]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
68627061b787ac2fb440e6bfbd3a8caa70516857
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "btree_iter.h"
13 #include "btree_locking.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "journal_reclaim.h"
20 #include "keylist.h"
21 #include "replicas.h"
22 #include "super-io.h"
23 #include "trace.h"
24
25 #include <linux/random.h>
26
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28                                   struct btree_path *, struct btree *,
29                                   struct keylist *, unsigned);
30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
31
32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans,
33                                                 enum btree_id btree_id,
34                                                 unsigned level,
35                                                 struct bpos pos)
36 {
37         struct btree_path *path;
38
39         path = bch2_path_get(trans, btree_id, pos, level + 1, level,
40                              BTREE_ITER_NOPRESERVE|
41                              BTREE_ITER_INTENT, _RET_IP_);
42         path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_);
43         bch2_btree_path_downgrade(trans, path);
44         __bch2_btree_path_unlock(trans, path);
45         return path;
46 }
47
48 /* Debug code: */
49
50 /*
51  * Verify that child nodes correctly span parent node's range:
52  */
53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
54 {
55 #ifdef CONFIG_BCACHEFS_DEBUG
56         struct bpos next_node = b->data->min_key;
57         struct btree_node_iter iter;
58         struct bkey_s_c k;
59         struct bkey_s_c_btree_ptr_v2 bp;
60         struct bkey unpacked;
61         struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
62
63         BUG_ON(!b->c.level);
64
65         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
66                 return;
67
68         bch2_btree_node_iter_init_from_start(&iter, b);
69
70         while (1) {
71                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
72                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
73                         break;
74                 bp = bkey_s_c_to_btree_ptr_v2(k);
75
76                 if (!bpos_eq(next_node, bp.v->min_key)) {
77                         bch2_dump_btree_node(c, b);
78                         bch2_bpos_to_text(&buf1, next_node);
79                         bch2_bpos_to_text(&buf2, bp.v->min_key);
80                         panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
81                 }
82
83                 bch2_btree_node_iter_advance(&iter, b);
84
85                 if (bch2_btree_node_iter_end(&iter)) {
86                         if (!bpos_eq(k.k->p, b->key.k.p)) {
87                                 bch2_dump_btree_node(c, b);
88                                 bch2_bpos_to_text(&buf1, b->key.k.p);
89                                 bch2_bpos_to_text(&buf2, k.k->p);
90                                 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
91                         }
92                         break;
93                 }
94
95                 next_node = bpos_successor(k.k->p);
96         }
97 #endif
98 }
99
100 /* Calculate ideal packed bkey format for new btree nodes: */
101
102 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
103 {
104         struct bkey_packed *k;
105         struct bset_tree *t;
106         struct bkey uk;
107
108         for_each_bset(b, t)
109                 bset_tree_for_each_key(b, t, k)
110                         if (!bkey_deleted(k)) {
111                                 uk = bkey_unpack_key(b, k);
112                                 bch2_bkey_format_add_key(s, &uk);
113                         }
114 }
115
116 static struct bkey_format bch2_btree_calc_format(struct btree *b)
117 {
118         struct bkey_format_state s;
119
120         bch2_bkey_format_init(&s);
121         bch2_bkey_format_add_pos(&s, b->data->min_key);
122         bch2_bkey_format_add_pos(&s, b->data->max_key);
123         __bch2_btree_calc_format(&s, b);
124
125         return bch2_bkey_format_done(&s);
126 }
127
128 static size_t btree_node_u64s_with_format(struct btree *b,
129                                           struct bkey_format *new_f)
130 {
131         struct bkey_format *old_f = &b->format;
132
133         /* stupid integer promotion rules */
134         ssize_t delta =
135             (((int) new_f->key_u64s - old_f->key_u64s) *
136              (int) b->nr.packed_keys) +
137             (((int) new_f->key_u64s - BKEY_U64s) *
138              (int) b->nr.unpacked_keys);
139
140         BUG_ON(delta + b->nr.live_u64s < 0);
141
142         return b->nr.live_u64s + delta;
143 }
144
145 /**
146  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
147  *
148  * @c:          filesystem handle
149  * @b:          btree node to rewrite
150  * @new_f:      bkey format to translate keys to
151  *
152  * Returns: true if all re-packed keys will be able to fit in a new node.
153  *
154  * Assumes all keys will successfully pack with the new format.
