_TIME_btree_node_compact],
1646                                start_time);
1647         return ret;
1648 err:
1649         if (n3)
1650                 bch2_btree_node_free_never_used(as, trans, n3);
1651         if (n2)
1652                 bch2_btree_node_free_never_used(as, trans, n2);
1653         bch2_btree_node_free_never_used(as, trans, n1);
1654         goto out;
1655 }
1656
1657 static void
1658 bch2_btree_insert_keys_interior(struct btree_update *as,
1659                                 struct btree_trans *trans,
1660                                 struct btree_path *path,
1661                                 struct btree *b,
1662                                 struct keylist *keys)
1663 {
1664         struct btree_path *linked;
1665
1666         __bch2_btree_insert_keys_interior(as, trans, path, b,
1667                                           path->l[b->c.level].iter, keys);
1668
1669         btree_update_updated_node(as, b);
1670
1671         trans_for_each_path_with_node(trans, b, linked)
1672                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1673
1674         bch2_trans_verify_paths(trans);
1675 }
1676
1677 /**
1678  * bch_btree_insert_node - insert bkeys into a given btree node
1679  *
1680  * @iter:               btree iterator
1681  * @keys:               list of keys to insert
1682  * @hook:               insert callback
1683  * @persistent:         if not null, @persistent will wait on journal write
1684  *
1685  * Inserts as many keys as it can into a given btree node, splitting it if full.
1686  * If a split occurred, this function will return early. This can only happen
1687  * for leaf nodes -- inserts into interior nodes have to be atomic.
1688  */
1689 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1690                                   struct btree_path *path, struct btree *b,
1691                                   struct keylist *keys, unsigned flags)
1692 {
1693         struct bch_fs *c = as->c;
1694         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1695         int old_live_u64s = b->nr.live_u64s;
1696         int live_u64s_added, u64s_added;
1697         int ret;
1698
1699         lockdep_assert_held(&c->gc_lock);
1700         BUG_ON(!btree_node_intent_locked(path, b->c.level));
1701         BUG_ON(!b->c.level);
1702         BUG_ON(!as || as->b);
1703         bch2_verify_keylist_sorted(keys);
1704
1705         if (!(local_clock() & 63))
1706                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1707
1708         ret = bch2_btree_node_lock_write(trans, path, &b->c);
1709         if (ret)
1710                 return ret;
1711
1712         bch2_btree_node_prep_for_write(trans, path, b);
1713
1714         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1715                 bch2_btree_node_unlock_write(trans, path, b);
1716                 goto split;
1717         }
1718
1719         btree_node_interior_verify(c, b);
1720
1721         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1722
1723         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1724         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1725
1726         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1727                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1728         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1729                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1730
1731         if (u64s_added > live_u64s_added &&
1732             bch2_maybe_compact_whiteouts(c, b))
1733                 bch2_trans_node_reinit_iter(trans, b);
1734
1735         bch2_btree_node_unlock_write(trans, path, b);
1736
1737         btree_node_interior_verify(c, b);
1738         return 0;
1739 split:
1740         /*
1741          * We could attempt to avoid the transaction restart, by calling
1742          * bch2_btree_path_upgrade() and allocating more nodes:
1743          */
1744         if (b->c.level >= as->update_level)
1745                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1746
1747         return btree_split(as, trans, path, b, keys, flags);
1748 }
1749
1750 int bch2_btree_split_leaf(struct btree_trans *trans,
1751                           struct btree_path *path,
1752                           unsigned flags)
1753 {
1754         struct btree *b = path_l(path)->b;
1755         struct btree_update *as;
1756         unsigned l;
1757         int ret = 0;
1758
1759         as = bch2_btree_update_start(trans, path, path->level,
1760                                      true, flags);
1761         if (IS_ERR(as))
1762                 return PTR_ERR(as);
1763
1764         ret = btree_split(as, trans, path, b, NULL, flags);
1765         if (ret) {
1766                 bch2_btree_update_free(as, trans);
1767                 return ret;
1768         }
1769
1770         bch2_btree_update_done(as, trans);
1771
1772         for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++)
