]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
455a7093af459d0d0b4f76bab906321e6958d03d
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "extents.h"
15 #include "journal.h"
16 #include "journal_reclaim.h"
17 #include "keylist.h"
18 #include "replicas.h"
19 #include "super-io.h"
20
21 #include <linux/random.h>
22 #include <trace/events/bcachefs.h>
23
24 /* Debug code: */
25
26 /*
27  * Verify that child nodes correctly span parent node's range:
28  */
29 static void btree_node_interior_verify(struct btree *b)
30 {
31 #ifdef CONFIG_BCACHEFS_DEBUG
32         struct bpos next_node = b->data->min_key;
33         struct btree_node_iter iter;
34         struct bkey_s_c k;
35         struct bkey_s_c_btree_ptr_v2 bp;
36         struct bkey unpacked;
37
38         BUG_ON(!b->level);
39
40         bch2_btree_node_iter_init_from_start(&iter, b);
41
42         while (1) {
43                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
44                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
45                         break;
46                 bp = bkey_s_c_to_btree_ptr_v2(k);
47
48                 BUG_ON(bkey_cmp(next_node, bp.v->min_key));
49
50                 bch2_btree_node_iter_advance(&iter, b);
51
52                 if (bch2_btree_node_iter_end(&iter)) {
53                         BUG_ON(bkey_cmp(k.k->p, b->key.k.p));
54                         break;
55                 }
56
57                 next_node = bkey_successor(k.k->p);
58         }
59 #endif
60 }
61
62 /* Calculate ideal packed bkey format for new btree nodes: */
63
64 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
65 {
66         struct bkey_packed *k;
67         struct bset_tree *t;
68         struct bkey uk;
69
70         bch2_bkey_format_add_pos(s, b->data->min_key);
71
72         for_each_bset(b, t)
73                 bset_tree_for_each_key(b, t, k)
74                         if (!bkey_whiteout(k)) {
75                                 uk = bkey_unpack_key(b, k);
76                                 bch2_bkey_format_add_key(s, &uk);
77                         }
78 }
79
80 static struct bkey_format bch2_btree_calc_format(struct btree *b)
81 {
82         struct bkey_format_state s;
83
84         bch2_bkey_format_init(&s);
85         __bch2_btree_calc_format(&s, b);
86
87         return bch2_bkey_format_done(&s);
88 }
89
90 static size_t btree_node_u64s_with_format(struct btree *b,
91                                           struct bkey_format *new_f)
92 {
93         struct bkey_format *old_f = &b->format;
94
95         /* stupid integer promotion rules */
96         ssize_t delta =
97             (((int) new_f->key_u64s - old_f->key_u64s) *
98              (int) b->nr.packed_keys) +
99             (((int) new_f->key_u64s - BKEY_U64s) *
100              (int) b->nr.unpacked_keys);
101
102         BUG_ON(delta + b->nr.live_u64s < 0);
103
104         return b->nr.live_u64s + delta;
105 }
106
107 /**
108  * btree_node_format_fits - check if we could rewrite node with a new format
109  *
110  * This assumes all keys can pack with the new format -- it just checks if
111  * the re-packed keys would fit inside the node itself.
112  */
113 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
114                                  struct bkey_format *new_f)
115 {
116         size_t u64s = btree_node_u64s_with_format(b, new_f);
117
118         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
119 }
120
121 /* Btree node freeing/allocation: */
122
123 static void __btree_node_free(struct bch_fs *c, struct btree *b)
124 {
125         trace_btree_node_free(c, b);
126
127         BUG_ON(btree_node_dirty(b));
128         BUG_ON(btree_node_need_write(b));
129         BUG_ON(b == btree_node_root(c, b));
130         BUG_ON(b->ob.nr);
131         BUG_ON(!list_empty(&b->write_blocked));
132         BUG_ON(b->will_make_reachable);
133
134         clear_btree_node_noevict(b);
135
136         bch2_btree_node_hash_remove(&c->btree_cache, b);
137
138         mutex_lock(&c->btree_cache.lock);
139         list_move(&b->list, &c->btree_cache.freeable);
140         mutex_unlock(&c->btree_cache.lock);
141 }
142
143 void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b)
144 {
145         struct open_buckets ob = b->ob;
146
147         b->ob.nr = 0;
148
149         clear_btree_node_dirty(b);
150
151         btree_node_lock_type(c, b, SIX_LOCK_write);
152         __btree_node_free(c, b);
153         six_unlock_write(&b->lock);
154
155         bch2_open_buckets_put(c, &ob);
156 }
157
158 void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b,
159                                 struct btree_iter *iter)
160 {
161         struct btree_iter *linked;
162
163         trans_for_each_iter(iter->trans, linked)
164                 BUG_ON(linked->l[b->level].b == b);
165
166         six_lock_write(&b->lock);
167         __btree_node_free(c, b);
168         six_unlock_write(&b->lock);
169         six_unlock_intent(&b->lock);
170 }
171
172 static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
173                                              struct disk_reservation *res,
174                                              struct closure *cl,
175                                              unsigned flags)
176 {
177         struct write_point *wp;
178         struct btree *b;
179         BKEY_PADDED(k) tmp;
180         struct open_buckets ob = { .nr = 0 };
181         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
182         unsigned nr_reserve;
183         enum alloc_reserve alloc_reserve;
184
185         if (flags & BTREE_INSERT_USE_ALLOC_RESERVE) {
186                 nr_reserve      = 0;
187                 alloc_reserve   = RESERVE_ALLOC;
188         } else if (flags & BTREE_INSERT_USE_RESERVE) {
189                 nr_reserve      = BTREE_NODE_RESERVE / 2;
190                 alloc_reserve   = RESERVE_BTREE;
191         } else {
192                 nr_reserve      = BTREE_NODE_RESERVE;
193                 alloc_reserve   = RESERVE_NONE;
194         }
195
196         mutex_lock(&c->btree_reserve_cache_lock);
197         if (c->btree_reserve_cache_nr > nr_reserve) {
198                 struct btree_alloc *a =
199                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
200
201                 ob = a->ob;
202                 bkey_copy(&tmp.k, &a->k);
203                 mutex_unlock(&c->btree_reserve_cache_lock);
204                 goto mem_alloc;
205         }
206         mutex_unlock(&c->btree_reserve_cache_lock);
207
208 retry:
209         wp = bch2_alloc_sectors_start(c, c->opts.foreground_target, 0,
210                                       writepoint_ptr(&c->btree_write_point),
211                                       &devs_have,
212                                       res->nr_replicas,
213                                       c->opts.metadata_replicas_required,
214                                       alloc_reserve, 0, cl);
215         if (IS_ERR(wp))
216                 return ERR_CAST(wp);
217
218         if (wp->sectors_free < c->opts.btree_node_size) {
219                 struct open_bucket *ob;
220                 unsigned i;
221
222                 open_bucket_for_each(c, &wp->ptrs, ob, i)
223                         if (ob->sectors_free < c->opts.btree_node_size)
224                                 ob->sectors_free = 0;
225
226                 bch2_alloc_sectors_done(c, wp);
227                 goto retry;
228         }
229
230         if (c->sb.features & (1ULL << BCH_FEATURE_btree_ptr_v2))
231                 bkey_btree_ptr_v2_init(&tmp.k);
232         else
233                 bkey_btree_ptr_init(&tmp.k);
234
235         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, c->opts.btree_node_size);
236
237         bch2_open_bucket_get(c, wp, &ob);
238         bch2_alloc_sectors_done(c, wp);
239 mem_alloc:
240         b = bch2_btree_node_mem_alloc(c);
241
242         /* we hold cannibalize_lock: */
243         BUG_ON(IS_ERR(b));
244         BUG_ON(b->ob.nr);
245
246         bkey_copy(&b->key, &tmp.k);
247         b->ob = ob;
248
249         return b;
250 }
251
252 static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
253 {
254         struct bch_fs *c = as->c;
255         struct btree *b;
256         int ret;
257
258         BUG_ON(level >= BTREE_MAX_DEPTH);
259         BUG_ON(!as->nr_prealloc_nodes);
260
261         b = as->prealloc_nodes[--as->nr_prealloc_nodes];
262
263         set_btree_node_accessed(b);
264         set_btree_node_dirty(b);
265         set_btree_node_need_write(b);
266
267         bch2_bset_init_first(b, &b->data->keys);
268         b->level        = level;
269         b->btree_id     = as->btree_id;
270
271         memset(&b->nr, 0, sizeof(b->nr));
272         b->data->magic = cpu_to_le64(bset_magic(c));
273         b->data->flags = 0;
274         SET_BTREE_NODE_ID(b->data, as->btree_id);
275         SET_BTREE_NODE_LEVEL(b->data, level);
276         b->data->ptr = bch2_bkey_ptrs_c(bkey_i_to_s_c(&b->key)).start->ptr;