155  */
156 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
157                                  struct bkey_format *new_f)
158 {
159         size_t u64s = btree_node_u64s_with_format(b, new_f);
160
161         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
162 }
163
164 /* Btree node freeing/allocation: */
165
166 static void __btree_node_free(struct bch_fs *c, struct btree *b)
167 {
168         trace_and_count(c, btree_node_free, c, b);
169
170         BUG_ON(btree_node_write_blocked(b));
171         BUG_ON(btree_node_dirty(b));
172         BUG_ON(btree_node_need_write(b));
173         BUG_ON(b == btree_node_root(c, b));
174         BUG_ON(b->ob.nr);
175         BUG_ON(!list_empty(&b->write_blocked));
176         BUG_ON(b->will_make_reachable);
177
178         clear_btree_node_noevict(b);
179
180         mutex_lock(&c->btree_cache.lock);
181         list_move(&b->list, &c->btree_cache.freeable);
182         mutex_unlock(&c->btree_cache.lock);
183 }
184
185 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
186                                        struct btree_path *path,
187                                        struct btree *b)
188 {
189         struct bch_fs *c = trans->c;
190         unsigned level = b->c.level;
191
192         bch2_btree_node_lock_write_nofail(trans, path, &b->c);
193         bch2_btree_node_hash_remove(&c->btree_cache, b);
194         __btree_node_free(c, b);
195         six_unlock_write(&b->c.lock);
196         mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
197
198         trans_for_each_path(trans, path)
199                 if (path->l[level].b == b) {
200                         btree_node_unlock(trans, path, level);
201                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
202                 }
203 }
204
205 static void bch2_btree_node_free_never_used(struct btree_update *as,
206                                             struct btree_trans *trans,
207                                             struct btree *b)
208 {
209         struct bch_fs *c = as->c;
210         struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
211         struct btree_path *path;
212         unsigned level = b->c.level;
213
214         BUG_ON(!list_empty(&b->write_blocked));
215         BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
216
217         b->will_make_reachable = 0;
218         closure_put(&as->cl);
219
220         clear_btree_node_will_make_reachable(b);
221         clear_btree_node_accessed(b);
222         clear_btree_node_dirty_acct(c, b);
223         clear_btree_node_need_write(b);
224
225         mutex_lock(&c->btree_cache.lock);
226         list_del_init(&b->list);
227         bch2_btree_node_hash_remove(&c->btree_cache, b);
228         mutex_unlock(&c->btree_cache.lock);
229
230         BUG_ON(p->nr >= ARRAY_SIZE(p->b));
231         p->b[p->nr++] = b;
232
233         six_unlock_intent(&b->c.lock);
234
235         trans_for_each_path(trans, path)
236                 if (path->l[level].b == b) {
237                         btree_node_unlock(trans, path, level);
238                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
239                 }
240 }
241
242 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
243                                              struct disk_reservation *res,
244                                              struct closure *cl,
245                                              bool interior_node,
246                                              unsigned flags)
247 {
248         struct bch_fs *c = trans->c;
249         struct write_point *wp;
250         struct btree *b;
251         BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
252         struct open_buckets obs = { .nr = 0 };
253         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
254         enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
255         unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim
256                 ? BTREE_NODE_RESERVE
257                 : 0;
258         int ret;
259
260         mutex_lock(&c->btree_reserve_cache_lock);
261         if (c->btree_reserve_cache_nr > nr_reserve) {
262                 struct btree_alloc *a =
263                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
264
265                 obs = a->ob;
266                 bkey_copy(&tmp.k, &a->k);
267                 mutex_unlock(&c->btree_reserve_cache_lock);
268                 goto mem_alloc;
269         }
270         mutex_unlock(&c->btree_reserve_cache_lock);
271
272 retry:
273         ret = bch2_alloc_sectors_start_trans(trans,
274                                       c->opts.metadata_target ?:
275                                       c->opts.foreground_target,
276                                       0,
277                                       writepoint_ptr(&c->btree_write_point),
278                                       &devs_have,
279                                       res->nr_replicas,
280                                       c->opts.metadata_replicas_required,
281                                       watermark, 0, cl, &wp);
282         if (unlikely(ret))
283                 return ERR_PTR(ret);
284
285         if (wp->sectors_free < btree_sectors(c)) {
286                 struct open_bucket *ob;
287                 unsigned i;
288
289                 open_bucket_for_each(c, &wp->ptrs, ob, i)
290                         if (ob->sectors_free < btree_sectors(c))
291                                 ob->sectors_free = 0;
292
293                 bch2_alloc_sectors_done(c, wp);
294                 goto retry;
295         }
296
297         bkey_btree_ptr_v2_init(&tmp.k);
298         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
299
300         bch2_open_bucket_get(c, wp, &obs);
301         bch2_alloc_sectors_done(c, wp);
302 mem_alloc:
303         b = bch2_btree_node_mem_alloc(trans, interior_node);
304         six_unlock_write(&b->c.lock);
305         six_unlock_intent(&b->c.lock);
306
307         /* we hold cannibalize_lock: */
308         BUG_ON(IS_ERR(b));