1773                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1774
1775         return ret;
1776 }
1777
1778 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1779                                   struct btree_path *path,
1780                                   unsigned level,
1781                                   unsigned flags,
1782                                   enum btree_node_sibling sib)
1783 {
1784         struct bch_fs *c = trans->c;
1785         struct btree_path *sib_path = NULL, *new_path = NULL;
1786         struct btree_update *as;
1787         struct bkey_format_state new_s;
1788         struct bkey_format new_f;
1789         struct bkey_i delete;
1790         struct btree *b, *m, *n, *prev, *next, *parent;
1791         struct bpos sib_pos;
1792         size_t sib_u64s;
1793         u64 start_time = local_clock();
1794         int ret = 0;
1795
1796         BUG_ON(!path->should_be_locked);
1797         BUG_ON(!btree_node_locked(path, level));
1798
1799         b = path->l[level].b;
1800
1801         if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) ||
1802             (sib == btree_next_sib && !bpos_cmp(b->data->max_key, SPOS_MAX))) {
1803                 b->sib_u64s[sib] = U16_MAX;
1804                 return 0;
1805         }
1806
1807         sib_pos = sib == btree_prev_sib
1808                 ? bpos_predecessor(b->data->min_key)
1809                 : bpos_successor(b->data->max_key);
1810
1811         sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1812                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1813         ret = bch2_btree_path_traverse(trans, sib_path, false);
1814         if (ret)
1815                 goto err;
1816
1817         btree_path_set_should_be_locked(sib_path);
1818
1819         m = sib_path->l[level].b;
1820
1821         if (btree_node_parent(path, b) !=
1822             btree_node_parent(sib_path, m)) {
1823                 b->sib_u64s[sib] = U16_MAX;
1824                 goto out;
1825         }
1826
1827         if (sib == btree_prev_sib) {
1828                 prev = m;
1829                 next = b;
1830         } else {
1831                 prev = b;
1832                 next = m;
1833         }
1834
1835         if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) {
1836                 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1837
1838                 bch2_bpos_to_text(&buf1, prev->data->max_key);
1839                 bch2_bpos_to_text(&buf2, next->data->min_key);
1840                 bch_err(c,
1841                         "btree topology error in btree merge:\n"
1842                         "  prev ends at   %s\n"
1843                         "  next starts at %s",
1844                         buf1.buf, buf2.buf);
1845                 printbuf_exit(&buf1);
1846                 printbuf_exit(&buf2);
1847                 bch2_topology_error(c);
1848                 ret = -EIO;
1849                 goto err;
1850         }
1851
1852         bch2_bkey_format_init(&new_s);
1853         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1854         __bch2_btree_calc_format(&new_s, prev);
1855         __bch2_btree_calc_format(&new_s, next);
1856         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1857         new_f = bch2_bkey_format_done(&new_s);
1858
1859         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1860                 btree_node_u64s_with_format(m, &new_f);
1861
1862         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1863                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1864                 sib_u64s /= 2;
1865                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1866         }
1867
1868         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1869         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1870         b->sib_u64s[sib] = sib_u64s;
1871
1872         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1873                 goto out;
1874
1875         parent = btree_node_parent(path, b);
1876         as = bch2_btree_update_start(trans, path, level, false,
1877                          BTREE_INSERT_NOFAIL|
1878                          BTREE_INSERT_USE_RESERVE|
1879                          flags);
1880         ret = PTR_ERR_OR_ZERO(as);
1881         if (ret)
1882                 goto err;
1883
1884         trace_and_count(c, btree_node_merge, c, b);
1885
1886         bch2_btree_interior_update_will_free_node(as, b);
1887         bch2_btree_interior_update_will_free_node(as, m);
1888
1889         n = bch2_btree_node_alloc(as, trans, b->c.level);
1890
1891         SET_BTREE_NODE_SEQ(n->data,
1892                            max(BTREE_NODE_SEQ(b->data),
1893                                BTREE_NODE_SEQ(m->data)) + 1);
1894
1895         btree_set_min(n, prev->data->min_key);
1896         btree_set_max(n, next->data->max_key);
1897
1898         n->data->format  = new_f;