277
278         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
279                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
280
281                 bp->v.mem_ptr           = 0;
282                 bp->v.seq               = b->data->keys.seq;
283                 bp->v.sectors_written   = 0;
284                 bp->v.sectors           = cpu_to_le16(c->opts.btree_node_size);
285         }
286
287         if (c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))
288                 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
289
290         if (btree_node_is_extents(b) &&
291             !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data))
292                 set_btree_node_old_extent_overwrite(b);
293
294         bch2_btree_build_aux_trees(b);
295
296         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
297         BUG_ON(ret);
298
299         trace_btree_node_alloc(c, b);
300         return b;
301 }
302
303 static void btree_set_min(struct btree *b, struct bpos pos)
304 {
305         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
306                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
307         b->data->min_key = pos;
308 }
309
310 static void btree_set_max(struct btree *b, struct bpos pos)
311 {
312         b->key.k.p = pos;
313         b->data->max_key = pos;
314 }
315
316 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
317                                                   struct btree *b,
318                                                   struct bkey_format format)
319 {
320         struct btree *n;
321
322         n = bch2_btree_node_alloc(as, b->level);
323
324         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
325
326         btree_set_min(n, b->data->min_key);
327         btree_set_max(n, b->data->max_key);
328
329         n->data->format         = format;
330         btree_node_set_format(n, format);
331
332         bch2_btree_sort_into(as->c, n, b);
333
334         btree_node_reset_sib_u64s(n);
335
336         n->key.k.p = b->key.k.p;
337         return n;
338 }
339
340 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
341                                                        struct btree *b)
342 {
343         struct bkey_format new_f = bch2_btree_calc_format(b);
344
345         /*
346          * The keys might expand with the new format - if they wouldn't fit in
347          * the btree node anymore, use the old format for now:
348          */
349         if (!bch2_btree_node_format_fits(as->c, b, &new_f))
350                 new_f = b->format;
351
352         return __bch2_btree_node_alloc_replacement(as, b, new_f);
353 }
354
355 static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
356 {
357         struct btree *b = bch2_btree_node_alloc(as, level);
358
359         btree_set_min(b, POS_MIN);
360         btree_set_max(b, POS_MAX);
361         b->data->format = bch2_btree_calc_format(b);
362
363         btree_node_set_format(b, b->data->format);
364         bch2_btree_build_aux_trees(b);
365
366         bch2_btree_update_add_new_node(as, b);
367         six_unlock_write(&b->lock);
368
369         return b;
370 }
371
372 static void bch2_btree_reserve_put(struct btree_update *as)
373 {
374         struct bch_fs *c = as->c;
375
376         mutex_lock(&c->btree_reserve_cache_lock);
377
378         while (as->nr_prealloc_nodes) {
379                 struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes];
380
381                 six_unlock_write(&b->lock);
382
383                 if (c->btree_reserve_cache_nr <
384                     ARRAY_SIZE(c->btree_reserve_cache)) {
385                         struct btree_alloc *a =
386                                 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
387
388                         a->ob = b->ob;
389                         b->ob.nr = 0;
390                         bkey_copy(&a->k, &b->key);
391                 } else {
392                         bch2_open_buckets_put(c, &b->ob);
393                 }
394
395                 btree_node_lock_type(c, b, SIX_LOCK_write);
396                 __btree_node_free(c, b);
397                 six_unlock_write(&b->lock);
398
399                 six_unlock_intent(&b->lock);
400         }
401
402         mutex_unlock(&c->btree_reserve_cache_lock);
403 }
404
405 static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes,
406                                   unsigned flags, struct closure *cl)
407 {
408         struct bch_fs *c = as->c;
409         struct btree *b;
410         int ret;
411
412         BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
413
414         /*
415          * Protects reaping from the btree node cache and using the btree node
416          * open bucket reserve:
417          */
418         ret = bch2_btree_cache_cannibalize_lock(c, cl);
419         if (ret)
420                 return ret;
421
422         while (as->nr_prealloc_nodes < nr_nodes) {
423                 b = __bch2_btree_node_alloc(c, &as->disk_res,
424                                             flags & BTREE_INSERT_NOWAIT
425                                             ? NULL : cl, flags);
426                 if (IS_ERR(b)) {
427                         ret = PTR_ERR(b);
428                         goto err_free;
429                 }
430
431                 ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(&b->key));
432                 if (ret)
433                         goto err_free;
434
435                 as->prealloc_nodes[as->nr_prealloc_nodes++] = b;
436         }
437
438         bch2_btree_cache_cannibalize_unlock(c);
439         return 0;
440 err_free:
441         bch2_btree_cache_cannibalize_unlock(c);
442         trace_btree_reserve_get_fail(c, nr_nodes, cl);
443         return ret;
444 }
445
446 /* Asynchronous interior node update machinery */
447
448 static void bch2_btree_update_free(struct btree_update *as)
449 {
450         struct bch_fs *c = as->c;
451
452         bch2_journal_preres_put(&c->journal, &as->journal_preres);
453
454         bch2_journal_pin_drop(&c->journal, &as->journal);
455         bch2_journal_pin_flush(&c->journal, &as->journal);
456         bch2_disk_reservation_put(c, &as->disk_res);
457         bch2_btree_reserve_put(as);
458
459         mutex_lock(&c->btree_interior_update_lock);
460         list_del(&as->unwritten_list);
461         list_del(&as->list);
462         mutex_unlock(&c->btree_interior_update_lock);
463
464         closure_debug_destroy(&as->cl);
465         mempool_free(as, &c->btree_interior_update_pool);
466
467         closure_wake_up(&c->btree_interior_update_wait);
468 }
469
470 static void btree_update_will_delete_key(struct btree_update *as,
471                                          struct bkey_i *k)
472 {
473         BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s >
474                ARRAY_SIZE(as->_old_keys));
475         bch2_keylist_add(&as->old_keys, k);
476 }
477
478 static void btree_update_will_add_key(struct btree_update *as,
479                                       struct bkey_i *k)
480 {
481         BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s >
482                ARRAY_SIZE(as->_new_keys));
483         bch2_keylist_add(&as->new_keys, k);
484 }
485
486 /*
487  * The transactional part of an interior btree node update, where we journal the
488  * update we did to the interior node and update alloc info:
489  */
490 static int btree_update_nodes_written_trans(struct btree_trans *trans,
491                                             struct btree_update *as)
492 {
493         struct bkey_i *k;
494         int ret;
495
496         trans->extra_journal_entries = (void *) &as->journal_entries[0];
497         trans->extra_journal_entry_u64s = as->journal_u64s;
498         trans->journal_pin = &as->journal;
499
500         for_each_keylist_key(&as->new_keys, k) {
501                 ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(k),
502                                           0, 0, BTREE_TRIGGER_INSERT);
503                 if (ret)
504                         return ret;
505         }
506
507         for_each_keylist_key(&as->old_keys, k) {
508                 ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(k),
509                                           0, 0, BTREE_TRIGGER_OVERWRITE);
510                 if (ret)
511                         return ret;
512         }
513
514         return 0;
515 }
516
517 static void btree_update_nodes_written(struct btree_update *as)
518 {
519         struct bch_fs *c = as->c;
520         struct btree *b = as->b;
521         u64 journal_seq = 0;
522         unsigned i;
523         int ret;
524
525         /*
526          * We did an update to a parent node where the pointers we added pointed
527          * to child nodes that weren't written yet: now, the child nodes have
528          * been written so we can write out the update to the interior node.