309         BUG_ON(b->ob.nr);
310
311         bkey_copy(&b->key, &tmp.k);
312         b->ob = obs;
313
314         return b;
315 }
316
317 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
318                                            struct btree_trans *trans,
319                                            unsigned level)
320 {
321         struct bch_fs *c = as->c;
322         struct btree *b;
323         struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
324         int ret;
325
326         BUG_ON(level >= BTREE_MAX_DEPTH);
327         BUG_ON(!p->nr);
328
329         b = p->b[--p->nr];
330
331         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
332         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
333
334         set_btree_node_accessed(b);
335         set_btree_node_dirty_acct(c, b);
336         set_btree_node_need_write(b);
337
338         bch2_bset_init_first(b, &b->data->keys);
339         b->c.level      = level;
340         b->c.btree_id   = as->btree_id;
341         b->version_ondisk = c->sb.version;
342
343         memset(&b->nr, 0, sizeof(b->nr));
344         b->data->magic = cpu_to_le64(bset_magic(c));
345         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
346         b->data->flags = 0;
347         SET_BTREE_NODE_ID(b->data, as->btree_id);
348         SET_BTREE_NODE_LEVEL(b->data, level);
349
350         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
351                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
352
353                 bp->v.mem_ptr           = 0;
354                 bp->v.seq               = b->data->keys.seq;
355                 bp->v.sectors_written   = 0;
356         }
357
358         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
359
360         bch2_btree_build_aux_trees(b);
361
362         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
363         BUG_ON(ret);
364
365         trace_and_count(c, btree_node_alloc, c, b);
366         bch2_increment_clock(c, btree_sectors(c), WRITE);
367         return b;
368 }
369
370 static void btree_set_min(struct btree *b, struct bpos pos)
371 {
372         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
373                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
374         b->data->min_key = pos;
375 }
376
377 static void btree_set_max(struct btree *b, struct bpos pos)
378 {
379         b->key.k.p = pos;
380         b->data->max_key = pos;
381 }
382
383 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
384                                                        struct btree_trans *trans,
385                                                        struct btree *b)
386 {
387         struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
388         struct bkey_format format = bch2_btree_calc_format(b);
389
390         /*
391          * The keys might expand with the new format - if they wouldn't fit in
392          * the btree node anymore, use the old format for now:
393          */
394         if (!bch2_btree_node_format_fits(as->c, b, &format))
395                 format = b->format;
396
397         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
398
399         btree_set_min(n, b->data->min_key);
400         btree_set_max(n, b->data->max_key);
401
402         n->data->format         = format;
403         btree_node_set_format(n, format);
404
405         bch2_btree_sort_into(as->c, n, b);
406
407         btree_node_reset_sib_u64s(n);
408         return n;
409 }
410
411 static struct btree *__btree_root_alloc(struct btree_update *as,
412                                 struct btree_trans *trans, unsigned level)
413 {
414         struct btree *b = bch2_btree_node_alloc(as, trans, level);
415
416         btree_set_min(b, POS_MIN);
417         btree_set_max(b, SPOS_MAX);
418         b->data->format = bch2_btree_calc_format(b);
419
420         btree_node_set_format(b, b->data->format);
421         bch2_btree_build_aux_trees(b);
422
423         return b;
424 }
425
426 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
427 {
428         struct bch_fs *c = as->c;
429         struct prealloc_nodes *p;
430
431         for (p = as->prealloc_nodes;
432              p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
433              p++) {
434                 while (p->nr) {
435                         struct btree *b = p->b[--p->nr];
436
437                         mutex_lock(&c->btree_reserve_cache_lock);
438
439                         if (c->btree_reserve_cache_nr <
440                             ARRAY_SIZE(c->btree_reserve_cache)) {
441                                 struct btree_alloc *a =
442                                         &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
443
444                                 a->ob = b->ob;
445                                 b->ob.nr = 0;
446                                 bkey_copy(&a->k, &b->key);
447                         } else {
448                                 bch2_open_buckets_put(c, &b->ob);
449                         }
450
451                         mutex_unlock(&c->btree_reserve_cache_lock);
452
453                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
454                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
455                         __btree_node_free(c, b);
456                         six_unlock_write(&b->c.lock);
457                         six_unlock_intent(&b->c.lock);
458                 }
459         }
460 }
461
462 static int bch2_btree_reserve_get(struct btree_trans *trans,
463                                   struct btree_update *as,
464                                   unsigned nr_nodes[2],
465                                   unsigned flags,
466                                   struct closure *cl)
467 {
468         struct bch_fs *c = as->c;
469         struct btree *b;
470         unsigned interior;
471         int ret = 0;
472
473         BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
474
475         /*
476          * Protects reaping from the btree node cache and using the btree node