1899         btree_node_set_format(n, new_f);
1900
1901         bch2_btree_sort_into(c, n, prev);
1902         bch2_btree_sort_into(c, n, next);
1903
1904         bch2_btree_build_aux_trees(n);
1905         bch2_btree_update_add_new_node(as, n);
1906         six_unlock_write(&n->c.lock);
1907
1908         new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p);
1909         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1910         mark_btree_node_locked(trans, new_path, n->c.level, SIX_LOCK_intent);
1911         bch2_btree_path_level_init(trans, new_path, n);
1912
1913         bkey_init(&delete.k);
1914         delete.k.p = prev->key.k.p;
1915         bch2_keylist_add(&as->parent_keys, &delete);
1916         bch2_keylist_add(&as->parent_keys, &n->key);
1917
1918         bch2_trans_verify_paths(trans);
1919
1920         ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1921         if (ret)
1922                 goto err_free_update;
1923
1924         bch2_trans_verify_paths(trans);
1925
1926         bch2_btree_update_get_open_buckets(as, n);
1927         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1928
1929         bch2_btree_node_free_inmem(trans, path, b);
1930         bch2_btree_node_free_inmem(trans, sib_path, m);
1931
1932         bch2_trans_node_add(trans, n);
1933
1934         bch2_trans_verify_paths(trans);
1935
1936         six_unlock_intent(&n->c.lock);
1937
1938         bch2_btree_update_done(as, trans);
1939
1940         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1941 out:
1942 err:
1943         if (new_path)
1944                 bch2_path_put(trans, new_path, true);
1945         bch2_path_put(trans, sib_path, true);
1946         bch2_trans_verify_locks(trans);
1947         return ret;
1948 err_free_update:
1949         bch2_btree_node_free_never_used(as, trans, n);
1950         bch2_btree_update_free(as, trans);
1951         goto out;
1952 }
1953
1954 /**
1955  * bch_btree_node_rewrite - Rewrite/move a btree node
1956  */
1957 int bch2_btree_node_rewrite(struct btree_trans *trans,
1958                             struct btree_iter *iter,
1959                             struct btree *b,
1960                             unsigned flags)
1961 {
1962         struct bch_fs *c = trans->c;
1963         struct btree_path *new_path = NULL;
1964         struct btree *n, *parent;
1965         struct btree_update *as;
1966         int ret;
1967
1968         flags |= BTREE_INSERT_NOFAIL;
1969
1970         parent = btree_node_parent(iter->path, b);
1971         as = bch2_btree_update_start(trans, iter->path, b->c.level,
1972                                      false, flags);
1973         ret = PTR_ERR_OR_ZERO(as);
1974         if (ret)
1975                 goto out;
1976
1977         bch2_btree_interior_update_will_free_node(as, b);
1978
1979         n = bch2_btree_node_alloc_replacement(as, trans, b);
1980
1981         bch2_btree_build_aux_trees(n);
1982         bch2_btree_update_add_new_node(as, n);
1983         six_unlock_write(&n->c.lock);
1984
1985         new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
1986         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1987         mark_btree_node_locked(trans, new_path, n->c.level, SIX_LOCK_intent);
1988         bch2_btree_path_level_init(trans, new_path, n);
1989
1990         trace_and_count(c, btree_node_rewrite, c, b);
1991
1992         if (parent) {
1993                 bch2_keylist_add(&as->parent_keys, &n->key);
1994                 ret = bch2_btree_insert_node(as, trans, iter->path, parent,
1995                                              &as->parent_keys, flags);
1996                 if (ret)
1997                         goto err;
1998         } else {
1999                 bch2_btree_set_root(as, trans, iter->path, n);
2000         }
2001
2002         bch2_btree_update_get_open_buckets(as, n);
2003         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2004
2005         bch2_btree_node_free_inmem(trans, iter->path, b);
2006
2007         bch2_trans_node_add(trans, n);
2008         six_unlock_intent(&n->c.lock);
2009
2010         bch2_btree_update_done(as, trans);
2011 out:
2012         if (new_path)
2013                 bch2_path_put(trans, new_path, true);
2014         bch2_btree_path_downgrade(trans, iter->path);
2015         return ret;
2016 err:
2017         bch2_btree_node_free_never_used(as, trans, n);
2018         bch2_btree_update_free(as, trans);
2019         goto out;
2020 }
2021
2022 struct async_btree_rewrite {
2023         struct bch_fs           *c;
2024         struct work_struct      work;
2025         enum btree_id           btree_id;
2026         unsigned                level;
2027         struct bpos             pos;
2028         __le64                  seq;
2029 };
2030
2031 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2032                                           struct async_btree_rewrite *a)
2033 {
2034         struct btree_iter iter;
2035         struct btree *b;