529          */
530         ret = bch2_trans_do(c, &as->disk_res, &journal_seq,
531                             BTREE_INSERT_NOFAIL|
532                             BTREE_INSERT_NOCHECK_RW|
533                             BTREE_INSERT_JOURNAL_RESERVED,
534                             btree_update_nodes_written_trans(&trans, as));
535         BUG_ON(ret && !bch2_journal_error(&c->journal));
536
537         if (b) {
538                 /*
539                  * @b is the node we did the final insert into:
540                  *
541                  * On failure to get a journal reservation, we still have to
542                  * unblock the write and allow most of the write path to happen
543                  * so that shutdown works, but the i->journal_seq mechanism
544                  * won't work to prevent the btree write from being visible (we
545                  * didn't get a journal sequence number) - instead
546                  * __bch2_btree_node_write() doesn't do the actual write if
547                  * we're in journal error state:
548                  */
549
550                 btree_node_lock_type(c, b, SIX_LOCK_intent);
551                 btree_node_lock_type(c, b, SIX_LOCK_write);
552                 mutex_lock(&c->btree_interior_update_lock);
553
554                 list_del(&as->write_blocked_list);
555
556                 if (!ret && as->b == b) {
557                         struct bset *i = btree_bset_last(b);
558
559                         BUG_ON(!b->level);
560                         BUG_ON(!btree_node_dirty(b));
561
562                         i->journal_seq = cpu_to_le64(
563                                 max(journal_seq,
564                                     le64_to_cpu(i->journal_seq)));
565
566                         bch2_btree_add_journal_pin(c, b, journal_seq);
567                 }
568
569                 mutex_unlock(&c->btree_interior_update_lock);
570                 six_unlock_write(&b->lock);
571
572                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
573                 six_unlock_intent(&b->lock);
574         }
575
576         bch2_journal_pin_drop(&c->journal, &as->journal);
577
578         bch2_journal_preres_put(&c->journal, &as->journal_preres);
579
580         mutex_lock(&c->btree_interior_update_lock);
581         for (i = 0; i < as->nr_new_nodes; i++) {
582                 b = as->new_nodes[i];
583
584                 BUG_ON(b->will_make_reachable != (unsigned long) as);
585                 b->will_make_reachable = 0;
586         }
587         mutex_unlock(&c->btree_interior_update_lock);
588
589         for (i = 0; i < as->nr_new_nodes; i++) {
590                 b = as->new_nodes[i];
591
592                 btree_node_lock_type(c, b, SIX_LOCK_read);
593                 btree_node_write_if_need(c, b, SIX_LOCK_read);
594                 six_unlock_read(&b->lock);
595         }
596
597         for (i = 0; i < as->nr_open_buckets; i++)
598                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
599
600         bch2_btree_update_free(as);
601 }
602
603 static void btree_interior_update_work(struct work_struct *work)
604 {
605         struct bch_fs *c =
606                 container_of(work, struct bch_fs, btree_interior_update_work);
607         struct btree_update *as;
608
609         while (1) {
610                 mutex_lock(&c->btree_interior_update_lock);
611                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
612                                               struct btree_update, unwritten_list);
613                 if (as && !as->nodes_written)
614                         as = NULL;
615                 mutex_unlock(&c->btree_interior_update_lock);
616
617                 if (!as)
618                         break;
619
620                 btree_update_nodes_written(as);
621         }
622 }
623
624 static void btree_update_set_nodes_written(struct closure *cl)
625 {
626         struct btree_update *as = container_of(cl, struct btree_update, cl);
627         struct bch_fs *c = as->c;
628
629         mutex_lock(&c->btree_interior_update_lock);
630         as->nodes_written = true;
631         mutex_unlock(&c->btree_interior_update_lock);
632
633         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
634 }
635
636 /*
637  * We're updating @b with pointers to nodes that haven't finished writing yet:
638  * block @b from being written until @as completes
639  */
640 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
641 {
642         struct bch_fs *c = as->c;
643
644         mutex_lock(&c->btree_interior_update_lock);
645         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
646
647         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
648         BUG_ON(!btree_node_dirty(b));
649
650         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
651         as->b           = b;
652         list_add(&as->write_blocked_list, &b->write_blocked);
653
654         mutex_unlock(&c->btree_interior_update_lock);
655 }
656
657 static void btree_update_reparent(struct btree_update *as,
658                                   struct btree_update *child)
659 {
660         struct bch_fs *c = as->c;
661
662         lockdep_assert_held(&c->btree_interior_update_lock);
663
664         child->b = NULL;
665         child->mode = BTREE_INTERIOR_UPDATING_AS;
666
667         /*
668          * When we write a new btree root, we have to drop our journal pin
669          * _before_ the new nodes are technically reachable; see
670          * btree_update_nodes_written().
671          *
672          * This goes for journal pins that are recursively blocked on us - so,
673          * just transfer the journal pin to the new interior update so
674          * btree_update_nodes_written() can drop it.
675          */
676         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
677         bch2_journal_pin_drop(&c->journal, &child->journal);
678 }
679
680 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
681 {
682         struct bkey_i *insert = &b->key;
683         struct bch_fs *c = as->c;
684
685         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
686
687         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
688                ARRAY_SIZE(as->journal_entries));
689
690         as->journal_u64s +=
691                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
692                                   BCH_JSET_ENTRY_btree_root,
693                                   b->btree_id, b->level,
694                                   insert, insert->k.u64s);
695
696         mutex_lock(&c->btree_interior_update_lock);
697         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
698
699         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
700         mutex_unlock(&c->btree_interior_update_lock);
701 }
702
703 /*
704  * bch2_btree_update_add_new_node:
705  *
706  * This causes @as to wait on @b to be written, before it gets to
707  * bch2_btree_update_nodes_written
708  *
709  * Additionally, it sets b->will_make_reachable to prevent any additional writes
710  * to @b from happening besides the first until @b is reachable on disk
711  *
712  * And it adds @b to the list of @as's new nodes, so that we can update sector
713  * counts in bch2_btree_update_nodes_written:
714  */
715 void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
716 {
717         struct bch_fs *c = as->c;
718
719         closure_get(&as->cl);
720
721         mutex_lock(&c->btree_interior_update_lock);
722         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
723         BUG_ON(b->will_make_reachable);
724
725         as->new_nodes[as->nr_new_nodes++] = b;
726         b->will_make_reachable = 1UL|(unsigned long) as;
727
728         mutex_unlock(&c->btree_interior_update_lock);
729
730         btree_update_will_add_key(as, &b->key);
731 }
732
733 /*
734  * returns true if @b was a new node
735  */
736 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
737 {
738         struct btree_update *as;
739         unsigned long v;
740         unsigned i;
741
742         mutex_lock(&c->btree_interior_update_lock);
743         /*
744          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
745          * dropped when it gets written by bch2_btree_complete_write - the
746          * xchg() is for synchronization with bch2_btree_complete_write:
747          */
748         v = xchg(&b->will_make_reachable, 0);
749         as = (struct btree_update *) (v & ~1UL);
750
751         if (!as) {
752                 mutex_unlock(&c->btree_interior_update_lock);
753                 return;
754         }
755
756         for (i = 0; i < as->nr_new_nodes; i++)
757                 if (as->new_nodes[i] == b)
758                         goto found;
759
760         BUG();
761 found:
762         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
763         mutex_unlock(&c->btree_interior_update_lock);
764
765         if (v & 1)
766                 closure_put(&as->cl);
767 }
768
769 void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
770 {
771         while (b->ob.nr)
772                 as->open_buckets[as->nr_open_buckets++] =
773                         b->ob.v[--b->ob.nr];
774 }
775
776 /*
777  * @b is being split/rewritten: it may have pointers to not-yet-written btree
778  * nodes and thus outstanding btree_updates - redirect @b's
779  * btree_updates to point to this btree_update:
780  */
781 void bch2_btree_interior_update_will_free_node(struct btree_update *as,
782                                                struct btree *b)
783 {
784         struct bch_fs *c = as->c;
785         struct btree_update *p, *n;
786         struct btree_write *w;
787
788         set_btree_node_dying(b);
789
790         if (btree_node_fake(b))
791                 return;
792
793         mutex_lock(&c->btree_interior_update_lock);
794
795         /*
796          * Does this node have any btree_update operations preventing
797          * it from being written?
798          *
799          * If so, redirect them to point to this btree_update: we can
800          * write out our new nodes, but we won't make them visible until those
801          * operations complete
802          */
803         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
804                 list_del(&p->write_blocked_list);
805                 btree_update_reparent(as, p);
806
807                 /*
808                  * for flush_held_btree_writes() waiting on updates to flush or
809                  * nodes to be writeable:
810                  */
811                 closure_wake_up(&c->btree_interior_update_wait);
812         }
813
814         clear_btree_node_dirty(b);
815         clear_btree_node_need_write(b);
816
817         /*
818          * Does this node have unwritten data that has a pin on the journal?