477          * open bucket reserve:
478          */
479         ret = bch2_btree_cache_cannibalize_lock(c, cl);
480         if (ret)
481                 return ret;
482
483         for (interior = 0; interior < 2; interior++) {
484                 struct prealloc_nodes *p = as->prealloc_nodes + interior;
485
486                 while (p->nr < nr_nodes[interior]) {
487                         b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
488                                                     interior, flags);
489                         if (IS_ERR(b)) {
490                                 ret = PTR_ERR(b);
491                                 goto err;
492                         }
493
494                         p->b[p->nr++] = b;
495                 }
496         }
497 err:
498         bch2_btree_cache_cannibalize_unlock(c);
499         return ret;
500 }
501
502 /* Asynchronous interior node update machinery */
503
504 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
505 {
506         struct bch_fs *c = as->c;
507
508         if (as->took_gc_lock)
509                 up_read(&c->gc_lock);
510         as->took_gc_lock = false;
511
512         bch2_journal_pin_drop(&c->journal, &as->journal);
513         bch2_journal_pin_flush(&c->journal, &as->journal);
514         bch2_disk_reservation_put(c, &as->disk_res);
515         bch2_btree_reserve_put(as, trans);
516
517         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
518                                as->start_time);
519
520         mutex_lock(&c->btree_interior_update_lock);
521         list_del(&as->unwritten_list);
522         list_del(&as->list);
523
524         closure_debug_destroy(&as->cl);
525         mempool_free(as, &c->btree_interior_update_pool);
526
527         /*
528          * Have to do the wakeup with btree_interior_update_lock still held,
529          * since being on btree_interior_update_list is our ref on @c:
530          */
531         closure_wake_up(&c->btree_interior_update_wait);
532
533         mutex_unlock(&c->btree_interior_update_lock);
534 }
535
536 static void btree_update_add_key(struct btree_update *as,
537                                  struct keylist *keys, struct btree *b)
538 {
539         struct bkey_i *k = &b->key;
540
541         BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
542                ARRAY_SIZE(as->_old_keys));
543
544         bkey_copy(keys->top, k);
545         bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
546
547         bch2_keylist_push(keys);
548 }
549
550 /*
551  * The transactional part of an interior btree node update, where we journal the
552  * update we did to the interior node and update alloc info:
553  */
554 static int btree_update_nodes_written_trans(struct btree_trans *trans,
555                                             struct btree_update *as)
556 {
557         struct bkey_i *k;
558         int ret;
559
560         ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s);
561         if (ret)
562                 return ret;
563
564         memcpy(&darray_top(trans->extra_journal_entries),
565                as->journal_entries,
566                as->journal_u64s * sizeof(u64));
567         trans->extra_journal_entries.nr += as->journal_u64s;
568
569         trans->journal_pin = &as->journal;
570
571         for_each_keylist_key(&as->old_keys, k) {
572                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
573
574                 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0);
575                 if (ret)
576                         return ret;
577         }
578
579         for_each_keylist_key(&as->new_keys, k) {
580                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
581
582                 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0);
583                 if (ret)
584                         return ret;
585         }
586
587         return 0;
588 }
589
590 static void btree_update_nodes_written(struct btree_update *as)
591 {
592         struct bch_fs *c = as->c;
593         struct btree *b;
594         struct btree_trans *trans = bch2_trans_get(c);
595         u64 journal_seq = 0;
596         unsigned i;
597         int ret;
598
599         /*
600          * If we're already in an error state, it might be because a btree node
601          * was never written, and we might be trying to free that same btree
602          * node here, but it won't have been marked as allocated and we'll see
603          * spurious disk usage inconsistencies in the transactional part below
604          * if we don't skip it:
605          */
606         ret = bch2_journal_error(&c->journal);
607         if (ret)
608                 goto err;
609
610         /*
611          * Wait for any in flight writes to finish before we free the old nodes
612          * on disk:
613          */
614         for (i = 0; i < as->nr_old_nodes; i++) {
615                 __le64 seq;
616
617                 b = as->old_nodes[i];
618
619                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
620                 seq = b->data ? b->data->keys.seq : 0;
621                 six_unlock_read(&b->c.lock);
622
623                 if (seq == as->old_nodes_seq[i])
624                         wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
625                                        TASK_UNINTERRUPTIBLE);
626         }
627
628         /*
629          * We did an update to a parent node where the pointers we added pointed
630          * to child nodes that weren't written yet: now, the child nodes have
631          * been written so we can write out the update to the interior node.
632          */
633
634         /*
635          * We can't call into journal reclaim here: we'd block on the journal
636          * reclaim lock, but we may need to release the open buckets we have
637          * pinned in order for other btree updates to make forward progress, and
638          * journal reclaim does btree updates when flushing bkey_cached entries,
639          * which may require allocations as well.