2036         int ret;
2037
2038         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2039                                   BTREE_MAX_DEPTH, a->level, 0);
2040         b = bch2_btree_iter_peek_node(&iter);
2041         ret = PTR_ERR_OR_ZERO(b);
2042         if (ret)
2043                 goto out;
2044
2045         if (!b || b->data->keys.seq != a->seq)
2046                 goto out;
2047
2048         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2049 out :
2050         bch2_trans_iter_exit(trans, &iter);
2051
2052         return ret;
2053 }
2054
2055 void async_btree_node_rewrite_work(struct work_struct *work)
2056 {
2057         struct async_btree_rewrite *a =
2058                 container_of(work, struct async_btree_rewrite, work);
2059         struct bch_fs *c = a->c;
2060
2061         bch2_trans_do(c, NULL, NULL, 0,
2062                       async_btree_node_rewrite_trans(&trans, a));
2063         percpu_ref_put(&c->writes);
2064         kfree(a);
2065 }
2066
2067 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2068 {
2069         struct async_btree_rewrite *a;
2070
2071         if (!percpu_ref_tryget_live(&c->writes))
2072                 return;
2073
2074         a = kmalloc(sizeof(*a), GFP_NOFS);
2075         if (!a) {
2076                 percpu_ref_put(&c->writes);
2077                 return;
2078         }
2079
2080         a->c            = c;
2081         a->btree_id     = b->c.btree_id;
2082         a->level        = b->c.level;
2083         a->pos          = b->key.k.p;
2084         a->seq          = b->data->keys.seq;
2085
2086         INIT_WORK(&a->work, async_btree_node_rewrite_work);
2087         queue_work(c->btree_interior_update_worker, &a->work);
2088 }
2089
2090 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2091                                         struct btree_iter *iter,
2092                                         struct btree *b, struct btree *new_hash,
2093                                         struct bkey_i *new_key,
2094                                         bool skip_triggers)
2095 {
2096         struct bch_fs *c = trans->c;
2097         struct btree_iter iter2 = { NULL };
2098         struct btree *parent;
2099         int ret;
2100
2101         if (!skip_triggers) {
2102                 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1,
2103                                           bkey_i_to_s_c(&b->key), 0);
2104                 if (ret)
2105                         return ret;
2106
2107                 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1,
2108                                           new_key, 0);
2109                 if (ret)
2110                         return ret;
2111         }
2112
2113         if (new_hash) {
2114                 bkey_copy(&new_hash->key, new_key);
2115                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2116                                 new_hash, b->c.level, b->c.btree_id);
2117                 BUG_ON(ret);
2118         }
2119
2120         parent = btree_node_parent(iter->path, b);
2121         if (parent) {
2122                 bch2_trans_copy_iter(&iter2, iter);
2123
2124                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2125                                 iter2.flags & BTREE_ITER_INTENT,
2126                                 _THIS_IP_);
2127
2128                 BUG_ON(iter2.path->level != b->c.level);
2129                 BUG_ON(bpos_cmp(iter2.path->pos, new_key->k.p));
2130
2131                 btree_path_set_level_up(trans, iter2.path);
2132
2133                 bch2_btree_path_check_sort(trans, iter2.path, 0);
2134
2135                 ret   = bch2_btree_iter_traverse(&iter2) ?:
2136                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2137                 if (ret)
2138                         goto err;
2139         } else {
2140                 BUG_ON(btree_node_root(c, b) != b);
2141
2142                 ret = darray_make_room(&trans->extra_journal_entries,
2143                                        jset_u64s(new_key->k.u64s));
2144                 if (ret)
2145                         return ret;
2146
2147                 journal_entry_set((void *) &darray_top(trans->extra_journal_entries),
2148                                   BCH_JSET_ENTRY_btree_root,
2149                                   b->c.btree_id, b->c.level,
2150                                   new_key, new_key->k.u64s);
2151                 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s);
2152         }
2153
2154         ret = bch2_trans_commit(trans, NULL, NULL,
2155                                 BTREE_INSERT_NOFAIL|
2156                                 BTREE_INSERT_NOCHECK_RW|
2157                                 BTREE_INSERT_USE_RESERVE|
2158                                 BTREE_INSERT_JOURNAL_RECLAIM|
2159                                 JOURNAL_WATERMARK_reserved);
2160         if (ret)
2161                 goto err;
2162