819          *
820          * If so, transfer that pin to the btree_update operation -
821          * note that if we're freeing multiple nodes, we only need to keep the
822          * oldest pin of any of the nodes we're freeing. We'll release the pin
823          * when the new nodes are persistent and reachable on disk:
824          */
825         w = btree_current_write(b);
826         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
827         bch2_journal_pin_drop(&c->journal, &w->journal);
828
829         w = btree_prev_write(b);
830         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
831         bch2_journal_pin_drop(&c->journal, &w->journal);
832
833         mutex_unlock(&c->btree_interior_update_lock);
834
835         /*
836          * Is this a node that isn't reachable on disk yet?
837          *
838          * Nodes that aren't reachable yet have writes blocked until they're
839          * reachable - now that we've cancelled any pending writes and moved
840          * things waiting on that write to wait on this update, we can drop this
841          * node from the list of nodes that the other update is making
842          * reachable, prior to freeing it:
843          */
844         btree_update_drop_new_node(c, b);
845
846         btree_update_will_delete_key(as, &b->key);
847 }
848
849 void bch2_btree_update_done(struct btree_update *as)
850 {
851         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
852
853         bch2_btree_reserve_put(as);
854
855         continue_at(&as->cl, btree_update_set_nodes_written, system_freezable_wq);
856 }
857
858 struct btree_update *
859 bch2_btree_update_start(struct btree_trans *trans, enum btree_id id,
860                         unsigned nr_nodes, unsigned flags,
861                         struct closure *cl)
862 {
863         struct bch_fs *c = trans->c;
864         struct btree_update *as;
865         int ret, disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
866                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
867
868         /*
869          * This check isn't necessary for correctness - it's just to potentially
870          * prevent us from doing a lot of work that'll end up being wasted:
871          */
872         ret = bch2_journal_error(&c->journal);
873         if (ret)
874                 return ERR_PTR(ret);
875
876         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
877         memset(as, 0, sizeof(*as));
878         closure_init(&as->cl, NULL);
879         as->c           = c;
880         as->mode        = BTREE_INTERIOR_NO_UPDATE;
881         as->btree_id    = id;
882         INIT_LIST_HEAD(&as->list);
883         INIT_LIST_HEAD(&as->unwritten_list);
884         INIT_LIST_HEAD(&as->write_blocked_list);
885         bch2_keylist_init(&as->old_keys, as->_old_keys);
886         bch2_keylist_init(&as->new_keys, as->_new_keys);
887         bch2_keylist_init(&as->parent_keys, as->inline_keys);
888
889         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
890                                       BTREE_UPDATE_JOURNAL_RES,
891                                       JOURNAL_RES_GET_NONBLOCK);
892         if (ret == -EAGAIN) {
893                 if (flags & BTREE_INSERT_NOUNLOCK)
894                         return ERR_PTR(-EINTR);
895
896                 bch2_trans_unlock(trans);
897
898                 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
899                                               BTREE_UPDATE_JOURNAL_RES, 0);
900                 if (ret)
901                         return ERR_PTR(ret);
902
903                 if (!bch2_trans_relock(trans)) {
904                         ret = -EINTR;
905                         goto err;
906                 }
907         }
908
909         ret = bch2_disk_reservation_get(c, &as->disk_res,
910                         nr_nodes * c->opts.btree_node_size,
911                         c->opts.metadata_replicas,
912                         disk_res_flags);
913         if (ret)
914                 goto err;
915
916         ret = bch2_btree_reserve_get(as, nr_nodes, flags, cl);
917         if (ret)
918                 goto err;
919
920         mutex_lock(&c->btree_interior_update_lock);
921         list_add_tail(&as->list, &c->btree_interior_update_list);
922         mutex_unlock(&c->btree_interior_update_lock);
923
924         return as;
925 err:
926         bch2_btree_update_free(as);
927         return ERR_PTR(ret);
928 }
929
930 /* Btree root updates: */
931
932 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
933 {
934         /* Root nodes cannot be reaped */
935         mutex_lock(&c->btree_cache.lock);
936         list_del_init(&b->list);
937         mutex_unlock(&c->btree_cache.lock);
938
939         mutex_lock(&c->btree_root_lock);
940         BUG_ON(btree_node_root(c, b) &&
941                (b->level < btree_node_root(c, b)->level ||
942                 !btree_node_dying(btree_node_root(c, b))));
943
944         btree_node_root(c, b) = b;
945         mutex_unlock(&c->btree_root_lock);
946
947         bch2_recalc_btree_reserve(c);
948 }
949
950 /**
951  * bch_btree_set_root - update the root in memory and on disk
952  *
953  * To ensure forward progress, the current task must not be holding any
954  * btree node write locks. However, you must hold an intent lock on the
955  * old root.
956  *
957  * Note: This allocates a journal entry but doesn't add any keys to
958  * it.  All the btree roots are part of every journal write, so there
959  * is nothing new to be done.  This just guarantees that there is a
960  * journal write.
961  */
962 static void bch2_btree_set_root(struct btree_update *as, struct btree *b,
963                                 struct btree_iter *iter)
964 {
965         struct bch_fs *c = as->c;
966         struct btree *old;
967
968         trace_btree_set_root(c, b);
969         BUG_ON(!b->written &&
970                !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags));
971
972         old = btree_node_root(c, b);
973
974         /*
975          * Ensure no one is using the old root while we switch to the
976          * new root:
977          */
978         bch2_btree_node_lock_write(old, iter);
979
980         bch2_btree_set_root_inmem(c, b);
981
982         btree_update_updated_root(as, b);
983
984         /*
985          * Unlock old root after new root is visible:
986          *
987          * The new root isn't persistent, but that's ok: we still have
988          * an intent lock on the new root, and any updates that would
989          * depend on the new root would have to update the new root.
990          */
991         bch2_btree_node_unlock_write(old, iter);
992 }
993
994 /* Interior node updates: */
995
996 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b,
997                                         struct btree_iter *iter,
998                                         struct bkey_i *insert,
999                                         struct btree_node_iter *node_iter)
1000 {
1001         struct bkey_packed *k;
1002
1003         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1004                ARRAY_SIZE(as->journal_entries));
1005
1006         as->journal_u64s +=
1007                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1008                                   BCH_JSET_ENTRY_btree_keys,
1009                                   b->btree_id, b->level,
1010                                   insert, insert->k.u64s);
1011
1012         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1013                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1014                 bch2_btree_node_iter_advance(node_iter, b);
1015
1016         bch2_btree_bset_insert_key(iter, b, node_iter, insert);
1017         set_btree_node_dirty(b);
1018         set_btree_node_need_write(b);
1019 }
1020
1021 /*
1022  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1023  * node)
1024  */
1025 static struct btree *__btree_split_node(struct btree_update *as,
1026                                         struct btree *n1,
1027                                         struct btree_iter *iter)
1028 {
1029         size_t nr_packed = 0, nr_unpacked = 0;
1030         struct btree *n2;
1031         struct bset *set1, *set2;
1032         struct bkey_packed *k, *prev = NULL;
1033
1034         n2 = bch2_btree_node_alloc(as, n1->level);
1035         bch2_btree_update_add_new_node(as, n2);
1036
1037         n2->data->max_key       = n1->data->max_key;
1038         n2->data->format        = n1->format;
1039         SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
1040         n2->key.k.p = n1->key.k.p;
1041
1042         btree_node_set_format(n2, n2->data->format);
1043
1044         set1 = btree_bset_first(n1);
1045         set2 = btree_bset_first(n2);
1046
1047         /*
1048          * Has to be a linear search because we don't have an auxiliary
1049          * search tree yet
1050          */
1051         k = set1->start;
1052         while (1) {
1053                 struct bkey_packed *n = bkey_next_skip_noops(k, vstruct_last(set1));
1054
1055                 if (n == vstruct_last(set1))
1056                         break;
1057                 if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
1058                         break;
1059
1060                 if (bkey_packed(k))
1061                         nr_packed++;
1062                 else
1063                         nr_unpacked++;
1064
1065                 prev = k;
1066                 k = n;
1067         }
1068
1069         BUG_ON(!prev);
1070
1071         btree_set_max(n1, bkey_unpack_pos(n1, prev));
1072         btree_set_min(n2, bkey_successor(n1->key.k.p));
1073
1074         set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k);
1075         set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s));
1076
1077         set_btree_bset_end(n1, n1->set);
1078         set_btree_bset_end(n2, n2->set);
1079
1080         n2->nr.live_u64s        = le16_to_cpu(set2->u64s);
1081         n2->nr.bset_u64s[0]     = le16_to_cpu(set2->u64s);
1082         n2->nr.packed_keys      = n1->nr.packed_keys - nr_packed;
1083         n2->nr.unpacked_keys    = n1->nr.unpacked_keys - nr_unpacked;
1084
1085         n1->nr.live_u64s        = le16_to_cpu(set1->u64s);
1086         n1->nr.bset_u64s[0]     = le16_to_cpu(set1->u64s);
1087         n1->nr.packed_keys      = nr_packed;
1088         n1->nr.unpacked_keys    = nr_unpacked;
1089
1090         BUG_ON(!set1->u64s);
1091         BUG_ON(!set2->u64s);
1092
1093         memcpy_u64s(set2->start,
1094                     vstruct_end(set1),
1095                     le16_to_cpu(set2->u64s));
1096
1097         btree_node_reset_sib_u64s(n1);
1098         btree_node_reset_sib_u64s(n2);
1099
1100         bch2_verify_btree_nr_keys(n1);
1101         bch2_verify_btree_nr_keys(n2);
1102
1103         if (n1->level) {
1104                 btree_node_interior_verify(n1);
1105                 btree_node_interior_verify(n2);
1106         }
1107
1108         return n2;
1109 }
1110
1111 /*
1112  * For updates to interior nodes, we've got to do the insert before we split
1113  * because the stuff we're inserting has to be inserted atomically. Post split,
1114  * the keys might have to go in different nodes and the split would no longer be
1115  * atomic.
