]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
Update bcachefs sources to bee7b5a4fa21 bcachefs: Pin btree cache in ram for random...
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "btree_iter.h"
13 #include "btree_locking.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "journal_reclaim.h"
20 #include "keylist.h"
21 #include "replicas.h"
22 #include "super-io.h"
23 #include "trace.h"
24
25 #include <linux/random.h>
26
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28                                   btree_path_idx_t, struct btree *,
29                                   struct keylist *, unsigned);
30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
31
32 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans,
33                                               enum btree_id btree_id,
34                                               unsigned level,
35                                               struct bpos pos)
36 {
37         btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level,
38                              BTREE_ITER_NOPRESERVE|
39                              BTREE_ITER_INTENT, _RET_IP_);
40         path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_);
41
42         struct btree_path *path = trans->paths + path_idx;
43         bch2_btree_path_downgrade(trans, path);
44         __bch2_btree_path_unlock(trans, path);
45         return path_idx;
46 }
47
48 /* Debug code: */
49
50 /*
51  * Verify that child nodes correctly span parent node's range:
52  */
53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
54 {
55 #ifdef CONFIG_BCACHEFS_DEBUG
56         struct bpos next_node = b->data->min_key;
57         struct btree_node_iter iter;
58         struct bkey_s_c k;
59         struct bkey_s_c_btree_ptr_v2 bp;
60         struct bkey unpacked;
61         struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
62
63         BUG_ON(!b->c.level);
64
65         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
66                 return;
67
68         bch2_btree_node_iter_init_from_start(&iter, b);
69
70         while (1) {
71                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
72                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
73                         break;
74                 bp = bkey_s_c_to_btree_ptr_v2(k);
75
76                 if (!bpos_eq(next_node, bp.v->min_key)) {
77                         bch2_dump_btree_node(c, b);
78                         bch2_bpos_to_text(&buf1, next_node);
79                         bch2_bpos_to_text(&buf2, bp.v->min_key);
80                         panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
81                 }
82
83                 bch2_btree_node_iter_advance(&iter, b);
84
85                 if (bch2_btree_node_iter_end(&iter)) {
86                         if (!bpos_eq(k.k->p, b->key.k.p)) {
87                                 bch2_dump_btree_node(c, b);
88                                 bch2_bpos_to_text(&buf1, b->key.k.p);
89                                 bch2_bpos_to_text(&buf2, k.k->p);
90                                 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
91                         }
92                         break;
93                 }
94
95                 next_node = bpos_successor(k.k->p);
96         }
97 #endif
98 }
99
100 /* Calculate ideal packed bkey format for new btree nodes: */
101
102 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
103 {
104         struct bkey_packed *k;
105         struct bset_tree *t;
106         struct bkey uk;
107
108         for_each_bset(b, t)
109                 bset_tree_for_each_key(b, t, k)
110                         if (!bkey_deleted(k)) {
111                                 uk = bkey_unpack_key(b, k);
112                                 bch2_bkey_format_add_key(s, &uk);
113                         }
114 }
115
116 static struct bkey_format bch2_btree_calc_format(struct btree *b)
117 {
118         struct bkey_format_state s;
119
120         bch2_bkey_format_init(&s);
121         bch2_bkey_format_add_pos(&s, b->data->min_key);
122         bch2_bkey_format_add_pos(&s, b->data->max_key);
123         __bch2_btree_calc_format(&s, b);
124
125         return bch2_bkey_format_done(&s);
126 }
127
128 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
129                                           struct bkey_format *old_f,
130                                           struct bkey_format *new_f)
131 {
132         /* stupid integer promotion rules */
133         ssize_t delta =
134             (((int) new_f->key_u64s - old_f->key_u64s) *
135              (int) nr.packed_keys) +
136             (((int) new_f->key_u64s - BKEY_U64s) *
137              (int) nr.unpacked_keys);
138
139         BUG_ON(delta + nr.live_u64s < 0);
140
141         return nr.live_u64s + delta;
142 }
143
144 /**
145  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
146  *
147  * @c:          filesystem handle
148  * @b:          btree node to rewrite
149  * @nr:         number of keys for new node (i.e. b->nr)
150  * @new_f:      bkey format to translate keys to
151  *
152  * Returns: true if all re-packed keys will be able to fit in a new node.
153  *
154  * Assumes all keys will successfully pack with the new format.
155  */
156 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
157                                  struct btree_nr_keys nr,
158                                  struct bkey_format *new_f)
159 {
160         size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
161
162         return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
163 }
164
165 /* Btree node freeing/allocation: */
166
167 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
168 {
169         struct bch_fs *c = trans->c;
170
171         trace_and_count(c, btree_node_free, trans, b);
172
173         BUG_ON(btree_node_write_blocked(b));
174         BUG_ON(btree_node_dirty(b));
175         BUG_ON(btree_node_need_write(b));
176         BUG_ON(b == btree_node_root(c, b));
177         BUG_ON(b->ob.nr);
178         BUG_ON(!list_empty(&b->write_blocked));
179         BUG_ON(b->will_make_reachable);
180
181         clear_btree_node_noevict(b);
182
183         mutex_lock(&c->btree_cache.lock);
184         list_move(&b->list, &c->btree_cache.freeable);
185         mutex_unlock(&c->btree_cache.lock);
186 }
187
188 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
189                                        struct btree_path *path,
190                                        struct btree *b)
191 {
192         struct bch_fs *c = trans->c;
193         unsigned i, level = b->c.level;
194
195         bch2_btree_node_lock_write_nofail(trans, path, &b->c);
196         bch2_btree_node_hash_remove(&c->btree_cache, b);
197         __btree_node_free(trans, b);
198         six_unlock_write(&b->c.lock);
199         mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
200
201         trans_for_each_path(trans, path, i)
202                 if (path->l[level].b == b) {
203                         btree_node_unlock(trans, path, level);
204                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
205                 }
206 }
207
208 static void bch2_btree_node_free_never_used(struct btree_update *as,
209                                             struct btree_trans *trans,
210                                             struct btree *b)
211 {
212         struct bch_fs *c = as->c;
213         struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
214         struct btree_path *path;
215         unsigned i, level = b->c.level;
216
217         BUG_ON(!list_empty(&b->write_blocked));
218         BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
219
220         b->will_make_reachable = 0;
221         closure_put(&as->cl);
222
223         clear_btree_node_will_make_reachable(b);
224         clear_btree_node_accessed(b);
225         clear_btree_node_dirty_acct(c, b);
226         clear_btree_node_need_write(b);
227
228         mutex_lock(&c->btree_cache.lock);
229         list_del_init(&b->list);
230         bch2_btree_node_hash_remove(&c->btree_cache, b);
231         mutex_unlock(&c->btree_cache.lock);
232
233         BUG_ON(p->nr >= ARRAY_SIZE(p->b));
234         p->b[p->nr++] = b;
235
236         six_unlock_intent(&b->c.lock);
237
238         trans_for_each_path(trans, path, i)
239                 if (path->l[level].b == b) {
240                         btree_node_unlock(trans, path, level);
241                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
242                 }
243 }
244
245 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
246                                              struct disk_reservation *res,
247                                              struct closure *cl,
248                                              bool interior_node,
249                                              unsigned flags)
250 {
251         struct bch_fs *c = trans->c;
252         struct write_point *wp;
253         struct btree *b;
254         BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
255         struct open_buckets obs = { .nr = 0 };
256         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
257         enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
258         unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim
259                 ? BTREE_NODE_RESERVE
260                 : 0;
261         int ret;
262
263         mutex_lock(&c->btree_reserve_cache_lock);
264         if (c->btree_reserve_cache_nr > nr_reserve) {
265                 struct btree_alloc *a =
266                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
267
268                 obs = a->ob;
269                 bkey_copy(&tmp.k, &a->k);
270                 mutex_unlock(&c->btree_reserve_cache_lock);
271                 goto mem_alloc;
272         }
273         mutex_unlock(&c->btree_reserve_cache_lock);
274
275 retry:
276         ret = bch2_alloc_sectors_start_trans(trans,
277                                       c->opts.metadata_target ?:
278                                       c->opts.foreground_target,
279                                       0,
280                                       writepoint_ptr(&c->btree_write_point),
281                                       &devs_have,
282                                       res->nr_replicas,
283                                       c->opts.metadata_replicas_required,
284                                       watermark, 0, cl, &wp);
285         if (unlikely(ret))
286                 return ERR_PTR(ret);
287
288         if (wp->sectors_free < btree_sectors(c)) {
289                 struct open_bucket *ob;
290                 unsigned i;
291
292                 open_bucket_for_each(c, &wp->ptrs, ob, i)
293                         if (ob->sectors_free < btree_sectors(c))
294                                 ob->sectors_free = 0;
295
296                 bch2_alloc_sectors_done(c, wp);
297                 goto retry;
298         }
299
300         bkey_btree_ptr_v2_init(&tmp.k);
301         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
302
303         bch2_open_bucket_get(c, wp, &obs);
304         bch2_alloc_sectors_done(c, wp);
305 mem_alloc:
306         b = bch2_btree_node_mem_alloc(trans, interior_node);
307         six_unlock_write(&b->c.lock);
308         six_unlock_intent(&b->c.lock);
309
310         /* we hold cannibalize_lock: */
311         BUG_ON(IS_ERR(b));
312         BUG_ON(b->ob.nr);
313
314         bkey_copy(&b->key, &tmp.k);
315         b->ob = obs;
316
317         return b;
318 }
319
320 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
321                                            struct btree_trans *trans,
322                                            unsigned level)