2163         bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c);
2164
2165         if (new_hash) {
2166                 mutex_lock(&c->btree_cache.lock);
2167                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2168                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2169
2170                 bkey_copy(&b->key, new_key);
2171                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2172                 BUG_ON(ret);
2173                 mutex_unlock(&c->btree_cache.lock);
2174         } else {
2175                 bkey_copy(&b->key, new_key);
2176         }
2177
2178         bch2_btree_node_unlock_write(trans, iter->path, b);
2179 out:
2180         bch2_trans_iter_exit(trans, &iter2);
2181         return ret;
2182 err:
2183         if (new_hash) {
2184                 mutex_lock(&c->btree_cache.lock);
2185                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2186                 mutex_unlock(&c->btree_cache.lock);
2187         }
2188         goto out;
2189 }
2190
2191 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2192                                struct btree *b, struct bkey_i *new_key,
2193                                bool skip_triggers)
2194 {
2195         struct bch_fs *c = trans->c;
2196         struct btree *new_hash = NULL;
2197         struct btree_path *path = iter->path;
2198         struct closure cl;
2199         int ret = 0;
2200
2201         ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2202         if (ret)
2203                 return ret;
2204
2205         closure_init_stack(&cl);
2206
2207         /*
2208          * check btree_ptr_hash_val() after @b is locked by
2209          * btree_iter_traverse():
2210          */
2211         if (btree_ptr_hash_val(new_key) != b->hash_val) {
2212                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2213                 if (ret) {
2214                         bch2_trans_unlock(trans);
2215                         closure_sync(&cl);
2216                         ret = bch2_trans_relock(trans);
2217                         if (ret)
2218                                 return ret;
2219                 }
2220
2221                 new_hash = bch2_btree_node_mem_alloc(c, false);
2222         }
2223
2224         path->intent_ref++;
2225         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash,
2226                                            new_key, skip_triggers);
2227         --path->intent_ref;
2228
2229         if (new_hash) {
2230                 mutex_lock(&c->btree_cache.lock);
2231                 list_move(&new_hash->list, &c->btree_cache.freeable);
2232                 mutex_unlock(&c->btree_cache.lock);
2233
2234                 six_unlock_write(&new_hash->c.lock);
2235                 six_unlock_intent(&new_hash->c.lock);
2236         }
2237         closure_sync(&cl);
2238         bch2_btree_cache_cannibalize_unlock(c);
2239         return ret;
2240 }
2241
2242 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2243                                         struct btree *b, struct bkey_i *new_key,
2244                                         bool skip_triggers)
2245 {
2246         struct btree_iter iter;
2247         int ret;
2248
2249         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2250                                   BTREE_MAX_DEPTH, b->c.level,
2251                                   BTREE_ITER_INTENT);
2252         ret = bch2_btree_iter_traverse(&iter);
2253         if (ret)
2254                 goto out;
2255
2256         /* has node been freed? */
2257         if (iter.path->l[b->c.level].b != b) {
2258                 /* node has been freed: */
2259                 BUG_ON(!btree_node_dying(b));
2260                 goto out;
2261         }
2262
2263         BUG_ON(!btree_node_hashed(b));
2264
2265         ret = bch2_btree_node_update_key(trans, &iter, b, new_key, skip_triggers);
2266 out:
2267         bch2_trans_iter_exit(trans, &iter);
2268         return ret;
2269 }
2270
2271 /* Init code: */
2272
2273 /*
2274  * Only for filesystem bringup, when first reading the btree roots or allocating
2275  * btree roots when initializing a new filesystem:
2276  */
2277 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2278 {
2279         BUG_ON(btree_node_root(c, b));
2280
2281         bch2_btree_set_root_inmem(c, b);
2282 }
2283
2284 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2285 {
2286         struct closure cl;
2287         struct btree *b;
2288         int ret;
2289
2290         closure_init_stack(&cl);
2291
2292         do {
2293                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2294                 closure_sync(&cl);
2295         } while (ret);
2296
2297         b = bch2_btree_node_mem_alloc(c, false);
2298         bch2_btree_cache_cannibalize_unlock(c);
2299
2300         set_btree_node_fake(b);
2301         set_btree_node_need_rewrite(b);
2302         b->c.level      = 0;