640          */
641         ret = commit_do(trans, &as->disk_res, &journal_seq,
642                         BCH_WATERMARK_reclaim|
643                         BCH_TRANS_COMMIT_no_enospc|
644                         BCH_TRANS_COMMIT_no_check_rw|
645                         BCH_TRANS_COMMIT_journal_reclaim,
646                         btree_update_nodes_written_trans(trans, as));
647         bch2_trans_unlock(trans);
648
649         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
650                              "%s(): error %s", __func__, bch2_err_str(ret));
651 err:
652         if (as->b) {
653                 struct btree_path *path;
654
655                 b = as->b;
656                 path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p);
657                 /*
658                  * @b is the node we did the final insert into:
659                  *
660                  * On failure to get a journal reservation, we still have to
661                  * unblock the write and allow most of the write path to happen
662                  * so that shutdown works, but the i->journal_seq mechanism
663                  * won't work to prevent the btree write from being visible (we
664                  * didn't get a journal sequence number) - instead
665                  * __bch2_btree_node_write() doesn't do the actual write if
666                  * we're in journal error state:
667                  */
668
669                 /*
670                  * Ensure transaction is unlocked before using
671                  * btree_node_lock_nopath() (the use of which is always suspect,
672                  * we need to work on removing this in the future)
673                  *
674                  * It should be, but get_unlocked_mut_path() -> bch2_path_get()
675                  * calls bch2_path_upgrade(), before we call path_make_mut(), so
676                  * we may rarely end up with a locked path besides the one we
677                  * have here:
678                  */
679                 bch2_trans_unlock(trans);
680                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
681                 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
682                 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
683                 path->l[b->c.level].b = b;
684
685                 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
686
687                 mutex_lock(&c->btree_interior_update_lock);
688
689                 list_del(&as->write_blocked_list);
690                 if (list_empty(&b->write_blocked))
691                         clear_btree_node_write_blocked(b);
692
693                 /*
694                  * Node might have been freed, recheck under
695                  * btree_interior_update_lock:
696                  */
697                 if (as->b == b) {
698                         BUG_ON(!b->c.level);
699                         BUG_ON(!btree_node_dirty(b));
700
701                         if (!ret) {
702                                 struct bset *last = btree_bset_last(b);
703
704                                 last->journal_seq = cpu_to_le64(
705                                                              max(journal_seq,
706                                                                  le64_to_cpu(last->journal_seq)));
707
708                                 bch2_btree_add_journal_pin(c, b, journal_seq);
709                         } else {
710                                 /*
711                                  * If we didn't get a journal sequence number we
712                                  * can't write this btree node, because recovery
713                                  * won't know to ignore this write:
714                                  */
715                                 set_btree_node_never_write(b);
716                         }
717                 }
718
719                 mutex_unlock(&c->btree_interior_update_lock);
720
721                 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
722                 six_unlock_write(&b->c.lock);
723
724                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
725                 btree_node_unlock(trans, path, b->c.level);
726                 bch2_path_put(trans, path, true);
727         }
728
729         bch2_journal_pin_drop(&c->journal, &as->journal);
730
731         mutex_lock(&c->btree_interior_update_lock);
732         for (i = 0; i < as->nr_new_nodes; i++) {
733                 b = as->new_nodes[i];
734
735                 BUG_ON(b->will_make_reachable != (unsigned long) as);
736                 b->will_make_reachable = 0;
737                 clear_btree_node_will_make_reachable(b);
738         }
739         mutex_unlock(&c->btree_interior_update_lock);
740
741         for (i = 0; i < as->nr_new_nodes; i++) {
742                 b = as->new_nodes[i];
743
744                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
745                 btree_node_write_if_need(c, b, SIX_LOCK_read);
746                 six_unlock_read(&b->c.lock);
747         }
748
749         for (i = 0; i < as->nr_open_buckets; i++)
750                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
751
752         bch2_btree_update_free(as, trans);
753         bch2_trans_put(trans);
754 }
755
756 static void btree_interior_update_work(struct work_struct *work)
757 {
758         struct bch_fs *c =
759                 container_of(work, struct bch_fs, btree_interior_update_work);
760         struct btree_update *as;
761
762         while (1) {
763                 mutex_lock(&c->btree_interior_update_lock);
764                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
765                                               struct btree_update, unwritten_list);
766                 if (as && !as->nodes_written)
767                         as = NULL;
768                 mutex_unlock(&c->btree_interior_update_lock);
769
770                 if (!as)
771                         break;
772
773                 btree_update_nodes_written(as);
774         }
775 }
776
777 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
778 {
779         closure_type(as, struct btree_update, cl);
780         struct bch_fs *c = as->c;
781
782         mutex_lock(&c->btree_interior_update_lock);
783         as->nodes_written = true;
784         mutex_unlock(&c->btree_interior_update_lock);
785
786         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
787 }
788
789 /*
790  * We're updating @b with pointers to nodes that haven't finished writing yet:
791  * block @b from being written until @as completes
792  */
793 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
794 {
795         struct bch_fs *c = as->c;
796
797         mutex_lock(&c->btree_interior_update_lock);
798         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
799
800         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
801         BUG_ON(!btree_node_dirty(b));
802         BUG_ON(!b->c.level);
803
804         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
805         as->b           = b;
806
807         set_btree_node_write_blocked(b);
808         list_add(&as->write_blocked_list, &b->write_blocked);
809
810         mutex_unlock(&c->btree_interior_update_lock);