323 {
324         struct bch_fs *c = as->c;
325         struct btree *b;
326         struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
327         int ret;
328
329         BUG_ON(level >= BTREE_MAX_DEPTH);
330         BUG_ON(!p->nr);
331
332         b = p->b[--p->nr];
333
334         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
335         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
336
337         set_btree_node_accessed(b);
338         set_btree_node_dirty_acct(c, b);
339         set_btree_node_need_write(b);
340
341         bch2_bset_init_first(b, &b->data->keys);
342         b->c.level      = level;
343         b->c.btree_id   = as->btree_id;
344         b->version_ondisk = c->sb.version;
345
346         memset(&b->nr, 0, sizeof(b->nr));
347         b->data->magic = cpu_to_le64(bset_magic(c));
348         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
349         b->data->flags = 0;
350         SET_BTREE_NODE_ID(b->data, as->btree_id);
351         SET_BTREE_NODE_LEVEL(b->data, level);
352
353         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
354                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
355
356                 bp->v.mem_ptr           = 0;
357                 bp->v.seq               = b->data->keys.seq;
358                 bp->v.sectors_written   = 0;
359         }
360
361         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
362
363         bch2_btree_build_aux_trees(b);
364
365         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
366         BUG_ON(ret);
367
368         trace_and_count(c, btree_node_alloc, trans, b);
369         bch2_increment_clock(c, btree_sectors(c), WRITE);
370         return b;
371 }
372
373 static void btree_set_min(struct btree *b, struct bpos pos)
374 {
375         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
376                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
377         b->data->min_key = pos;
378 }
379
380 static void btree_set_max(struct btree *b, struct bpos pos)
381 {
382         b->key.k.p = pos;
383         b->data->max_key = pos;
384 }
385
386 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
387                                                        struct btree_trans *trans,
388                                                        struct btree *b)
389 {
390         struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
391         struct bkey_format format = bch2_btree_calc_format(b);
392
393         /*
394          * The keys might expand with the new format - if they wouldn't fit in
395          * the btree node anymore, use the old format for now:
396          */
397         if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
398                 format = b->format;
399
400         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
401
402         btree_set_min(n, b->data->min_key);
403         btree_set_max(n, b->data->max_key);
404
405         n->data->format         = format;
406         btree_node_set_format(n, format);
407
408         bch2_btree_sort_into(as->c, n, b);
409
410         btree_node_reset_sib_u64s(n);
411         return n;
412 }
413
414 static struct btree *__btree_root_alloc(struct btree_update *as,
415                                 struct btree_trans *trans, unsigned level)
416 {
417         struct btree *b = bch2_btree_node_alloc(as, trans, level);
418
419         btree_set_min(b, POS_MIN);
420         btree_set_max(b, SPOS_MAX);
421         b->data->format = bch2_btree_calc_format(b);
422
423         btree_node_set_format(b, b->data->format);
424         bch2_btree_build_aux_trees(b);
425
426         return b;
427 }
428
429 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
430 {
431         struct bch_fs *c = as->c;
432         struct prealloc_nodes *p;
433
434         for (p = as->prealloc_nodes;
435              p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
436              p++) {
437                 while (p->nr) {
438                         struct btree *b = p->b[--p->nr];
439
440                         mutex_lock(&c->btree_reserve_cache_lock);
441
442                         if (c->btree_reserve_cache_nr <
443                             ARRAY_SIZE(c->btree_reserve_cache)) {
444                                 struct btree_alloc *a =
445                                         &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
446
447                                 a->ob = b->ob;
448                                 b->ob.nr = 0;
449                                 bkey_copy(&a->k, &b->key);
450                         } else {
451                                 bch2_open_buckets_put(c, &b->ob);
452                         }
453
454                         mutex_unlock(&c->btree_reserve_cache_lock);
455
456                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
457                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
458                         __btree_node_free(trans, b);
459                         six_unlock_write(&b->c.lock);
460                         six_unlock_intent(&b->c.lock);
461                 }
462         }
463 }
464
465 static int bch2_btree_reserve_get(struct btree_trans *trans,
466                                   struct btree_update *as,
467                                   unsigned nr_nodes[2],
468                                   unsigned flags,
469                                   struct closure *cl)
470 {
471         struct btree *b;
472         unsigned interior;
473         int ret = 0;
474
475         BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
476
477         /*
478          * Protects reaping from the btree node cache and using the btree node
479          * open bucket reserve:
480          */
481         ret = bch2_btree_cache_cannibalize_lock(trans, cl);
482         if (ret)
483                 return ret;
484
485         for (interior = 0; interior < 2; interior++) {
486                 struct prealloc_nodes *p = as->prealloc_nodes + interior;
487
488                 while (p->nr < nr_nodes[interior]) {
489                         b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
490                                                     interior, flags);
491                         if (IS_ERR(b)) {
492                                 ret = PTR_ERR(b);
493                                 goto err;
494                         }
495
496                         p->b[p->nr++] = b;
497                 }
498         }
499 err:
500         bch2_btree_cache_cannibalize_unlock(trans);
501         return ret;
502 }
503
504 /* Asynchronous interior node update machinery */
505
506 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
507 {
508         struct bch_fs *c = as->c;
509
510         if (as->took_gc_lock)
511                 up_read(&c->gc_lock);
512         as->took_gc_lock = false;
513
514         bch2_journal_pin_drop(&c->journal, &as->journal);
515         bch2_journal_pin_flush(&c->journal, &as->journal);
516         bch2_disk_reservation_put(c, &as->disk_res);
517         bch2_btree_reserve_put(as, trans);
518
519         time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
520                                as->start_time);
521
522         mutex_lock(&c->btree_interior_update_lock);
523         list_del(&as->unwritten_list);
524         list_del(&as->list);
525
526         closure_debug_destroy(&as->cl);
527         mempool_free(as, &c->btree_interior_update_pool);
528
529         /*
530          * Have to do the wakeup with btree_interior_update_lock still held,
531          * since being on btree_interior_update_list is our ref on @c:
532          */
533         closure_wake_up(&c->btree_interior_update_wait);
534
535         mutex_unlock(&c->btree_interior_update_lock);
536 }
537
538 static void btree_update_add_key(struct btree_update *as,
539                                  struct keylist *keys, struct btree *b)
540 {
541         struct bkey_i *k = &b->key;
542
543         BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
544                ARRAY_SIZE(as->_old_keys));
545
546         bkey_copy(keys->top, k);
547         bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
548
549         bch2_keylist_push(keys);
550 }
551
552 /*
553  * The transactional part of an interior btree node update, where we journal the
554  * update we did to the interior node and update alloc info:
555  */
556 static int btree_update_nodes_written_trans(struct btree_trans *trans,
557                                             struct btree_update *as)
558 {
559         struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
560         int ret = PTR_ERR_OR_ZERO(e);
561         if (ret)
562                 return ret;
563
564         memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
565
566         trans->journal_pin = &as->journal;
567
568         for_each_keylist_key(&as->old_keys, k) {
569                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
570
571                 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
572                                            BTREE_TRIGGER_TRANSACTIONAL);
573                 if (ret)
574                         return ret;
575         }
576
577         for_each_keylist_key(&as->new_keys, k) {
578                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
579
580                 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
581                                            BTREE_TRIGGER_TRANSACTIONAL);
582                 if (ret)
583                         return ret;
584         }
585
586         return 0;
587 }
588
589 static void btree_update_nodes_written(struct btree_update *as)
590 {
591         struct bch_fs *c = as->c;
592         struct btree *b;
593         struct btree_trans *trans = bch2_trans_get(c);
594         u64 journal_seq = 0;
595         unsigned i;
596         int ret;
597
598         /*
599          * If we're already in an error state, it might be because a btree node
600          * was never written, and we might be trying to free that same btree
601          * node here, but it won't have been marked as allocated and we'll see
602          * spurious disk usage inconsistencies in the transactional part below
603          * if we don't skip it:
604          */
605         ret = bch2_journal_error(&c->journal);
606         if (ret)
607                 goto err;
608
609         /*
610          * Wait for any in flight writes to finish before we free the old nodes
611          * on disk:
612          */
613         for (i = 0; i < as->nr_old_nodes; i++) {
614                 __le64 seq;
615
616                 b = as->old_nodes[i];
617
618                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
619                 seq = b->data ? b->data->keys.seq : 0;
620                 six_unlock_read(&b->c.lock);
621
622                 if (seq == as->old_nodes_seq[i])
623                         wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
624                                        TASK_UNINTERRUPTIBLE);
625         }
626
627         /*
628          * We did an update to a parent node where the pointers we added pointed
629          * to child nodes that weren't written yet: now, the child nodes have
630          * been written so we can write out the update to the interior node.
631          */
632
633         /*
634          * We can't call into journal reclaim here: we'd block on the journal
635          * reclaim lock, but we may need to release the open buckets we have
636          * pinned in order for other btree updates to make forward progress, and
637          * journal reclaim does btree updates when flushing bkey_cached entries,
638          * which may require allocations as well.