2303         b->c.btree_id   = id;
2304
2305         bkey_btree_ptr_init(&b->key);
2306         b->key.k.p = SPOS_MAX;
2307         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2308
2309         bch2_bset_init_first(b, &b->data->keys);
2310         bch2_btree_build_aux_trees(b);
2311
2312         b->data->flags = 0;
2313         btree_set_min(b, POS_MIN);
2314         btree_set_max(b, SPOS_MAX);
2315         b->data->format = bch2_btree_calc_format(b);
2316         btree_node_set_format(b, b->data->format);
2317
2318         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2319                                           b->c.level, b->c.btree_id);
2320         BUG_ON(ret);
2321
2322         bch2_btree_set_root_inmem(c, b);
2323
2324         six_unlock_write(&b->c.lock);
2325         six_unlock_intent(&b->c.lock);
2326 }
2327
2328 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2329 {
2330         struct btree_update *as;
2331
2332         mutex_lock(&c->btree_interior_update_lock);
2333         list_for_each_entry(as, &c->btree_interior_update_list, list)
2334                 prt_printf(out, "%p m %u w %u r %u j %llu\n",
2335                        as,
2336                        as->mode,
2337                        as->nodes_written,
2338                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
2339                        as->journal.seq);
2340         mutex_unlock(&c->btree_interior_update_lock);
2341 }
2342
2343 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2344 {
2345         bool ret;
2346
2347         mutex_lock(&c->btree_interior_update_lock);
2348         ret = !list_empty(&c->btree_interior_update_list);
2349         mutex_unlock(&c->btree_interior_update_lock);
2350
2351         return ret;
2352 }
2353
2354 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2355 {
2356         bool ret = bch2_btree_interior_updates_pending(c);
2357
2358         if (ret)
2359                 closure_wait_event(&c->btree_interior_update_wait,
2360                                    !bch2_btree_interior_updates_pending(c));
2361         return ret;
2362 }
2363
2364 void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
2365 {
2366         struct btree_root *r;
2367         struct jset_entry *entry;
2368
2369         mutex_lock(&c->btree_root_lock);
2370
2371         vstruct_for_each(jset, entry)
2372                 if (entry->type == BCH_JSET_ENTRY_btree_root) {
2373                         r = &c->btree_roots[entry->btree_id];
2374                         r->level = entry->level;
2375                         r->alive = true;
2376                         bkey_copy(&r->key, &entry->start[0]);
2377                 }
2378
2379         mutex_unlock(&c->btree_root_lock);
2380 }
2381
2382 struct jset_entry *
2383 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2384                                     struct jset_entry *start,
2385                                     struct jset_entry *end)
2386 {
2387         struct jset_entry *entry;
2388         unsigned long have = 0;
2389         unsigned i;
2390
2391         for (entry = start; entry < end; entry = vstruct_next(entry))
2392                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2393                         __set_bit(entry->btree_id, &have);
2394
2395         mutex_lock(&c->btree_root_lock);
2396
2397         for (i = 0; i < BTREE_ID_NR; i++)
2398                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2399                         journal_entry_set(end,
2400                                           BCH_JSET_ENTRY_btree_root,
2401                                           i, c->btree_roots[i].level,
2402                                           &c->btree_roots[i].key,
2403                                           c->btree_roots[i].key.u64s);
2404                         end = vstruct_next(end);
2405                 }
2406
2407         mutex_unlock(&c->btree_root_lock);
2408
2409         return end;
2410 }
2411
2412 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2413 {
2414         if (c->btree_interior_update_worker)
2415                 destroy_workqueue(c->btree_interior_update_worker);
2416         mempool_exit(&c->btree_interior_update_pool);
2417 }
2418
2419 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2420 {
2421         mutex_init(&c->btree_reserve_cache_lock);
2422         INIT_LIST_HEAD(&c->btree_interior_update_list);
2423         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2424         mutex_init(&c->btree_interior_update_lock);
2425         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2426
2427         c->btree_interior_update_worker =
2428                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2429         if (!c->btree_interior_update_worker)
2430                 return -ENOMEM;
2431
2432         return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2433                                          sizeof(struct btree_update));
2434 }