1116  *
1117  * Worse, if the insert is from btree node coalescing, if we do the insert after
1118  * we do the split (and pick the pivot) - the pivot we pick might be between
1119  * nodes that were coalesced, and thus in the middle of a child node post
1120  * coalescing:
1121  */
1122 static void btree_split_insert_keys(struct btree_update *as, struct btree *b,
1123                                     struct btree_iter *iter,
1124                                     struct keylist *keys)
1125 {
1126         struct btree_node_iter node_iter;
1127         struct bkey_i *k = bch2_keylist_front(keys);
1128         struct bkey_packed *src, *dst, *n;
1129         struct bset *i;
1130
1131         BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE);
1132
1133         bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
1134
1135         while (!bch2_keylist_empty(keys)) {
1136                 k = bch2_keylist_front(keys);
1137
1138                 bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter);
1139                 bch2_keylist_pop_front(keys);
1140         }
1141
1142         /*
1143          * We can't tolerate whiteouts here - with whiteouts there can be
1144          * duplicate keys, and it would be rather bad if we picked a duplicate
1145          * for the pivot:
1146          */
1147         i = btree_bset_first(b);
1148         src = dst = i->start;
1149         while (src != vstruct_last(i)) {
1150                 n = bkey_next_skip_noops(src, vstruct_last(i));
1151                 if (!bkey_deleted(src)) {
1152                         memmove_u64s_down(dst, src, src->u64s);
1153                         dst = bkey_next(dst);
1154                 }
1155                 src = n;
1156         }
1157
1158         i->u64s = cpu_to_le16((u64 *) dst - i->_data);
1159         set_btree_bset_end(b, b->set);
1160
1161         BUG_ON(b->nsets != 1 ||
1162                b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
1163
1164         btree_node_interior_verify(b);
1165 }
1166
1167 static void btree_split(struct btree_update *as, struct btree *b,
1168                         struct btree_iter *iter, struct keylist *keys,
1169                         unsigned flags)
1170 {
1171         struct bch_fs *c = as->c;
1172         struct btree *parent = btree_node_parent(iter, b);
1173         struct btree *n1, *n2 = NULL, *n3 = NULL;
1174         u64 start_time = local_clock();
1175
1176         BUG_ON(!parent && (b != btree_node_root(c, b)));
1177         BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
1178
1179         bch2_btree_interior_update_will_free_node(as, b);
1180
1181         n1 = bch2_btree_node_alloc_replacement(as, b);
1182         bch2_btree_update_add_new_node(as, n1);
1183
1184         if (keys)
1185                 btree_split_insert_keys(as, n1, iter, keys);
1186
1187         if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
1188                 trace_btree_split(c, b);
1189
1190                 n2 = __btree_split_node(as, n1, iter);
1191
1192                 bch2_btree_build_aux_trees(n2);
1193                 bch2_btree_build_aux_trees(n1);
1194                 six_unlock_write(&n2->lock);
1195                 six_unlock_write(&n1->lock);
1196
1197                 bch2_btree_node_write(c, n2, SIX_LOCK_intent);
1198
1199                 /*
1200                  * Note that on recursive parent_keys == keys, so we
1201                  * can't start adding new keys to parent_keys before emptying it
1202                  * out (which we did with btree_split_insert_keys() above)
1203                  */
1204                 bch2_keylist_add(&as->parent_keys, &n1->key);
1205                 bch2_keylist_add(&as->parent_keys, &n2->key);
1206
1207                 if (!parent) {
1208                         /* Depth increases, make a new root */
1209                         n3 = __btree_root_alloc(as, b->level + 1);
1210
1211                         n3->sib_u64s[0] = U16_MAX;
1212                         n3->sib_u64s[1] = U16_MAX;
1213
1214                         btree_split_insert_keys(as, n3, iter, &as->parent_keys);
1215
1216                         bch2_btree_node_write(c, n3, SIX_LOCK_intent);
1217                 }
1218         } else {
1219                 trace_btree_compact(c, b);
1220
1221                 bch2_btree_build_aux_trees(n1);
1222                 six_unlock_write(&n1->lock);
1223
1224                 if (parent)
1225                         bch2_keylist_add(&as->parent_keys, &n1->key);
1226         }
1227
1228         bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1229
1230         /* New nodes all written, now make them visible: */
1231
1232         if (parent) {
1233                 /* Split a non root node */
1234                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1235         } else if (n3) {
1236                 bch2_btree_set_root(as, n3, iter);
1237         } else {
1238                 /* Root filled up but didn't need to be split */
1239                 bch2_btree_set_root(as, n1, iter);
1240         }
1241
1242         bch2_btree_update_get_open_buckets(as, n1);
1243         if (n2)
1244                 bch2_btree_update_get_open_buckets(as, n2);
1245         if (n3)
1246                 bch2_btree_update_get_open_buckets(as, n3);
1247
1248         /* Successful split, update the iterator to point to the new nodes: */
1249
1250         six_lock_increment(&b->lock, SIX_LOCK_intent);
1251         bch2_btree_iter_node_drop(iter, b);
1252         if (n3)
1253                 bch2_btree_iter_node_replace(iter, n3);
1254         if (n2)
1255                 bch2_btree_iter_node_replace(iter, n2);
1256         bch2_btree_iter_node_replace(iter, n1);
1257
1258         /*
1259          * The old node must be freed (in memory) _before_ unlocking the new
1260          * nodes - else another thread could re-acquire a read lock on the old
1261          * node after another thread has locked and updated the new node, thus
1262          * seeing stale data:
1263          */
1264         bch2_btree_node_free_inmem(c, b, iter);
1265
1266         if (n3)
1267                 six_unlock_intent(&n3->lock);
1268         if (n2)
1269                 six_unlock_intent(&n2->lock);
1270         six_unlock_intent(&n1->lock);
1271
1272         bch2_btree_trans_verify_locks(iter->trans);
1273
1274         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_split],
1275                                start_time);
1276 }
1277
1278 static void
1279 bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
1280                                 struct btree_iter *iter, struct keylist *keys)
1281 {
1282         struct btree_iter *linked;
1283         struct btree_node_iter node_iter;
1284         struct bkey_i *insert = bch2_keylist_front(keys);
1285         struct bkey_packed *k;
1286
1287         /* Don't screw up @iter's position: */
1288         node_iter = iter->l[b->level].iter;
1289
1290         /*
1291          * btree_split(), btree_gc_coalesce() will insert keys before
1292          * the iterator's current position - they know the keys go in
1293          * the node the iterator points to:
1294          */
1295         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1296                (bkey_cmp_packed(b, k, &insert->k) >= 0))
1297                 ;
1298
1299         for_each_keylist_key(keys, insert)
1300                 bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter);
1301
1302         btree_update_updated_node(as, b);
1303
1304         trans_for_each_iter_with_node(iter->trans, b, linked)
1305                 bch2_btree_node_iter_peek(&linked->l[b->level].iter, b);
1306
1307         bch2_btree_trans_verify_iters(iter->trans, b);
1308 }
1309
1310 /**
1311  * bch_btree_insert_node - insert bkeys into a given btree node
1312  *
1313  * @iter:               btree iterator
1314  * @keys:               list of keys to insert
1315  * @hook:               insert callback
1316  * @persistent:         if not null, @persistent will wait on journal write
1317  *
1318  * Inserts as many keys as it can into a given btree node, splitting it if full.