639          */
640         ret = commit_do(trans, &as->disk_res, &journal_seq,
641                         BCH_WATERMARK_reclaim|
642                         BCH_TRANS_COMMIT_no_enospc|
643                         BCH_TRANS_COMMIT_no_check_rw|
644                         BCH_TRANS_COMMIT_journal_reclaim,
645                         btree_update_nodes_written_trans(trans, as));
646         bch2_trans_unlock(trans);
647
648         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
649                              "%s(): error %s", __func__, bch2_err_str(ret));
650 err:
651         if (as->b) {
652
653                 b = as->b;
654                 btree_path_idx_t path_idx = get_unlocked_mut_path(trans,
655                                                 as->btree_id, b->c.level, b->key.k.p);
656                 struct btree_path *path = trans->paths + path_idx;
657                 /*
658                  * @b is the node we did the final insert into:
659                  *
660                  * On failure to get a journal reservation, we still have to
661                  * unblock the write and allow most of the write path to happen
662                  * so that shutdown works, but the i->journal_seq mechanism
663                  * won't work to prevent the btree write from being visible (we
664                  * didn't get a journal sequence number) - instead
665                  * __bch2_btree_node_write() doesn't do the actual write if
666                  * we're in journal error state:
667                  */
668
669                 /*
670                  * Ensure transaction is unlocked before using
671                  * btree_node_lock_nopath() (the use of which is always suspect,
672                  * we need to work on removing this in the future)
673                  *
674                  * It should be, but get_unlocked_mut_path() -> bch2_path_get()
675                  * calls bch2_path_upgrade(), before we call path_make_mut(), so
676                  * we may rarely end up with a locked path besides the one we
677                  * have here:
678                  */
679                 bch2_trans_unlock(trans);
680                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
681                 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
682                 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
683                 path->l[b->c.level].b = b;
684
685                 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
686
687                 mutex_lock(&c->btree_interior_update_lock);
688
689                 list_del(&as->write_blocked_list);
690                 if (list_empty(&b->write_blocked))
691                         clear_btree_node_write_blocked(b);
692
693                 /*
694                  * Node might have been freed, recheck under
695                  * btree_interior_update_lock:
696                  */
697                 if (as->b == b) {
698                         BUG_ON(!b->c.level);
699                         BUG_ON(!btree_node_dirty(b));
700
701                         if (!ret) {
702                                 struct bset *last = btree_bset_last(b);
703
704                                 last->journal_seq = cpu_to_le64(
705                                                              max(journal_seq,
706                                                                  le64_to_cpu(last->journal_seq)));
707
708                                 bch2_btree_add_journal_pin(c, b, journal_seq);
709                         } else {
710                                 /*
711                                  * If we didn't get a journal sequence number we
712                                  * can't write this btree node, because recovery
713                                  * won't know to ignore this write:
714                                  */
715                                 set_btree_node_never_write(b);
716                         }
717                 }
718
719                 mutex_unlock(&c->btree_interior_update_lock);
720
721                 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
722                 six_unlock_write(&b->c.lock);
723
724                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
725                 btree_node_unlock(trans, path, b->c.level);
726                 bch2_path_put(trans, path_idx, true);
727         }
728
729         bch2_journal_pin_drop(&c->journal, &as->journal);
730
731         mutex_lock(&c->btree_interior_update_lock);
732         for (i = 0; i < as->nr_new_nodes; i++) {
733                 b = as->new_nodes[i];
734
735                 BUG_ON(b->will_make_reachable != (unsigned long) as);
736                 b->will_make_reachable = 0;
737                 clear_btree_node_will_make_reachable(b);
738         }
739         mutex_unlock(&c->btree_interior_update_lock);
740
741         for (i = 0; i < as->nr_new_nodes; i++) {
742                 b = as->new_nodes[i];
743
744                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
745                 btree_node_write_if_need(c, b, SIX_LOCK_read);
746                 six_unlock_read(&b->c.lock);
747         }
748
749         for (i = 0; i < as->nr_open_buckets; i++)
750                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
751
752         bch2_btree_update_free(as, trans);
753         bch2_trans_put(trans);
754 }
755
756 static void btree_interior_update_work(struct work_struct *work)
757 {
758         struct bch_fs *c =
759                 container_of(work, struct bch_fs, btree_interior_update_work);
760         struct btree_update *as;
761
762         while (1) {
763                 mutex_lock(&c->btree_interior_update_lock);
764                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
765                                               struct btree_update, unwritten_list);
766                 if (as && !as->nodes_written)
767                         as = NULL;
768                 mutex_unlock(&c->btree_interior_update_lock);
769
770                 if (!as)
771                         break;
772
773                 btree_update_nodes_written(as);
774         }
775 }
776
777 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
778 {
779         closure_type(as, struct btree_update, cl);
780         struct bch_fs *c = as->c;
781
782         mutex_lock(&c->btree_interior_update_lock);
783         as->nodes_written = true;
784         mutex_unlock(&c->btree_interior_update_lock);
785
786         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
787 }
788
789 /*
790  * We're updating @b with pointers to nodes that haven't finished writing yet:
791  * block @b from being written until @as completes
792  */
793 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
794 {
795         struct bch_fs *c = as->c;
796
797         mutex_lock(&c->btree_interior_update_lock);
798         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
799
800         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
801         BUG_ON(!btree_node_dirty(b));
802         BUG_ON(!b->c.level);
803
804         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
805         as->b           = b;
806
807         set_btree_node_write_blocked(b);
808         list_add(&as->write_blocked_list, &b->write_blocked);
809
810         mutex_unlock(&c->btree_interior_update_lock);
811 }
812
813 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
814                                 struct journal_entry_pin *_pin, u64 seq)
815 {
816         return 0;
817 }
818
819 static void btree_update_reparent(struct btree_update *as,
820                                   struct btree_update *child)
821 {
822         struct bch_fs *c = as->c;
823
824         lockdep_assert_held(&c->btree_interior_update_lock);
825
826         child->b = NULL;
827         child->mode = BTREE_INTERIOR_UPDATING_AS;
828
829         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
830                               bch2_update_reparent_journal_pin_flush);
831 }
832
833 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
834 {
835         struct bkey_i *insert = &b->key;
836         struct bch_fs *c = as->c;
837
838         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
839
840         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
841                ARRAY_SIZE(as->journal_entries));
842
843         as->journal_u64s +=
844                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
845                                   BCH_JSET_ENTRY_btree_root,
846                                   b->c.btree_id, b->c.level,
847                                   insert, insert->k.u64s);
848
849         mutex_lock(&c->btree_interior_update_lock);
850         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
851
852         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
853         mutex_unlock(&c->btree_interior_update_lock);
854 }
855
856 /*
857  * bch2_btree_update_add_new_node:
858  *
859  * This causes @as to wait on @b to be written, before it gets to
860  * bch2_btree_update_nodes_written
861  *
862  * Additionally, it sets b->will_make_reachable to prevent any additional writes
863  * to @b from happening besides the first until @b is reachable on disk
864  *
865  * And it adds @b to the list of @as's new nodes, so that we can update sector
866  * counts in bch2_btree_update_nodes_written:
867  */
868 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
869 {
870         struct bch_fs *c = as->c;
871
872         closure_get(&as->cl);
873
874         mutex_lock(&c->btree_interior_update_lock);
875         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
876         BUG_ON(b->will_make_reachable);
877
878         as->new_nodes[as->nr_new_nodes++] = b;
879         b->will_make_reachable = 1UL|(unsigned long) as;
880         set_btree_node_will_make_reachable(b);
881
882         mutex_unlock(&c->btree_interior_update_lock);
883
884         btree_update_add_key(as, &as->new_keys, b);
885
886         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
887                 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
888                 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
889
890                 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
891                         cpu_to_le16(sectors);
892         }
893 }
894
895 /*
896  * returns true if @b was a new node
897  */
898 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
899 {
900         struct btree_update *as;
901         unsigned long v;
902         unsigned i;
903
904         mutex_lock(&c->btree_interior_update_lock);
905         /*
906          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
907          * dropped when it gets written by bch2_btree_complete_write - the
908          * xchg() is for synchronization with bch2_btree_complete_write:
909          */
910         v = xchg(&b->will_make_reachable, 0);
911         clear_btree_node_will_make_reachable(b);
912         as = (struct btree_update *) (v & ~1UL);
913
914         if (!as) {
915                 mutex_unlock(&c->btree_interior_update_lock);
916                 return;
917         }
918
919         for (i = 0; i < as->nr_new_nodes; i++)
920                 if (as->new_nodes[i] == b)
921                         goto found;
922
923         BUG();
924 found:
925         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
926         mutex_unlock(&c->btree_interior_update_lock);
927
928         if (v & 1)
929                 closure_put(&as->cl);
930 }
931
932 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
933 {
934         while (b->ob.nr)
935                 as->open_buckets[as->nr_open_buckets++] =
936                         b->ob.v[--b->ob.nr];
937 }
938
939 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
940                                 struct journal_entry_pin *_pin, u64 seq)
941 {
942         return 0;
943 }
944
945 /*
946  * @b is being split/rewritten: it may have pointers to not-yet-written btree
947  * nodes and thus outstanding btree_updates - redirect @b's
948  * btree_updates to point to this btree_update:
949  */
950 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
951                                                       struct btree *b)
952 {
953         struct bch_fs *c = as->c;
954         struct btree_update *p, *n;
955         struct btree_write *w;
956
957         set_btree_node_dying(b);
958
959         if (btree_node_fake(b))
960                 return;
961
962         mutex_lock(&c->btree_interior_update_lock);
963
964         /*
965          * Does this node have any btree_update operations preventing
966          * it from being written?
967          *
968          * If so, redirect them to point to this btree_update: we can
969          * write out our new nodes, but we won't make them visible until those
970          * operations complete
971          */
972         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
973                 list_del_init(&p->write_blocked_list);
974                 btree_update_reparent(as, p);
975
976                 /*
977                  * for flush_held_btree_writes() waiting on updates to flush or
978                  * nodes to be writeable:
979                  */
980                 closure_wake_up(&c->btree_interior_update_wait);
981         }
982
983         clear_btree_node_dirty_acct(c, b);
984         clear_btree_node_need_write(b);
985         clear_btree_node_write_blocked(b);
986
987         /*
988          * Does this node have unwritten data that has a pin on the journal?