811 }
812
813 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
814                                 struct journal_entry_pin *_pin, u64 seq)
815 {
816         return 0;
817 }
818
819 static void btree_update_reparent(struct btree_update *as,
820                                   struct btree_update *child)
821 {
822         struct bch_fs *c = as->c;
823
824         lockdep_assert_held(&c->btree_interior_update_lock);
825
826         child->b = NULL;
827         child->mode = BTREE_INTERIOR_UPDATING_AS;
828
829         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
830                               bch2_update_reparent_journal_pin_flush);
831 }
832
833 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
834 {
835         struct bkey_i *insert = &b->key;
836         struct bch_fs *c = as->c;
837
838         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
839
840         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
841                ARRAY_SIZE(as->journal_entries));
842
843         as->journal_u64s +=
844                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
845                                   BCH_JSET_ENTRY_btree_root,
846                                   b->c.btree_id, b->c.level,
847                                   insert, insert->k.u64s);
848
849         mutex_lock(&c->btree_interior_update_lock);
850         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
851
852         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
853         mutex_unlock(&c->btree_interior_update_lock);
854 }
855
856 /*
857  * bch2_btree_update_add_new_node:
858  *
859  * This causes @as to wait on @b to be written, before it gets to
860  * bch2_btree_update_nodes_written
861  *
862  * Additionally, it sets b->will_make_reachable to prevent any additional writes
863  * to @b from happening besides the first until @b is reachable on disk
864  *
865  * And it adds @b to the list of @as's new nodes, so that we can update sector
866  * counts in bch2_btree_update_nodes_written:
867  */
868 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
869 {
870         struct bch_fs *c = as->c;
871
872         closure_get(&as->cl);
873
874         mutex_lock(&c->btree_interior_update_lock);
875         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
876         BUG_ON(b->will_make_reachable);
877
878         as->new_nodes[as->nr_new_nodes++] = b;
879         b->will_make_reachable = 1UL|(unsigned long) as;
880         set_btree_node_will_make_reachable(b);
881
882         mutex_unlock(&c->btree_interior_update_lock);
883
884         btree_update_add_key(as, &as->new_keys, b);
885
886         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
887                 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
888                 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
889
890                 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
891                         cpu_to_le16(sectors);
892         }
893 }
894
895 /*
896  * returns true if @b was a new node
897  */
898 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
899 {
900         struct btree_update *as;
901         unsigned long v;
902         unsigned i;
903
904         mutex_lock(&c->btree_interior_update_lock);
905         /*
906          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
907          * dropped when it gets written by bch2_btree_complete_write - the
908          * xchg() is for synchronization with bch2_btree_complete_write:
909          */
910         v = xchg(&b->will_make_reachable, 0);
911         clear_btree_node_will_make_reachable(b);
912         as = (struct btree_update *) (v & ~1UL);
913
914         if (!as) {
915                 mutex_unlock(&c->btree_interior_update_lock);
916                 return;
917         }
918
919         for (i = 0; i < as->nr_new_nodes; i++)
920                 if (as->new_nodes[i] == b)
921                         goto found;
922
923         BUG();
924 found:
925         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
926         mutex_unlock(&c->btree_interior_update_lock);
927
928         if (v & 1)
929                 closure_put(&as->cl);
930 }
931
932 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
933 {
934         while (b->ob.nr)
935                 as->open_buckets[as->nr_open_buckets++] =
936                         b->ob.v[--b->ob.nr];
937 }
938
939 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
940                                 struct journal_entry_pin *_pin, u64 seq)
941 {
942         return 0;
943 }
944
945 /*
946  * @b is being split/rewritten: it may have pointers to not-yet-written btree
947  * nodes and thus outstanding btree_updates - redirect @b's
948  * btree_updates to point to this btree_update:
949  */
950 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
951                                                       struct btree *b)
952 {
953         struct bch_fs *c = as->c;
954         struct btree_update *p, *n;
955         struct btree_write *w;
956
957         set_btree_node_dying(b);
958
959         if (btree_node_fake(b))
960                 return;
961
962         mutex_lock(&c->btree_interior_update_lock);
963
964         /*
965          * Does this node have any btree_update operations preventing
966          * it from being written?
967          *
968          * If so, redirect them to point to this btree_update: we can
969          * write out our new nodes, but we won't make them visible until those
970          * operations complete
971          */
972         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
973                 list_del_init(&p->write_blocked_list);
974                 btree_update_reparent(as, p);
975
976                 /*
977                  * for flush_held_btree_writes() waiting on updates to flush or
978                  * nodes to be writeable:
979                  */
980                 closure_wake_up(&c->btree_interior_update_wait);
981         }
982
983         clear_btree_node_dirty_acct(c, b);
984         clear_btree_node_need_write(b);
985         clear_btree_node_write_blocked(b);
986
987         /*
988          * Does this node have unwritten data that has a pin on the journal?
989          *
990          * If so, transfer that pin to the btree_update operation -
991          * note that if we're freeing multiple nodes, we only need to keep the
992          * oldest pin of any of the nodes we're freeing. We'll release the pin
993          * when the new nodes are persistent and reachable on disk:
994          */
995         w = btree_current_write(b);
996         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
997                               bch2_btree_update_will_free_node_journal_pin_flush);
998         bch2_journal_pin_drop(&c->journal, &w->journal);
999
1000         w = btree_prev_write(b);
1001         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1002                               bch2_btree_update_will_free_node_journal_pin_flush);
1003         bch2_journal_pin_drop(&c->journal, &w->journal);
1004
1005         mutex_unlock(&c->btree_interior_update_lock);
1006
1007         /*
1008          * Is this a node that isn't reachable on disk yet?