1319  * If a split occurred, this function will return early. This can only happen
1320  * for leaf nodes -- inserts into interior nodes have to be atomic.
1321  */
1322 void bch2_btree_insert_node(struct btree_update *as, struct btree *b,
1323                             struct btree_iter *iter, struct keylist *keys,
1324                             unsigned flags)
1325 {
1326         struct bch_fs *c = as->c;
1327         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1328         int old_live_u64s = b->nr.live_u64s;
1329         int live_u64s_added, u64s_added;
1330
1331         BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
1332         BUG_ON(!b->level);
1333         BUG_ON(!as || as->b);
1334         bch2_verify_keylist_sorted(keys);
1335
1336         if (as->must_rewrite)
1337                 goto split;
1338
1339         bch2_btree_node_lock_for_insert(c, b, iter);
1340
1341         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1342                 bch2_btree_node_unlock_write(b, iter);
1343                 goto split;
1344         }
1345
1346         bch2_btree_insert_keys_interior(as, b, iter, keys);
1347
1348         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1349         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1350
1351         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1352                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1353         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1354                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1355
1356         if (u64s_added > live_u64s_added &&
1357             bch2_maybe_compact_whiteouts(c, b))
1358                 bch2_btree_iter_reinit_node(iter, b);
1359
1360         bch2_btree_node_unlock_write(b, iter);
1361
1362         btree_node_interior_verify(b);
1363
1364         /*
1365          * when called from the btree_split path the new nodes aren't added to
1366          * the btree iterator yet, so the merge path's unlock/wait/relock dance
1367          * won't work:
1368          */
1369         bch2_foreground_maybe_merge(c, iter, b->level,
1370                                     flags|BTREE_INSERT_NOUNLOCK);
1371         return;
1372 split:
1373         btree_split(as, b, iter, keys, flags);
1374 }
1375
1376 int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter,
1377                           unsigned flags)
1378 {
1379         struct btree_trans *trans = iter->trans;
1380         struct btree *b = iter_l(iter)->b;
1381         struct btree_update *as;
1382         struct closure cl;
1383         int ret = 0;
1384         struct btree_iter *linked;
1385
1386         /*
1387          * We already have a disk reservation and open buckets pinned; this
1388          * allocation must not block:
1389          */
1390         trans_for_each_iter(trans, linked)
1391                 if (linked->btree_id == BTREE_ID_EXTENTS)
1392                         flags |= BTREE_INSERT_USE_RESERVE;
1393
1394         closure_init_stack(&cl);
1395
1396         /* Hack, because gc and splitting nodes doesn't mix yet: */
1397         if (!(flags & BTREE_INSERT_GC_LOCK_HELD) &&
1398             !down_read_trylock(&c->gc_lock)) {
1399                 if (flags & BTREE_INSERT_NOUNLOCK) {
1400                         trace_transaction_restart_ip(trans->ip, _THIS_IP_);
1401                         return -EINTR;
1402                 }
1403
1404                 bch2_trans_unlock(trans);
1405                 down_read(&c->gc_lock);
1406
1407                 if (!bch2_trans_relock(trans))
1408                         ret = -EINTR;
1409         }
1410
1411         /*
1412          * XXX: figure out how far we might need to split,
1413          * instead of locking/reserving all the way to the root:
1414          */
1415         if (!bch2_btree_iter_upgrade(iter, U8_MAX)) {
1416                 trace_trans_restart_iter_upgrade(trans->ip);
1417                 ret = -EINTR;
1418                 goto out;
1419         }
1420
1421         as = bch2_btree_update_start(trans, iter->btree_id,
1422                 btree_update_reserve_required(c, b), flags,
1423                 !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
1424         if (IS_ERR(as)) {
1425                 ret = PTR_ERR(as);
1426                 if (ret == -EAGAIN) {
1427                         BUG_ON(flags & BTREE_INSERT_NOUNLOCK);
1428                         bch2_trans_unlock(trans);
1429                         ret = -EINTR;
1430
1431                         trace_transaction_restart_ip(trans->ip, _THIS_IP_);
1432                 }
1433                 goto out;
1434         }
1435
1436         btree_split(as, b, iter, NULL, flags);
1437         bch2_btree_update_done(as);
1438
1439         /*
1440          * We haven't successfully inserted yet, so don't downgrade all the way
1441          * back to read locks;
1442          */
1443         __bch2_btree_iter_downgrade(iter, 1);
1444 out:
1445         if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
1446                 up_read(&c->gc_lock);
1447         closure_sync(&cl);
1448         return ret;
1449 }
1450
1451 void __bch2_foreground_maybe_merge(struct bch_fs *c,
1452                                    struct btree_iter *iter,
1453                                    unsigned level,
1454                                    unsigned flags,
1455                                    enum btree_node_sibling sib)
1456 {
1457         struct btree_trans *trans = iter->trans;
1458         struct btree_update *as;
1459         struct bkey_format_state new_s;
1460         struct bkey_format new_f;
1461         struct bkey_i delete;
1462         struct btree *b, *m, *n, *prev, *next, *parent;
1463         struct closure cl;
1464         size_t sib_u64s;
1465         int ret = 0;
1466
1467         BUG_ON(!btree_node_locked(iter, level));
1468
1469         closure_init_stack(&cl);
1470 retry:
1471         BUG_ON(!btree_node_locked(iter, level));
1472
1473         b = iter->l[level].b;
1474
1475         parent = btree_node_parent(iter, b);
1476         if (!parent)
1477                 goto out;
1478
1479         if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
1480                 goto out;
1481
1482         /* XXX: can't be holding read locks */
1483         m = bch2_btree_node_get_sibling(c, iter, b, sib);
1484         if (IS_ERR(m)) {
1485                 ret = PTR_ERR(m);
1486                 goto err;
1487         }
1488
1489         /* NULL means no sibling: */
1490         if (!m) {
1491                 b->sib_u64s[sib] = U16_MAX;
1492                 goto out;
1493         }
1494
1495         if (sib == btree_prev_sib) {
1496                 prev = m;
1497                 next = b;
1498         } else {
1499                 prev = b;
1500                 next = m;
1501         }
1502
1503         bch2_bkey_format_init(&new_s);
1504         __bch2_btree_calc_format(&new_s, b);
1505         __bch2_btree_calc_format(&new_s, m);
1506         new_f = bch2_bkey_format_done(&new_s);
1507
1508         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1509                 btree_node_u64s_with_format(m, &new_f);
1510
1511         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1512                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1513                 sib_u64s /= 2;
1514                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1515         }
1516
1517         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1518         b->sib_u64s[sib] = sib_u64s;
1519
1520         if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) {
1521                 six_unlock_intent(&m->lock);
1522                 goto out;
1523         }
1524
1525         /* We're changing btree topology, doesn't mix with gc: */
1526         if (!(flags & BTREE_INSERT_GC_LOCK_HELD) &&
1527             !down_read_trylock(&c->gc_lock))
1528                 goto err_cycle_gc_lock;
1529
1530         if (!bch2_btree_iter_upgrade(iter, U8_MAX)) {
1531                 ret = -EINTR;
1532                 goto err_unlock;
1533         }
1534
1535         as = bch2_btree_update_start(trans, iter->btree_id,
1536                          btree_update_reserve_required(c, parent) + 1,
1537                          flags|
1538                          BTREE_INSERT_NOFAIL|
1539                          BTREE_INSERT_USE_RESERVE,
1540                          !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
1541         if (IS_ERR(as)) {
1542                 ret = PTR_ERR(as);
1543                 goto err_unlock;
1544         }
1545
1546         trace_btree_merge(c, b);
1547
1548         bch2_btree_interior_update_will_free_node(as, b);
1549         bch2_btree_interior_update_will_free_node(as, m);
1550
1551         n = bch2_btree_node_alloc(as, b->level);
1552         bch2_btree_update_add_new_node(as, n);
1553
1554         btree_set_min(n, prev->data->min_key);
1555         btree_set_max(n, next->data->max_key);