989          *
990          * If so, transfer that pin to the btree_update operation -
991          * note that if we're freeing multiple nodes, we only need to keep the
992          * oldest pin of any of the nodes we're freeing. We'll release the pin
993          * when the new nodes are persistent and reachable on disk:
994          */
995         w = btree_current_write(b);
996         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
997                               bch2_btree_update_will_free_node_journal_pin_flush);
998         bch2_journal_pin_drop(&c->journal, &w->journal);
999
1000         w = btree_prev_write(b);
1001         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1002                               bch2_btree_update_will_free_node_journal_pin_flush);
1003         bch2_journal_pin_drop(&c->journal, &w->journal);
1004
1005         mutex_unlock(&c->btree_interior_update_lock);
1006
1007         /*
1008          * Is this a node that isn't reachable on disk yet?
1009          *
1010          * Nodes that aren't reachable yet have writes blocked until they're
1011          * reachable - now that we've cancelled any pending writes and moved
1012          * things waiting on that write to wait on this update, we can drop this
1013          * node from the list of nodes that the other update is making
1014          * reachable, prior to freeing it:
1015          */
1016         btree_update_drop_new_node(c, b);
1017
1018         btree_update_add_key(as, &as->old_keys, b);
1019
1020         as->old_nodes[as->nr_old_nodes] = b;
1021         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1022         as->nr_old_nodes++;
1023 }
1024
1025 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1026 {
1027         struct bch_fs *c = as->c;
1028         u64 start_time = as->start_time;
1029
1030         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1031
1032         if (as->took_gc_lock)
1033                 up_read(&as->c->gc_lock);
1034         as->took_gc_lock = false;
1035
1036         bch2_btree_reserve_put(as, trans);
1037
1038         continue_at(&as->cl, btree_update_set_nodes_written,
1039                     as->c->btree_interior_update_worker);
1040
1041         time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1042                                start_time);
1043 }
1044
1045 static struct btree_update *
1046 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1047                         unsigned level, bool split, unsigned flags)
1048 {
1049         struct bch_fs *c = trans->c;
1050         struct btree_update *as;
1051         u64 start_time = local_clock();
1052         int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1053                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1054         unsigned nr_nodes[2] = { 0, 0 };
1055         unsigned update_level = level;
1056         enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1057         int ret = 0;
1058         u32 restart_count = trans->restart_count;
1059
1060         BUG_ON(!path->should_be_locked);
1061
1062         if (watermark == BCH_WATERMARK_copygc)
1063                 watermark = BCH_WATERMARK_btree_copygc;
1064         if (watermark < BCH_WATERMARK_btree)
1065                 watermark = BCH_WATERMARK_btree;
1066
1067         flags &= ~BCH_WATERMARK_MASK;
1068         flags |= watermark;
1069
1070         if (!(flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1071             watermark < c->journal.watermark) {
1072                 struct journal_res res = { 0 };
1073
1074                 ret = drop_locks_do(trans,
1075                         bch2_journal_res_get(&c->journal, &res, 1,
1076                                              watermark|JOURNAL_RES_GET_CHECK));
1077                 if (ret)
1078                         return ERR_PTR(ret);
1079         }
1080
1081         while (1) {
1082                 nr_nodes[!!update_level] += 1 + split;
1083                 update_level++;
1084
1085                 ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1086                 if (ret)
1087                         return ERR_PTR(ret);
1088
1089                 if (!btree_path_node(path, update_level)) {
1090                         /* Allocating new root? */
1091                         nr_nodes[1] += split;
1092                         update_level = BTREE_MAX_DEPTH;
1093                         break;
1094                 }
1095
1096                 /*
1097                  * Always check for space for two keys, even if we won't have to
1098                  * split at prior level - it might have been a merge instead:
1099                  */
1100                 if (bch2_btree_node_insert_fits(path->l[update_level].b,
1101                                                 BKEY_BTREE_PTR_U64s_MAX * 2))
1102                         break;
1103
1104                 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1105         }
1106
1107         if (!down_read_trylock(&c->gc_lock)) {
1108                 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1109                 if (ret) {
1110                         up_read(&c->gc_lock);
1111                         return ERR_PTR(ret);
1112                 }
1113         }
1114
1115         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1116         memset(as, 0, sizeof(*as));
1117         closure_init(&as->cl, NULL);
1118         as->c           = c;
1119         as->start_time  = start_time;
1120         as->mode        = BTREE_INTERIOR_NO_UPDATE;
1121         as->took_gc_lock = true;
1122         as->btree_id    = path->btree_id;
1123         as->update_level = update_level;
1124         INIT_LIST_HEAD(&as->list);
1125         INIT_LIST_HEAD(&as->unwritten_list);
1126         INIT_LIST_HEAD(&as->write_blocked_list);
1127         bch2_keylist_init(&as->old_keys, as->_old_keys);
1128         bch2_keylist_init(&as->new_keys, as->_new_keys);
1129         bch2_keylist_init(&as->parent_keys, as->inline_keys);
1130
1131         mutex_lock(&c->btree_interior_update_lock);
1132         list_add_tail(&as->list, &c->btree_interior_update_list);
1133         mutex_unlock(&c->btree_interior_update_lock);
1134
1135         /*
1136          * We don't want to allocate if we're in an error state, that can cause
1137          * deadlock on emergency shutdown due to open buckets getting stuck in
1138          * the btree_reserve_cache after allocator shutdown has cleared it out.
1139          * This check needs to come after adding us to the btree_interior_update
1140          * list but before calling bch2_btree_reserve_get, to synchronize with
1141          * __bch2_fs_read_only().
1142          */
1143         ret = bch2_journal_error(&c->journal);
1144         if (ret)
1145                 goto err;
1146
1147         ret = bch2_disk_reservation_get(c, &as->disk_res,
1148                         (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1149                         c->opts.metadata_replicas,
1150                         disk_res_flags);
1151         if (ret)
1152                 goto err;
1153
1154         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1155         if (bch2_err_matches(ret, ENOSPC) ||
1156             bch2_err_matches(ret, ENOMEM)) {
1157                 struct closure cl;
1158
1159                 /*
1160                  * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1161                  * flag
1162                  */
1163                 if (bch2_err_matches(ret, ENOSPC) &&
1164                     (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1165                     watermark != BCH_WATERMARK_reclaim) {
1166                         ret = -BCH_ERR_journal_reclaim_would_deadlock;
1167                         goto err;
1168                 }
1169
1170                 closure_init_stack(&cl);
1171
1172                 do {
1173                         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1174
1175                         bch2_trans_unlock(trans);
1176                         closure_sync(&cl);
1177                 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1178         }
1179
1180         if (ret) {
1181                 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1182                                 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1183                 goto err;
1184         }
1185
1186         ret = bch2_trans_relock(trans);
1187         if (ret)
1188                 goto err;
1189
1190         bch2_trans_verify_not_restarted(trans, restart_count);
1191         return as;
1192 err:
1193         bch2_btree_update_free(as, trans);
1194         if (!bch2_err_matches(ret, ENOSPC) &&
1195             !bch2_err_matches(ret, EROFS))
1196                 bch_err_fn_ratelimited(c, ret);
1197         return ERR_PTR(ret);
1198 }
1199
1200 /* Btree root updates: */
1201
1202 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1203 {
1204         /* Root nodes cannot be reaped */
1205         mutex_lock(&c->btree_cache.lock);
1206         list_del_init(&b->list);
1207         mutex_unlock(&c->btree_cache.lock);
1208
1209         mutex_lock(&c->btree_root_lock);
1210         BUG_ON(btree_node_root(c, b) &&
1211                (b->c.level < btree_node_root(c, b)->c.level ||
1212                 !btree_node_dying(btree_node_root(c, b))));
1213
1214         bch2_btree_id_root(c, b->c.btree_id)->b = b;
1215         mutex_unlock(&c->btree_root_lock);
1216
1217         bch2_recalc_btree_reserve(c);
1218 }
1219
1220 static void bch2_btree_set_root(struct btree_update *as,
1221                                 struct btree_trans *trans,
1222                                 struct btree_path *path,
1223                                 struct btree *b)
1224 {
1225         struct bch_fs *c = as->c;
1226         struct btree *old;
1227
1228         trace_and_count(c, btree_node_set_root, trans, b);
1229
1230         old = btree_node_root(c, b);
1231
1232         /*
1233          * Ensure no one is using the old root while we switch to the
1234          * new root:
1235          */
1236         bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1237
1238         bch2_btree_set_root_inmem(c, b);
1239
1240         btree_update_updated_root(as, b);
1241
1242         /*
1243          * Unlock old root after new root is visible:
1244          *
1245          * The new root isn't persistent, but that's ok: we still have
1246          * an intent lock on the new root, and any updates that would
1247          * depend on the new root would have to update the new root.