1009          *
1010          * Nodes that aren't reachable yet have writes blocked until they're
1011          * reachable - now that we've cancelled any pending writes and moved
1012          * things waiting on that write to wait on this update, we can drop this
1013          * node from the list of nodes that the other update is making
1014          * reachable, prior to freeing it:
1015          */
1016         btree_update_drop_new_node(c, b);
1017
1018         btree_update_add_key(as, &as->old_keys, b);
1019
1020         as->old_nodes[as->nr_old_nodes] = b;
1021         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1022         as->nr_old_nodes++;
1023 }
1024
1025 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1026 {
1027         struct bch_fs *c = as->c;
1028         u64 start_time = as->start_time;
1029
1030         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1031
1032         if (as->took_gc_lock)
1033                 up_read(&as->c->gc_lock);
1034         as->took_gc_lock = false;
1035
1036         bch2_btree_reserve_put(as, trans);
1037
1038         continue_at(&as->cl, btree_update_set_nodes_written,
1039                     as->c->btree_interior_update_worker);
1040
1041         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1042                                start_time);
1043 }
1044
1045 static struct btree_update *
1046 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1047                         unsigned level, bool split, unsigned flags)
1048 {
1049         struct bch_fs *c = trans->c;
1050         struct btree_update *as;
1051         u64 start_time = local_clock();
1052         int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1053                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1054         unsigned nr_nodes[2] = { 0, 0 };
1055         unsigned update_level = level;
1056         enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1057         int ret = 0;
1058         u32 restart_count = trans->restart_count;
1059
1060         BUG_ON(!path->should_be_locked);
1061
1062         if (watermark == BCH_WATERMARK_copygc)
1063                 watermark = BCH_WATERMARK_btree_copygc;
1064         if (watermark < BCH_WATERMARK_btree)
1065                 watermark = BCH_WATERMARK_btree;
1066
1067         flags &= ~BCH_WATERMARK_MASK;
1068         flags |= watermark;
1069
1070         while (1) {
1071                 nr_nodes[!!update_level] += 1 + split;
1072                 update_level++;
1073
1074                 ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1075                 if (ret)
1076                         return ERR_PTR(ret);
1077
1078                 if (!btree_path_node(path, update_level)) {
1079                         /* Allocating new root? */
1080                         nr_nodes[1] += split;
1081                         update_level = BTREE_MAX_DEPTH;
1082                         break;
1083                 }
1084
1085                 /*
1086                  * Always check for space for two keys, even if we won't have to
1087                  * split at prior level - it might have been a merge instead:
1088                  */
1089                 if (bch2_btree_node_insert_fits(c, path->l[update_level].b,
1090                                                 BKEY_BTREE_PTR_U64s_MAX * 2))
1091                         break;
1092
1093                 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1094         }
1095
1096         if (!down_read_trylock(&c->gc_lock)) {
1097                 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1098                 if (ret) {
1099                         up_read(&c->gc_lock);
1100                         return ERR_PTR(ret);
1101                 }
1102         }
1103
1104         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1105         memset(as, 0, sizeof(*as));
1106         closure_init(&as->cl, NULL);
1107         as->c           = c;
1108         as->start_time  = start_time;
1109         as->mode        = BTREE_INTERIOR_NO_UPDATE;
1110         as->took_gc_lock = true;
1111         as->btree_id    = path->btree_id;
1112         as->update_level = update_level;
1113         INIT_LIST_HEAD(&as->list);
1114         INIT_LIST_HEAD(&as->unwritten_list);
1115         INIT_LIST_HEAD(&as->write_blocked_list);
1116         bch2_keylist_init(&as->old_keys, as->_old_keys);
1117         bch2_keylist_init(&as->new_keys, as->_new_keys);
1118         bch2_keylist_init(&as->parent_keys, as->inline_keys);
1119
1120         mutex_lock(&c->btree_interior_update_lock);
1121         list_add_tail(&as->list, &c->btree_interior_update_list);
1122         mutex_unlock(&c->btree_interior_update_lock);
1123
1124         /*
1125          * We don't want to allocate if we're in an error state, that can cause
1126          * deadlock on emergency shutdown due to open buckets getting stuck in
1127          * the btree_reserve_cache after allocator shutdown has cleared it out.
1128          * This check needs to come after adding us to the btree_interior_update
1129          * list but before calling bch2_btree_reserve_get, to synchronize with
1130          * __bch2_fs_read_only().