1556         n->data->format         = new_f;
1557
1558         btree_node_set_format(n, new_f);
1559
1560         bch2_btree_sort_into(c, n, prev);
1561         bch2_btree_sort_into(c, n, next);
1562
1563         bch2_btree_build_aux_trees(n);
1564         six_unlock_write(&n->lock);
1565
1566         bkey_init(&delete.k);
1567         delete.k.p = prev->key.k.p;
1568         bch2_keylist_add(&as->parent_keys, &delete);
1569         bch2_keylist_add(&as->parent_keys, &n->key);
1570
1571         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1572
1573         bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1574
1575         bch2_btree_update_get_open_buckets(as, n);
1576
1577         six_lock_increment(&b->lock, SIX_LOCK_intent);
1578         bch2_btree_iter_node_drop(iter, b);
1579         bch2_btree_iter_node_drop(iter, m);
1580
1581         bch2_btree_iter_node_replace(iter, n);
1582
1583         bch2_btree_trans_verify_iters(trans, n);
1584
1585         bch2_btree_node_free_inmem(c, b, iter);
1586         bch2_btree_node_free_inmem(c, m, iter);
1587
1588         six_unlock_intent(&n->lock);
1589
1590         bch2_btree_update_done(as);
1591
1592         if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
1593                 up_read(&c->gc_lock);
1594 out:
1595         bch2_btree_trans_verify_locks(trans);
1596
1597         /*
1598          * Don't downgrade locks here: we're called after successful insert,
1599          * and the caller will downgrade locks after a successful insert
1600          * anyways (in case e.g. a split was required first)
1601          *
1602          * And we're also called when inserting into interior nodes in the
1603          * split path, and downgrading to read locks in there is potentially
1604          * confusing:
1605          */
1606         closure_sync(&cl);
1607         return;
1608
1609 err_cycle_gc_lock:
1610         six_unlock_intent(&m->lock);
1611
1612         if (flags & BTREE_INSERT_NOUNLOCK)
1613                 goto out;
1614
1615         bch2_trans_unlock(trans);
1616
1617         down_read(&c->gc_lock);
1618         up_read(&c->gc_lock);
1619         ret = -EINTR;
1620         goto err;
1621
1622 err_unlock:
1623         six_unlock_intent(&m->lock);
1624         if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
1625                 up_read(&c->gc_lock);
1626 err:
1627         BUG_ON(ret == -EAGAIN && (flags & BTREE_INSERT_NOUNLOCK));
1628
1629         if ((ret == -EAGAIN || ret == -EINTR) &&
1630             !(flags & BTREE_INSERT_NOUNLOCK)) {
1631                 bch2_trans_unlock(trans);
1632                 closure_sync(&cl);
1633                 ret = bch2_btree_iter_traverse(iter);
1634                 if (ret)
1635                         goto out;
1636
1637                 goto retry;
1638         }
1639
1640         goto out;
1641 }
1642
1643 static int __btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
1644                                 struct btree *b, unsigned flags,
1645                                 struct closure *cl)
1646 {
1647         struct btree *n, *parent = btree_node_parent(iter, b);
1648         struct btree_update *as;
1649
1650         as = bch2_btree_update_start(iter->trans, iter->btree_id,
1651                 (parent
1652                  ? btree_update_reserve_required(c, parent)
1653                  : 0) + 1,
1654                 flags, cl);
1655         if (IS_ERR(as)) {
1656                 trace_btree_gc_rewrite_node_fail(c, b);
1657                 return PTR_ERR(as);
1658         }
1659
1660         bch2_btree_interior_update_will_free_node(as, b);
1661
1662         n = bch2_btree_node_alloc_replacement(as, b);
1663         bch2_btree_update_add_new_node(as, n);
1664
1665         bch2_btree_build_aux_trees(n);
1666         six_unlock_write(&n->lock);
1667
1668         trace_btree_gc_rewrite_node(c, b);
1669
1670         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1671
1672         if (parent) {
1673                 bch2_keylist_add(&as->parent_keys, &n->key);
1674                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1675         } else {
1676                 bch2_btree_set_root(as, n, iter);
1677         }
1678
1679         bch2_btree_update_get_open_buckets(as, n);
1680
1681         six_lock_increment(&b->lock, SIX_LOCK_intent);
1682         bch2_btree_iter_node_drop(iter, b);
1683         bch2_btree_iter_node_replace(iter, n);
1684         bch2_btree_node_free_inmem(c, b, iter);
1685         six_unlock_intent(&n->lock);
1686
1687         bch2_btree_update_done(as);
1688         return 0;
1689 }
1690
1691 /**
1692  * bch_btree_node_rewrite - Rewrite/move a btree node
1693  *
1694  * Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
1695  * btree_check_reserve() has to wait)
1696  */
1697 int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
1698                             __le64 seq, unsigned flags)
1699 {
1700         struct btree_trans *trans = iter->trans;
1701         struct closure cl;
1702         struct btree *b;
1703         int ret;
1704
1705         flags |= BTREE_INSERT_NOFAIL;
1706
1707         closure_init_stack(&cl);
1708
1709         bch2_btree_iter_upgrade(iter, U8_MAX);
1710
1711         if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) {
1712                 if (!down_read_trylock(&c->gc_lock)) {
1713                         bch2_trans_unlock(trans);
1714                         down_read(&c->gc_lock);
1715                 }
1716         }
1717
1718         while (1) {
1719                 ret = bch2_btree_iter_traverse(iter);
1720                 if (ret)
1721                         break;
1722
1723                 b = bch2_btree_iter_peek_node(iter);
1724                 if (!b || b->data->keys.seq != seq)
1725                         break;
1726
1727                 ret = __btree_node_rewrite(c, iter, b, flags, &cl);
1728                 if (ret != -EAGAIN &&
1729                     ret != -EINTR)
1730                         break;
1731
1732                 bch2_trans_unlock(trans);
1733                 closure_sync(&cl);
1734         }
1735
1736         bch2_btree_iter_downgrade(iter);
1737
1738         if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
1739                 up_read(&c->gc_lock);
1740
1741         closure_sync(&cl);
1742         return ret;
1743 }
1744
1745 static void __bch2_btree_node_update_key(struct bch_fs *c,
1746                                          struct btree_update *as,
1747                                          struct btree_iter *iter,
1748                                          struct btree *b, struct btree *new_hash,
1749                                          struct bkey_i *new_key)
1750 {
1751         struct btree *parent;
1752         int ret;
1753
1754         btree_update_will_delete_key(as, &b->key);
1755         btree_update_will_add_key(as, new_key);
1756
1757         parent = btree_node_parent(iter, b);
1758         if (parent) {
1759                 if (new_hash) {
1760                         bkey_copy(&new_hash->key, new_key);
1761                         ret = bch2_btree_node_hash_insert(&c->btree_cache,
1762                                         new_hash, b->level, b->btree_id);
1763                         BUG_ON(ret);
1764                 }
1765
1766                 bch2_keylist_add(&as->parent_keys, new_key);
1767                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0);
1768
1769                 if (new_hash) {
1770                         mutex_lock(&c->btree_cache.lock);
1771                         bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
1772
1773                         bch2_btree_node_hash_remove(&c->btree_cache, b);
1774
1775                         bkey_copy(&b->key, new_key);
1776                         ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1777                         BUG_ON(ret);
1778                         mutex_unlock(&c->btree_cache.lock);
1779                 } else {
1780                         bkey_copy(&b->key, new_key);
1781                 }
1782         } else {
1783                 BUG_ON(btree_node_root(c, b) != b);
1784
1785                 bch2_btree_node_lock_write(b, iter);
1786                 bkey_copy(&b->key, new_key);
1787
1788                 if (btree_ptr_hash_val(&b->key) != b->hash_val) {
1789                         mutex_lock(&c->btree_cache.lock);
1790                         bch2_btree_node_hash_remove(&c->btree_cache, b);
1791
1792                         ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1793                         BUG_ON(ret);
1794                         mutex_unlock(&c->btree_cache.lock);
1795                 }
1796
1797                 btree_update_updated_root(as, b);
1798                 bch2_btree_node_unlock_write(b, iter);
1799         }
1800
1801         bch2_btree_update_done(as);
1802 }
1803
1804 int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter,
1805                                struct btree *b,