1248          */
1249         bch2_btree_node_unlock_write(trans, path, old);
1250 }
1251
1252 /* Interior node updates: */
1253
1254 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1255                                         struct btree_trans *trans,
1256                                         struct btree_path *path,
1257                                         struct btree *b,
1258                                         struct btree_node_iter *node_iter,
1259                                         struct bkey_i *insert)
1260 {
1261         struct bch_fs *c = as->c;
1262         struct bkey_packed *k;
1263         struct printbuf buf = PRINTBUF;
1264         unsigned long old, new, v;
1265
1266         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1267                !btree_ptr_sectors_written(insert));
1268
1269         if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1270                 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1271
1272         if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1273                               btree_node_type(b), WRITE, &buf) ?:
1274             bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1275                 printbuf_reset(&buf);
1276                 prt_printf(&buf, "inserting invalid bkey\n  ");
1277                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1278                 prt_printf(&buf, "\n  ");
1279                 bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1280                                   btree_node_type(b), WRITE, &buf);
1281                 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1282
1283                 bch2_fs_inconsistent(c, "%s", buf.buf);
1284                 dump_stack();
1285         }
1286
1287         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1288                ARRAY_SIZE(as->journal_entries));
1289
1290         as->journal_u64s +=
1291                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1292                                   BCH_JSET_ENTRY_btree_keys,
1293                                   b->c.btree_id, b->c.level,
1294                                   insert, insert->k.u64s);
1295
1296         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1297                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1298                 bch2_btree_node_iter_advance(node_iter, b);
1299
1300         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1301         set_btree_node_dirty_acct(c, b);
1302
1303         v = READ_ONCE(b->flags);
1304         do {
1305                 old = new = v;
1306
1307                 new &= ~BTREE_WRITE_TYPE_MASK;
1308                 new |= BTREE_WRITE_interior;
1309                 new |= 1 << BTREE_NODE_need_write;
1310         } while ((v = cmpxchg(&b->flags, old, new)) != old);
1311
1312         printbuf_exit(&buf);
1313 }
1314
1315 static void
1316 __bch2_btree_insert_keys_interior(struct btree_update *as,
1317                                   struct btree_trans *trans,
1318                                   struct btree_path *path,
1319                                   struct btree *b,
1320                                   struct btree_node_iter node_iter,
1321                                   struct keylist *keys)
1322 {
1323         struct bkey_i *insert = bch2_keylist_front(keys);
1324         struct bkey_packed *k;
1325
1326         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1327
1328         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1329                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1330                 ;
1331
1332         while (!bch2_keylist_empty(keys)) {
1333                 insert = bch2_keylist_front(keys);
1334
1335                 if (bpos_gt(insert->k.p, b->key.k.p))
1336                         break;
1337
1338                 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1339                 bch2_keylist_pop_front(keys);
1340         }
1341 }
1342
1343 /*
1344  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1345  * node)
1346  */
1347 static void __btree_split_node(struct btree_update *as,
1348                                struct btree_trans *trans,
1349                                struct btree *b,
1350                                struct btree *n[2])
1351 {
1352         struct bkey_packed *k;
1353         struct bpos n1_pos = POS_MIN;
1354         struct btree_node_iter iter;
1355         struct bset *bsets[2];
1356         struct bkey_format_state format[2];
1357         struct bkey_packed *out[2];
1358         struct bkey uk;
1359         unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1360         struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1361         int i;
1362
1363         memset(&nr_keys, 0, sizeof(nr_keys));
1364
1365         for (i = 0; i < 2; i++) {
1366                 BUG_ON(n[i]->nsets != 1);
1367
1368                 bsets[i] = btree_bset_first(n[i]);
1369                 out[i] = bsets[i]->start;
1370
1371                 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1372                 bch2_bkey_format_init(&format[i]);
1373         }
1374
1375         u64s = 0;
1376         for_each_btree_node_key(b, k, &iter) {
1377                 if (bkey_deleted(k))
1378                         continue;
1379
1380                 i = u64s >= n1_u64s;
1381                 u64s += k->u64s;
1382                 uk = bkey_unpack_key(b, k);
1383                 if (!i)
1384                         n1_pos = uk.p;
1385                 bch2_bkey_format_add_key(&format[i], &uk);
1386
1387                 nr_keys[i].nr_keys++;
1388                 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1389         }
1390
1391         btree_set_min(n[0], b->data->min_key);
1392         btree_set_max(n[0], n1_pos);
1393         btree_set_min(n[1], bpos_successor(n1_pos));
1394         btree_set_max(n[1], b->data->max_key);
1395
1396         for (i = 0; i < 2; i++) {
1397                 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1398                 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1399
1400                 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1401
1402                 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1403                         nr_keys[i].val_u64s;
1404                 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1405                         n[i]->data->format = b->format;
1406
1407                 btree_node_set_format(n[i], n[i]->data->format);
1408         }
1409
1410         u64s = 0;
1411         for_each_btree_node_key(b, k, &iter) {
1412                 if (bkey_deleted(k))
1413                         continue;
1414
1415                 i = u64s >= n1_u64s;
1416                 u64s += k->u64s;
1417
1418                 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1419                                         ? &b->format: &bch2_bkey_format_current, k))
1420                         out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1421                 else
1422                         bch2_bkey_unpack(b, (void *) out[i], k);
1423
1424                 out[i]->needs_whiteout = false;
1425
1426                 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1427                 out[i] = bkey_p_next(out[i]);
1428         }
1429
1430         for (i = 0; i < 2; i++) {
1431                 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1432
1433                 BUG_ON(!bsets[i]->u64s);
1434
1435                 set_btree_bset_end(n[i], n[i]->set);
1436
1437                 btree_node_reset_sib_u64s(n[i]);
1438
1439                 bch2_verify_btree_nr_keys(n[i]);
1440
1441                 if (b->c.level)
1442                         btree_node_interior_verify(as->c, n[i]);
1443         }
1444 }
1445
1446 /*
1447  * For updates to interior nodes, we've got to do the insert before we split
1448  * because the stuff we're inserting has to be inserted atomically. Post split,
1449  * the keys might have to go in different nodes and the split would no longer be
1450  * atomic.
1451  *
1452  * Worse, if the insert is from btree node coalescing, if we do the insert after
1453  * we do the split (and pick the pivot) - the pivot we pick might be between
1454  * nodes that were coalesced, and thus in the middle of a child node post
1455  * coalescing:
1456  */
1457 static void btree_split_insert_keys(struct btree_update *as,
1458                                     struct btree_trans *trans,
1459                                     btree_path_idx_t path_idx,
1460                                     struct btree *b,
1461                                     struct keylist *keys)
1462 {
1463         struct btree_path *path = trans->paths + path_idx;
1464
1465         if (!bch2_keylist_empty(keys) &&
1466             bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1467                 struct btree_node_iter node_iter;
1468
1469                 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1470
1471                 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1472
1473                 btree_node_interior_verify(as->c, b);
1474         }
1475 }
1476
1477 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1478                        btree_path_idx_t path, struct btree *b,
1479                        struct keylist *keys, unsigned flags)
1480 {
1481         struct bch_fs *c = as->c;
1482         struct btree *parent = btree_node_parent(trans->paths + path, b);
1483         struct btree *n1, *n2 = NULL, *n3 = NULL;
1484         btree_path_idx_t path1 = 0, path2 = 0;
1485         u64 start_time = local_clock();
1486         int ret = 0;
1487
1488         BUG_ON(!parent && (b != btree_node_root(c, b)));
1489         BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1490
1491         bch2_btree_interior_update_will_free_node(as, b);
1492
1493         if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1494                 struct btree *n[2];
1495
1496                 trace_and_count(c, btree_node_split, trans, b);
1497
1498                 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1499                 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1500
1501                 __btree_split_node(as, trans, b, n);
1502
1503                 if (keys) {
1504                         btree_split_insert_keys(as, trans, path, n1, keys);
1505                         btree_split_insert_keys(as, trans, path, n2, keys);
1506                         BUG_ON(!bch2_keylist_empty(keys));
1507                 }
1508
1509                 bch2_btree_build_aux_trees(n2);
1510                 bch2_btree_build_aux_trees(n1);
1511
1512                 bch2_btree_update_add_new_node(as, n1);
1513                 bch2_btree_update_add_new_node(as, n2);
1514                 six_unlock_write(&n2->c.lock);
1515                 six_unlock_write(&n1->c.lock);
1516
1517                 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1518                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1519                 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1520                 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1521
1522                 path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p);
1523                 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1524                 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1525                 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1526
1527                 /*
1528                  * Note that on recursive parent_keys == keys, so we
1529                  * can't start adding new keys to parent_keys before emptying it
1530                  * out (which we did with btree_split_insert_keys() above)
1531                  */
1532                 bch2_keylist_add(&as->parent_keys, &n1->key);
1533                 bch2_keylist_add(&as->parent_keys, &n2->key);
1534
1535                 if (!parent) {
1536                         /* Depth increases, make a new root */
1537                         n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1538
1539                         bch2_btree_update_add_new_node(as, n3);
1540                         six_unlock_write(&n3->c.lock);
1541
1542                         trans->paths[path2].locks_want++;
1543                         BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1544                         six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1545                         mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1546                         bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1547
1548                         n3->sib_u64s[0] = U16_MAX;
1549                         n3->sib_u64s[1] = U16_MAX;
1550
1551                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1552                 }
1553         } else {
1554                 trace_and_count(c, btree_node_compact, trans, b);
1555
1556                 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1557
1558                 if (keys) {
1559                         btree_split_insert_keys(as, trans, path, n1, keys);
1560                         BUG_ON(!bch2_keylist_empty(keys));
1561                 }
1562
1563                 bch2_btree_build_aux_trees(n1);
1564                 bch2_btree_update_add_new_node(as, n1);
1565                 six_unlock_write(&n1->c.lock);
1566
1567                 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1568                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1569                 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1570                 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1571
1572                 if (parent)
1573                         bch2_keylist_add(&as->parent_keys, &n1->key);
1574         }
1575
1576         /* New nodes all written, now make them visible: */
1577
1578         if (parent) {
1579                 /* Split a non root node */
1580                 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1581                 if (ret)
1582                         goto err;
1583         } else if (n3) {
1584                 bch2_btree_set_root(as, trans, trans->paths + path, n3);
1585         } else {
1586                 /* Root filled up but didn't need to be split */
1587                 bch2_btree_set_root(as, trans, trans->paths + path, n1);
1588         }
1589
1590         if (n3) {
1591                 bch2_btree_update_get_open_buckets(as, n3);
1592                 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1593         }
1594         if (n2) {
1595                 bch2_btree_update_get_open_buckets(as, n2);
1596                 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1597         }
1598         bch2_btree_update_get_open_buckets(as, n1);
1599         bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1600
1601         /*
1602          * The old node must be freed (in memory) _before_ unlocking the new
1603          * nodes - else another thread could re-acquire a read lock on the old
1604          * node after another thread has locked and updated the new node, thus
1605          * seeing stale data:
1606          */
1607         bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1608
1609         if (n3)
1610                 bch2_trans_node_add(trans, trans->paths + path, n3);
1611         if (n2)
1612                 bch2_trans_node_add(trans, trans->paths + path2, n2);
1613         bch2_trans_node_add(trans, trans->paths + path1, n1);
1614
1615         if (n3)
1616                 six_unlock_intent(&n3->c.lock);
1617         if (n2)
1618                 six_unlock_intent(&n2->c.lock);
1619         six_unlock_intent(&n1->c.lock);
1620 out:
1621         if (path2) {
1622                 __bch2_btree_path_unlock(trans, trans->paths + path2);
1623                 bch2_path_put(trans, path2, true);
1624         }
1625         if (path1) {
1626                 __bch2_btree_path_unlock(trans, trans->paths + path1);
1627                 bch2_path_put(trans, path1, true);
1628         }
1629
1630         bch2_trans_verify_locks(trans);
1631
1632         time_stats_update(&c->times[n2
1633                                ? BCH_TIME_btree_node_split
1634                                : BCH_TIME_btree_node_compact],
1635                                start_time);
1636         return ret;
1637 err:
1638         if (n3)
1639                 bch2_btree_node_free_never_used(as, trans, n3);
1640         if (n2)
1641                 bch2_btree_node_free_never_used(as, trans, n2);
1642         bch2_btree_node_free_never_used(as, trans, n1);
1643         goto out;
1644 }
1645
1646 static void
1647 bch2_btree_insert_keys_interior(struct btree_update *as,
1648                                 struct btree_trans *trans,
1649                                 struct btree_path *path,
1650                                 struct btree *b,
1651                                 struct keylist *keys)
1652 {
1653         struct btree_path *linked;
1654         unsigned i;
1655
1656         __bch2_btree_insert_keys_interior(as, trans, path, b,
1657                                           path->l[b->c.level].iter, keys);
1658
1659         btree_update_updated_node(as, b);
1660
1661         trans_for_each_path_with_node(trans, b, linked, i)
1662                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1663
1664         bch2_trans_verify_paths(trans);
1665 }
1666
1667 /**
1668  * bch2_btree_insert_node - insert bkeys into a given btree node
1669  *
1670  * @as:                 btree_update object
1671  * @trans:              btree_trans object
1672  * @path_idx:           path that points to current node
1673  * @b:                  node to insert keys into
1674  * @keys:               list of keys to insert
1675  * @flags:              transaction commit flags
1676  *
1677  * Returns: 0 on success, typically transaction restart error on failure
1678  *
1679  * Inserts as many keys as it can into a given btree node, splitting it if full.
1680  * If a split occurred, this function will return early. This can only happen
1681  * for leaf nodes -- inserts into interior nodes have to be atomic.
1682  */
1683 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1684                                   btree_path_idx_t path_idx, struct btree *b,
1685                                   struct keylist *keys, unsigned flags)
1686 {
1687         struct bch_fs *c = as->c;
1688         struct btree_path *path = trans->paths + path_idx;
1689         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1690         int old_live_u64s = b->nr.live_u64s;
1691         int live_u64s_added, u64s_added;
1692         int ret;
1693
1694         lockdep_assert_held(&c->gc_lock);
1695         BUG_ON(!btree_node_intent_locked(path, b->c.level));
1696         BUG_ON(!b->c.level);
1697         BUG_ON(!as || as->b);
1698         bch2_verify_keylist_sorted(keys);
1699
1700         ret = bch2_btree_node_lock_write(trans, path, &b->c);
1701         if (ret)
1702                 return ret;
1703
1704         bch2_btree_node_prep_for_write(trans, path, b);
1705
1706         if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1707                 bch2_btree_node_unlock_write(trans, path, b);
1708                 goto split;
1709         }
1710
1711         btree_node_interior_verify(c, b);
1712
1713         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1714
1715         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1716         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1717
1718         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1719                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1720         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1721                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1722
1723         if (u64s_added > live_u64s_added &&
1724             bch2_maybe_compact_whiteouts(c, b))
1725                 bch2_trans_node_reinit_iter(trans, b);
1726
1727         bch2_btree_node_unlock_write(trans, path, b);
1728
1729         btree_node_interior_verify(c, b);
1730         return 0;
1731 split:
1732         /*
1733          * We could attempt to avoid the transaction restart, by calling
1734          * bch2_btree_path_upgrade() and allocating more nodes:
1735          */
1736         if (b->c.level >= as->update_level) {
1737                 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1738                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1739         }
1740
1741         return btree_split(as, trans, path_idx, b, keys, flags);
1742 }
1743
1744 int bch2_btree_split_leaf(struct btree_trans *trans,
1745                           btree_path_idx_t path,
1746                           unsigned flags)
1747 {
1748         /* btree_split & merge may both cause paths array to be reallocated */
1749
1750         struct btree *b = path_l(trans->paths + path)->b;
1751         struct btree_update *as;
1752         unsigned l;
1753         int ret = 0;
1754
1755         as = bch2_btree_update_start(trans, trans->paths + path,
1756                                      trans->paths[path].level,
1757                                      true, flags);
1758         if (IS_ERR(as))
1759                 return PTR_ERR(as);
1760
1761         ret = btree_split(as, trans, path, b, NULL, flags);
1762         if (ret) {
1763                 bch2_btree_update_free(as, trans);
1764                 return ret;
1765         }
1766
1767         bch2_btree_update_done(as, trans);
1768
1769         for (l = trans->paths[path].level + 1;
1770              btree_node_intent_locked(&trans->paths[path], l) && !ret;
1771              l++)
1772                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1773
1774         return ret;
1775 }
1776
1777 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1778                                   btree_path_idx_t path,
1779                                   unsigned level,
1780                                   unsigned flags,
1781                                   enum btree_node_sibling sib)
1782 {
1783         struct bch_fs *c = trans->c;
1784         struct btree_update *as;
1785         struct bkey_format_state new_s;
1786         struct bkey_format new_f;
1787         struct bkey_i delete;
1788         struct btree *b, *m, *n, *prev, *next, *parent;
1789         struct bpos sib_pos;
1790         size_t sib_u64s;
1791         enum btree_id btree = trans->paths[path].btree_id;
1792         btree_path_idx_t sib_path = 0, new_path = 0;
1793         u64 start_time = local_clock();
1794         int ret = 0;
1795
1796         BUG_ON(!trans->paths[path].should_be_locked);
1797         BUG_ON(!btree_node_locked(&trans->paths[path], level));
1798
1799         b = trans->paths[path].l[level].b;
1800
1801         if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1802             (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1803                 b->sib_u64s[sib] = U16_MAX;
1804                 return 0;
1805         }
1806
1807         sib_pos = sib == btree_prev_sib
1808                 ? bpos_predecessor(b->data->min_key)
1809                 : bpos_successor(b->data->max_key);
1810
1811         sib_path = bch2_path_get(trans, btree, sib_pos,
1812                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1813         ret = bch2_btree_path_traverse(trans, sib_path, false);
1814         if (ret)
1815                 goto err;
1816
1817         btree_path_set_should_be_locked(trans->paths + sib_path);
1818
1819         m = trans->paths[sib_path].l[level].b;
1820
1821         if (btree_node_parent(trans->paths + path, b) !=
1822             btree_node_parent(trans->paths + sib_path, m)) {
1823                 b->sib_u64s[sib] = U16_MAX;
1824                 goto out;
1825         }
1826
1827         if (sib == btree_prev_sib) {
1828                 prev = m;
1829                 next = b;
1830         } else {
1831                 prev = b;
1832                 next = m;
1833         }
1834
1835         if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1836                 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1837
1838                 bch2_bpos_to_text(&buf1, prev->data->max_key);
1839                 bch2_bpos_to_text(&buf2, next->data->min_key);
1840                 bch_err(c,
1841                         "%s(): btree topology error:\n"
1842                         "  prev ends at   %s\n"