1806                                struct bkey_i *new_key)
1807 {
1808         struct btree *parent = btree_node_parent(iter, b);
1809         struct btree_update *as = NULL;
1810         struct btree *new_hash = NULL;
1811         struct closure cl;
1812         int ret;
1813
1814         closure_init_stack(&cl);
1815
1816         if (!bch2_btree_iter_upgrade(iter, U8_MAX))
1817                 return -EINTR;
1818
1819         if (!down_read_trylock(&c->gc_lock)) {
1820                 bch2_trans_unlock(iter->trans);
1821                 down_read(&c->gc_lock);
1822
1823                 if (!bch2_trans_relock(iter->trans)) {
1824                         ret = -EINTR;
1825                         goto err;
1826                 }
1827         }
1828
1829         /*
1830          * check btree_ptr_hash_val() after @b is locked by
1831          * btree_iter_traverse():
1832          */
1833         if (btree_ptr_hash_val(new_key) != b->hash_val) {
1834                 /* bch2_btree_reserve_get will unlock */
1835                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1836                 if (ret) {
1837                         bch2_trans_unlock(iter->trans);
1838                         up_read(&c->gc_lock);
1839                         closure_sync(&cl);
1840                         down_read(&c->gc_lock);
1841
1842                         if (!bch2_trans_relock(iter->trans)) {
1843                                 ret = -EINTR;
1844                                 goto err;
1845                         }
1846                 }
1847
1848                 new_hash = bch2_btree_node_mem_alloc(c);
1849         }
1850
1851         as = bch2_btree_update_start(iter->trans, iter->btree_id,
1852                 parent ? btree_update_reserve_required(c, parent) : 0,
1853                 BTREE_INSERT_NOFAIL|
1854                 BTREE_INSERT_USE_RESERVE|
1855                 BTREE_INSERT_USE_ALLOC_RESERVE,
1856                 &cl);
1857
1858         if (IS_ERR(as)) {
1859                 ret = PTR_ERR(as);
1860                 if (ret == -EAGAIN)
1861                         ret = -EINTR;
1862
1863                 if (ret != -EINTR)
1864                         goto err;
1865
1866                 bch2_trans_unlock(iter->trans);
1867                 up_read(&c->gc_lock);
1868                 closure_sync(&cl);
1869                 down_read(&c->gc_lock);
1870
1871                 if (!bch2_trans_relock(iter->trans))
1872                         goto err;
1873         }
1874
1875         ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(new_key));
1876         if (ret)
1877                 goto err_free_update;
1878
1879         __bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key);
1880
1881         bch2_btree_iter_downgrade(iter);
1882 err:
1883         if (new_hash) {
1884                 mutex_lock(&c->btree_cache.lock);
1885                 list_move(&new_hash->list, &c->btree_cache.freeable);
1886                 mutex_unlock(&c->btree_cache.lock);
1887
1888                 six_unlock_write(&new_hash->lock);
1889                 six_unlock_intent(&new_hash->lock);
1890         }
1891         up_read(&c->gc_lock);
1892         closure_sync(&cl);
1893         return ret;
1894 err_free_update:
1895         bch2_btree_update_free(as);
1896         goto err;
1897 }
1898
1899 /* Init code: */
1900
1901 /*
1902  * Only for filesystem bringup, when first reading the btree roots or allocating
1903  * btree roots when initializing a new filesystem:
1904  */
1905 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
1906 {
1907         BUG_ON(btree_node_root(c, b));
1908
1909         bch2_btree_set_root_inmem(c, b);
1910 }
1911
1912 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
1913 {
1914         struct closure cl;
1915         struct btree *b;
1916         int ret;
1917
1918         closure_init_stack(&cl);
1919
1920         do {
1921                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1922                 closure_sync(&cl);
1923         } while (ret);
1924
1925         b = bch2_btree_node_mem_alloc(c);
1926         bch2_btree_cache_cannibalize_unlock(c);
1927
1928         set_btree_node_fake(b);
1929         b->level        = 0;
1930         b->btree_id     = id;
1931
1932         bkey_btree_ptr_init(&b->key);
1933         b->key.k.p = POS_MAX;
1934         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
1935
1936         bch2_bset_init_first(b, &b->data->keys);
1937         bch2_btree_build_aux_trees(b);
1938
1939         b->data->flags = 0;
1940         btree_set_min(b, POS_MIN);
1941         btree_set_max(b, POS_MAX);
1942         b->data->format = bch2_btree_calc_format(b);
1943         btree_node_set_format(b, b->data->format);
1944
1945         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, b->level, b->btree_id);
1946         BUG_ON(ret);
1947
1948         bch2_btree_set_root_inmem(c, b);
1949
1950         six_unlock_write(&b->lock);
1951         six_unlock_intent(&b->lock);
1952 }
1953
1954 ssize_t bch2_btree_updates_print(struct bch_fs *c, char *buf)
1955 {
1956         struct printbuf out = _PBUF(buf, PAGE_SIZE);
1957         struct btree_update *as;
1958
1959         mutex_lock(&c->btree_interior_update_lock);
1960         list_for_each_entry(as, &c->btree_interior_update_list, list)
1961                 pr_buf(&out, "%p m %u w %u r %u j %llu\n",
1962                        as,
1963                        as->mode,
1964                        as->nodes_written,
1965                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
1966                        as->journal.seq);
1967         mutex_unlock(&c->btree_interior_update_lock);
1968
1969         return out.pos - buf;
1970 }
1971
1972 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
1973 {
1974         size_t ret = 0;
1975         struct list_head *i;
1976
1977         mutex_lock(&c->btree_interior_update_lock);
1978         list_for_each(i, &c->btree_interior_update_list)
1979                 ret++;
1980         mutex_unlock(&c->btree_interior_update_lock);
1981
1982         return ret;
1983 }
1984
1985 void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
1986 {
1987         struct btree_root *r;
1988         struct jset_entry *entry;
1989
1990         mutex_lock(&c->btree_root_lock);
1991
1992         vstruct_for_each(jset, entry)
1993                 if (entry->type == BCH_JSET_ENTRY_btree_root) {
1994                         r = &c->btree_roots[entry->btree_id];
1995                         r->level = entry->level;
1996                         r->alive = true;
1997                         bkey_copy(&r->key, &entry->start[0]);
1998                 }
1999
2000         mutex_unlock(&c->btree_root_lock);
2001 }
2002
2003 struct jset_entry *
2004 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2005                                     struct jset_entry *start,
2006                                     struct jset_entry *end)
2007 {
2008         struct jset_entry *entry;
2009         unsigned long have = 0;
2010         unsigned i;
2011
2012         for (entry = start; entry < end; entry = vstruct_next(entry))
2013                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2014                         __set_bit(entry->btree_id, &have);
2015
2016         mutex_lock(&c->btree_root_lock);
2017
2018         for (i = 0; i < BTREE_ID_NR; i++)
2019                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2020                         journal_entry_set(end,
2021                                           BCH_JSET_ENTRY_btree_root,
2022                                           i, c->btree_roots[i].level,
2023                                           &c->btree_roots[i].key,
2024                                           c->btree_roots[i].key.u64s);
2025                         end = vstruct_next(end);
2026                 }
2027
2028         mutex_unlock(&c->btree_root_lock);
2029
2030         return end;
2031 }
2032
2033 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2034 {
2035         if (c->btree_interior_update_worker)
2036                 destroy_workqueue(c->btree_interior_update_worker);
2037         mempool_exit(&c->btree_interior_update_pool);
2038 }
2039
2040 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2041 {
2042         mutex_init(&c->btree_reserve_cache_lock);
2043         INIT_LIST_HEAD(&c->btree_interior_update_list);
2044         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2045         mutex_init(&c->btree_interior_update_lock);
2046         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2047
2048         c->btree_interior_update_worker =
2049                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2050         if (!c->btree_interior_update_worker)
2051                 return -ENOMEM;
2052
2053         return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2054                                          sizeof(struct btree_update));
2055 }