1843                         "  next starts at %s",
1844                         __func__, buf1.buf, buf2.buf);
1845                 printbuf_exit(&buf1);
1846                 printbuf_exit(&buf2);
1847                 ret = bch2_topology_error(c);
1848                 goto err;
1849         }
1850
1851         bch2_bkey_format_init(&new_s);
1852         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1853         __bch2_btree_calc_format(&new_s, prev);
1854         __bch2_btree_calc_format(&new_s, next);
1855         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1856         new_f = bch2_bkey_format_done(&new_s);
1857
1858         sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
1859                 btree_node_u64s_with_format(m->nr, &m->format, &new_f);
1860
1861         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1862                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1863                 sib_u64s /= 2;
1864                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1865         }
1866
1867         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1868         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1869         b->sib_u64s[sib] = sib_u64s;
1870
1871         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1872                 goto out;
1873
1874         parent = btree_node_parent(trans->paths + path, b);
1875         as = bch2_btree_update_start(trans, trans->paths + path, level, false,
1876                                      BCH_TRANS_COMMIT_no_enospc|flags);
1877         ret = PTR_ERR_OR_ZERO(as);
1878         if (ret)
1879                 goto err;
1880
1881         trace_and_count(c, btree_node_merge, trans, b);
1882
1883         bch2_btree_interior_update_will_free_node(as, b);
1884         bch2_btree_interior_update_will_free_node(as, m);
1885
1886         n = bch2_btree_node_alloc(as, trans, b->c.level);
1887
1888         SET_BTREE_NODE_SEQ(n->data,
1889                            max(BTREE_NODE_SEQ(b->data),
1890                                BTREE_NODE_SEQ(m->data)) + 1);
1891
1892         btree_set_min(n, prev->data->min_key);
1893         btree_set_max(n, next->data->max_key);
1894
1895         n->data->format  = new_f;
1896         btree_node_set_format(n, new_f);
1897
1898         bch2_btree_sort_into(c, n, prev);
1899         bch2_btree_sort_into(c, n, next);
1900
1901         bch2_btree_build_aux_trees(n);
1902         bch2_btree_update_add_new_node(as, n);
1903         six_unlock_write(&n->c.lock);
1904
1905         new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p);
1906         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1907         mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1908         bch2_btree_path_level_init(trans, trans->paths + new_path, n);
1909
1910         bkey_init(&delete.k);
1911         delete.k.p = prev->key.k.p;
1912         bch2_keylist_add(&as->parent_keys, &delete);
1913         bch2_keylist_add(&as->parent_keys, &n->key);
1914
1915         bch2_trans_verify_paths(trans);
1916
1917         ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1918         if (ret)
1919                 goto err_free_update;
1920
1921         bch2_trans_verify_paths(trans);
1922
1923         bch2_btree_update_get_open_buckets(as, n);
1924         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1925
1926         bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1927         bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
1928
1929         bch2_trans_node_add(trans, trans->paths + path, n);
1930
1931         bch2_trans_verify_paths(trans);
1932
1933         six_unlock_intent(&n->c.lock);
1934
1935         bch2_btree_update_done(as, trans);
1936
1937         time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1938 out:
1939 err:
1940         if (new_path)
1941                 bch2_path_put(trans, new_path, true);
1942         bch2_path_put(trans, sib_path, true);
1943         bch2_trans_verify_locks(trans);
1944         return ret;
1945 err_free_update:
1946         bch2_btree_node_free_never_used(as, trans, n);
1947         bch2_btree_update_free(as, trans);
1948         goto out;
1949 }
1950
1951 int bch2_btree_node_rewrite(struct btree_trans *trans,
1952                             struct btree_iter *iter,
1953                             struct btree *b,
1954                             unsigned flags)
1955 {
1956         struct bch_fs *c = trans->c;
1957         struct btree *n, *parent;
1958         struct btree_update *as;
1959         btree_path_idx_t new_path = 0;
1960         int ret;
1961
1962         flags |= BCH_TRANS_COMMIT_no_enospc;
1963
1964         struct btree_path *path = btree_iter_path(trans, iter);
1965         parent = btree_node_parent(path, b);
1966         as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
1967         ret = PTR_ERR_OR_ZERO(as);
1968         if (ret)
1969                 goto out;
1970
1971         bch2_btree_interior_update_will_free_node(as, b);
1972
1973         n = bch2_btree_node_alloc_replacement(as, trans, b);
1974
1975         bch2_btree_build_aux_trees(n);
1976         bch2_btree_update_add_new_node(as, n);
1977         six_unlock_write(&n->c.lock);
1978
1979         new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
1980         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1981         mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1982         bch2_btree_path_level_init(trans, trans->paths + new_path, n);
1983
1984         trace_and_count(c, btree_node_rewrite, trans, b);
1985
1986         if (parent) {
1987                 bch2_keylist_add(&as->parent_keys, &n->key);
1988                 ret = bch2_btree_insert_node(as, trans, iter->path,
1989                                              parent, &as->parent_keys, flags);
1990                 if (ret)
1991                         goto err;
1992         } else {
1993                 bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n);
1994         }
1995
1996         bch2_btree_update_get_open_buckets(as, n);
1997         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1998
1999         bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2000
2001         bch2_trans_node_add(trans, trans->paths + iter->path, n);
2002         six_unlock_intent(&n->c.lock);
2003
2004         bch2_btree_update_done(as, trans);
2005 out:
2006         if (new_path)
2007                 bch2_path_put(trans, new_path, true);
2008         bch2_trans_downgrade(trans);
2009         return ret;
2010 err:
2011         bch2_btree_node_free_never_used(as, trans, n);
2012         bch2_btree_update_free(as, trans);
2013         goto out;
2014 }
2015
2016 struct async_btree_rewrite {
2017         struct bch_fs           *c;
2018         struct work_struct      work;
2019         struct list_head        list;
2020         enum btree_id           btree_id;
2021         unsigned                level;
2022         struct bpos             pos;
2023         __le64                  seq;
2024 };
2025
2026 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2027                                           struct async_btree_rewrite *a)
2028 {
2029         struct bch_fs *c = trans->c;
2030         struct btree_iter iter;
2031         struct btree *b;
2032         int ret;
2033
2034         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2035                                   BTREE_MAX_DEPTH, a->level, 0);
2036         b = bch2_btree_iter_peek_node(&iter);
2037         ret = PTR_ERR_OR_ZERO(b);
2038         if (ret)
2039                 goto out;
2040
2041         if (!b || b->data->keys.seq != a->seq) {
2042                 struct printbuf buf = PRINTBUF;
2043
2044                 if (b)
2045                         bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2046                 else
2047                         prt_str(&buf, "(null");
2048                 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2049                          __func__, a->seq, buf.buf);
2050                 printbuf_exit(&buf);
2051                 goto out;
2052         }
2053
2054         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2055 out:
2056         bch2_trans_iter_exit(trans, &iter);
2057
2058         return ret;
2059 }
2060
2061 static void async_btree_node_rewrite_work(struct work_struct *work)
2062 {
2063         struct async_btree_rewrite *a =
2064                 container_of(work, struct async_btree_rewrite, work);
2065         struct bch_fs *c = a->c;
2066         int ret;
2067
2068         ret = bch2_trans_do(c, NULL, NULL, 0,
2069                       async_btree_node_rewrite_trans(trans, a));
2070         bch_err_fn(c, ret);
2071         bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2072         kfree(a);
2073 }
2074
2075 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2076 {
2077         struct async_btree_rewrite *a;
2078         int ret;
2079
2080         a = kmalloc(sizeof(*a), GFP_NOFS);
2081         if (!a) {
2082                 bch_err(c, "%s: error allocating memory", __func__);
2083                 return;
2084         }
2085
2086         a->c            = c;
2087         a->btree_id     = b->c.btree_id;
2088         a->level        = b->c.level;
2089         a->pos          = b->key.k.p;
2090         a->seq          = b->data->keys.seq;
2091         INIT_WORK(&a->work, async_btree_node_rewrite_work);
2092
2093         if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2094                 mutex_lock(&c->pending_node_rewrites_lock);
2095                 list_add(&a->list, &c->pending_node_rewrites);
2096                 mutex_unlock(&c->pending_node_rewrites_lock);
2097                 return;
2098         }
2099
2100         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2101                 if (test_bit(BCH_FS_started, &c->flags)) {
2102                         bch_err(c, "%s: error getting c->writes ref", __func__);
2103                         kfree(a);
2104                         return;
2105                 }
2106
2107                 ret = bch2_fs_read_write_early(c);
2108                 bch_err_msg(c, ret, "going read-write");
2109                 if (ret) {
2110                         kfree(a);
2111                         return;
2112                 }
2113
2114                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2115         }
2116
2117         queue_work(c->btree_interior_update_worker, &a->work);
2118 }
2119
2120 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2121 {
2122         struct async_btree_rewrite *a, *n;
2123
2124         mutex_lock(&c->pending_node_rewrites_lock);
2125         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2126                 list_del(&a->list);
2127
2128                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2129                 queue_work(c->btree_interior_update_worker, &a->work);
2130         }
2131         mutex_unlock(&c->pending_node_rewrites_lock);
2132 }
2133
2134 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2135 {
2136         struct async_btree_rewrite *a, *n;
2137
2138         mutex_lock(&c->pending_node_rewrites_lock);
2139         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2140                 list_del(&a->list);
2141
2142                 kfree(a);
2143         }
2144         mutex_unlock(&c->pending_node_rewrites_lock);
2145 }
2146
2147 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2148                                         struct btree_iter *iter,
2149                                         struct btree *b, struct btree *new_hash,
2150                                         struct bkey_i *new_key,
2151                                         unsigned commit_flags,
2152                                         bool skip_triggers)
2153 {
2154         struct bch_fs *c = trans->c;
2155         struct btree_iter iter2 = { NULL };
2156         struct btree *parent;
2157         int ret;
2158
2159         if (!skip_triggers) {
2160                 ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2161                                              bkey_i_to_s_c(&b->key),
2162                                              BTREE_TRIGGER_TRANSACTIONAL) ?:
2163                         bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2164                                              bkey_i_to_s(new_key),
2165                                              BTREE_TRIGGER_TRANSACTIONAL);
2166                 if (ret)
2167                         return ret;
2168         }
2169
2170         if (new_hash) {
2171                 bkey_copy(&new_hash->key, new_key);
2172                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2173                                 new_hash, b->c.level, b->c.btree_id);
2174                 BUG_ON(ret);
2175         }
2176
2177         parent = btree_node_parent(btree_iter_path(trans, iter), b);
2178         if (parent) {
2179                 bch2_trans_copy_iter(&iter2, iter);
2180
2181                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2182                                 iter2.flags & BTREE_ITER_INTENT,
2183                                 _THIS_IP_);
2184
2185                 struct btree_path *path2 = btree_iter_path(trans, &iter2);
2186                 BUG_ON(path2->level != b->c.level);
2187                 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2188
2189                 btree_path_set_level_up(trans, path2);
2190
2191                 trans->paths_sorted = false;
2192
2193                 ret   = bch2_btree_iter_traverse(&iter2) ?:
2194                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2195                 if (ret)
2196                         goto err;
2197         } else {
2198                 BUG_ON(btree_node_root(c, b) != b);
2199
2200                 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2201                                        jset_u64s(new_key->k.u64s));
2202                 ret = PTR_ERR_OR_ZERO(e);
2203                 if (ret)
2204                         return ret;
2205
2206                 journal_entry_set(e,
2207                                   BCH_JSET_ENTRY_btree_root,
2208                                   b->c.btree_id, b->c.level,
2209                                   new_key, new_key->k.u64s);
2210         }
2211
2212         ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2213         if (ret)
2214                 goto err;
2215
2216         bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2217
2218         if (new_hash) {
2219                 mutex_lock(&c->btree_cache.lock);
2220                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2221                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2222
2223                 bkey_copy(&b->key, new_key);
2224                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2225                 BUG_ON(ret);
2226                 mutex_unlock(&c->btree_cache.lock);
2227         } else {
2228                 bkey_copy(&b->key, new_key);
2229         }
2230
2231         bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2232 out:
2233         bch2_trans_iter_exit(trans, &iter2);
2234         return ret;
2235 err:
2236         if (new_hash) {
2237                 mutex_lock(&c->btree_cache.lock);
2238                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2239                 mutex_unlock(&c->btree_cache.lock);
2240         }
2241         goto out;
2242 }
2243
2244 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2245                                struct btree *b, struct bkey_i *new_key,
2246                                unsigned commit_flags, bool skip_triggers)
2247 {
2248         struct bch_fs *c = trans->c;
2249         struct btree *new_hash = NULL;
2250         struct btree_path *path = btree_iter_path(trans, iter);
2251         struct closure cl;
2252         int ret = 0;
2253
2254         ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2255         if (ret)
2256                 return ret;
2257
2258         closure_init_stack(&cl);
2259
2260         /*
2261          * check btree_ptr_hash_val() after @b is locked by
2262          * btree_iter_traverse():
2263          */
2264         if (btree_ptr_hash_val(new_key) != b->hash_val) {
2265                 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2266                 if (ret) {
2267                         ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2268                         if (ret)
2269                                 return ret;
2270                 }
2271
2272                 new_hash = bch2_btree_node_mem_alloc(trans, false);
2273         }
2274
2275         path->intent_ref++;
2276         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2277                                            commit_flags, skip_triggers);
2278         --path->intent_ref;
2279
2280         if (new_hash) {
2281                 mutex_lock(&c->btree_cache.lock);
2282                 list_move(&new_hash->list, &c->btree_cache.freeable);
2283                 mutex_unlock(&c->btree_cache.lock);
2284
2285                 six_unlock_write(&new_hash->c.lock);
2286                 six_unlock_intent(&new_hash->c.lock);
2287         }
2288         closure_sync(&cl);
2289         bch2_btree_cache_cannibalize_unlock(trans);
2290         return ret;
2291 }
2292
2293 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2294                                         struct btree *b, struct bkey_i *new_key,
2295                                         unsigned commit_flags, bool skip_triggers)
2296 {
2297         struct btree_iter iter;
2298         int ret;
2299
2300         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2301                                   BTREE_MAX_DEPTH, b->c.level,
2302                                   BTREE_ITER_INTENT);
2303         ret = bch2_btree_iter_traverse(&iter);
2304         if (ret)
2305                 goto out;
2306
2307         /* has node been freed? */
2308         if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2309                 /* node has been freed: */
2310                 BUG_ON(!btree_node_dying(b));
2311                 goto out;
2312         }
2313
2314         BUG_ON(!btree_node_hashed(b));
2315
2316         struct bch_extent_ptr *ptr;
2317         bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2318                             !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2319
2320         ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2321                                          commit_flags, skip_triggers);
2322 out:
2323         bch2_trans_iter_exit(trans, &iter);
2324         return ret;
2325 }
2326
2327 /* Init code: */
2328
2329 /*
2330  * Only for filesystem bringup, when first reading the btree roots or allocating
2331  * btree roots when initializing a new filesystem:
2332  */
2333 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2334 {
2335         BUG_ON(btree_node_root(c, b));
2336
2337         bch2_btree_set_root_inmem(c, b);
2338 }
2339
2340 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2341 {
2342         struct bch_fs *c = trans->c;
2343         struct closure cl;
2344         struct btree *b;
2345         int ret;
2346
2347         closure_init_stack(&cl);
2348
2349         do {
2350                 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2351                 closure_sync(&cl);
2352         } while (ret);
2353
2354         b = bch2_btree_node_mem_alloc(trans, false);
2355         bch2_btree_cache_cannibalize_unlock(trans);
2356
2357         set_btree_node_fake(b);
2358         set_btree_node_need_rewrite(b);
2359         b->c.level      = 0;
2360         b->c.btree_id   = id;
2361
2362         bkey_btree_ptr_init(&b->key);
2363         b->key.k.p = SPOS_MAX;
2364         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2365
2366         bch2_bset_init_first(b, &b->data->keys);
2367         bch2_btree_build_aux_trees(b);
2368
2369         b->data->flags = 0;
2370         btree_set_min(b, POS_MIN);
2371         btree_set_max(b, SPOS_MAX);
2372         b->data->format = bch2_btree_calc_format(b);
2373         btree_node_set_format(b, b->data->format);
2374
2375         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2376                                           b->c.level, b->c.btree_id);
2377         BUG_ON(ret);
2378
2379         bch2_btree_set_root_inmem(c, b);
2380
2381         six_unlock_write(&b->c.lock);
2382         six_unlock_intent(&b->c.lock);
2383         return 0;
2384 }
2385
2386 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2387 {
2388         bch2_trans_run(c, __bch2_btree_root_alloc(trans, id));
2389 }
2390
2391 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2392 {
2393         struct btree_update *as;
2394
2395         mutex_lock(&c->btree_interior_update_lock);
2396         list_for_each_entry(as, &c->btree_interior_update_list, list)
2397                 prt_printf(out, "%p m %u w %u r %u j %llu\n",
2398                        as,
2399                        as->mode,
2400                        as->nodes_written,
2401                        closure_nr_remaining(&as->cl),
2402                        as->journal.seq);
2403         mutex_unlock(&c->btree_interior_update_lock);
2404 }
2405
2406 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2407 {
2408         bool ret;
2409
2410         mutex_lock(&c->btree_interior_update_lock);
2411         ret = !list_empty(&c->btree_interior_update_list);
2412         mutex_unlock(&c->btree_interior_update_lock);
2413
2414         return ret;
2415 }
2416
2417 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2418 {
2419         bool ret = bch2_btree_interior_updates_pending(c);
2420
2421         if (ret)
2422                 closure_wait_event(&c->btree_interior_update_wait,
2423                                    !bch2_btree_interior_updates_pending(c));
2424         return ret;
2425 }
2426
2427 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2428 {
2429         struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2430
2431         mutex_lock(&c->btree_root_lock);
2432
2433         r->level = entry->level;
2434         r->alive = true;
2435         bkey_copy(&r->key, (struct bkey_i *) entry->start);
2436
2437         mutex_unlock(&c->btree_root_lock);
2438 }
2439
2440 struct jset_entry *
2441 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2442                                     struct jset_entry *end,
2443                                     unsigned long skip)
2444 {
2445         unsigned i;
2446
2447         mutex_lock(&c->btree_root_lock);
2448
2449         for (i = 0; i < btree_id_nr_alive(c); i++) {
2450                 struct btree_root *r = bch2_btree_id_root(c, i);
2451
2452                 if (r->alive && !test_bit(i, &skip)) {
2453                         journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2454                                           i, r->level, &r->key, r->key.k.u64s);
2455                         end = vstruct_next(end);
2456                 }
2457         }
2458
2459         mutex_unlock(&c->btree_root_lock);
2460
2461         return end;
2462 }
2463
2464 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2465 {
2466         if (c->btree_interior_update_worker)
2467                 destroy_workqueue(c->btree_interior_update_worker);
2468         mempool_exit(&c->btree_interior_update_pool);
2469 }
2470
2471 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2472 {
2473         mutex_init(&c->btree_reserve_cache_lock);
2474         INIT_LIST_HEAD(&c->btree_interior_update_list);
2475         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2476         mutex_init(&c->btree_interior_update_lock);
2477         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2478
2479         INIT_LIST_HEAD(&c->pending_node_rewrites);
2480         mutex_init(&c->pending_node_rewrites_lock);
2481 }
2482
2483 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2484 {
2485         c->btree_interior_update_worker =
2486                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2487         if (!c->btree_interior_update_worker)
2488                 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2489
2490         if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2491                                       sizeof(struct btree_update)))
2492                 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2493
2494         return 0;
2495 }