1131          */
1132         ret = bch2_journal_error(&c->journal);
1133         if (ret)
1134                 goto err;
1135
1136         ret = bch2_disk_reservation_get(c, &as->disk_res,
1137                         (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1138                         c->opts.metadata_replicas,
1139                         disk_res_flags);
1140         if (ret)
1141                 goto err;
1142
1143         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1144         if (bch2_err_matches(ret, ENOSPC) ||
1145             bch2_err_matches(ret, ENOMEM)) {
1146                 struct closure cl;
1147
1148                 /*
1149                  * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1150                  * flag
1151                  */
1152                 if (bch2_err_matches(ret, ENOSPC) &&
1153                     (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1154                     watermark != BCH_WATERMARK_reclaim) {
1155                         ret = -BCH_ERR_journal_reclaim_would_deadlock;
1156                         goto err;
1157                 }
1158
1159                 closure_init_stack(&cl);
1160
1161                 do {
1162                         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1163
1164                         bch2_trans_unlock(trans);
1165                         closure_sync(&cl);
1166                 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1167         }
1168
1169         if (ret) {
1170                 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1171                                 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1172                 goto err;
1173         }
1174
1175         ret = bch2_trans_relock(trans);
1176         if (ret)
1177                 goto err;
1178
1179         bch2_trans_verify_not_restarted(trans, restart_count);
1180         return as;
1181 err:
1182         bch2_btree_update_free(as, trans);
1183         return ERR_PTR(ret);
1184 }
1185
1186 /* Btree root updates: */
1187
1188 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1189 {
1190         /* Root nodes cannot be reaped */
1191         mutex_lock(&c->btree_cache.lock);
1192         list_del_init(&b->list);
1193         mutex_unlock(&c->btree_cache.lock);
1194
1195         mutex_lock(&c->btree_root_lock);
1196         BUG_ON(btree_node_root(c, b) &&
1197                (b->c.level < btree_node_root(c, b)->c.level ||
1198                 !btree_node_dying(btree_node_root(c, b))));
1199
1200         bch2_btree_id_root(c, b->c.btree_id)->b = b;
1201         mutex_unlock(&c->btree_root_lock);
1202
1203         bch2_recalc_btree_reserve(c);
1204 }
1205
1206 static void bch2_btree_set_root(struct btree_update *as,
1207                                 struct btree_trans *trans,
1208                                 struct btree_path *path,
1209                                 struct btree *b)
1210 {
1211         struct bch_fs *c = as->c;
1212         struct btree *old;
1213
1214         trace_and_count(c, btree_node_set_root, c, b);
1215
1216         old = btree_node_root(c, b);
1217
1218         /*
1219          * Ensure no one is using the old root while we switch to the
1220          * new root:
1221          */
1222         bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1223
1224         bch2_btree_set_root_inmem(c, b);
1225
1226         btree_update_updated_root(as, b);
1227
1228         /*
1229          * Unlock old root after new root is visible:
1230          *
1231          * The new root isn't persistent, but that's ok: we still have
1232          * an intent lock on the new root, and any updates that would
1233          * depend on the new root would have to update the new root.
1234          */
1235         bch2_btree_node_unlock_write(trans, path, old);
1236 }
1237
1238 /* Interior node updates: */
1239
1240 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1241                                         struct btree_trans *trans,
1242                                         struct btree_path *path,
1243                                         struct btree *b,
1244                                         struct btree_node_iter *node_iter,
1245                                         struct bkey_i *insert)
1246 {
1247         struct bch_fs *c = as->c;
1248         struct bkey_packed *k;
1249         struct printbuf buf = PRINTBUF;
1250         unsigned long old, new, v;
1251
1252         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1253                !btree_ptr_sectors_written(insert));
1254
1255         if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1256                 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1257
1258         if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1259                               btree_node_type(b), WRITE, &buf) ?:
1260             bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1261                 printbuf_reset(&buf);
1262                 prt_printf(&buf, "inserting invalid bkey\n  ");
1263                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1264                 prt_printf(&buf, "\n  ");
1265                 bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1266                                   btree_node_type(b), WRITE, &buf);
1267                 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1268
1269                 bch2_fs_inconsistent(c, "%s", buf.buf);
1270                 dump_stack();
1271         }
1272
1273         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1274                ARRAY_SIZE(as->journal_entries));
1275
1276         as->journal_u64s +=
1277                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1278                                   BCH_JSET_ENTRY_btree_keys,
1279                                   b->c.btree_id, b->c.level,
1280                                   insert, insert->k.u64s);
1281
1282         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1283                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1284                 bch2_btree_node_iter_advance(node_iter, b);
1285
1286         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1287         set_btree_node_dirty_acct(c, b);
1288
1289         v = READ_ONCE(b->flags);
1290         do {
1291                 old = new = v;
1292
1293                 new &= ~BTREE_WRITE_TYPE_MASK;
1294                 new |= BTREE_WRITE_interior;
1295                 new |= 1 << BTREE_NODE_need_write;
1296         } while ((v = cmpxchg(&b->flags, old, new)) != old);
1297
1298         printbuf_exit(&buf);
1299 }
1300
1301 static void
1302 __bch2_btree_insert_keys_interior(struct btree_update *as,
1303                                   struct btree_trans *trans,
1304                                   struct btree_path *path,
1305                                   struct btree *b,
1306                                   struct btree_node_iter node_iter,
1307                                   struct keylist *keys)
1308 {
1309         struct bkey_i *insert = bch2_keylist_front(keys);
1310         struct bkey_packed *k;
1311
1312         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1313
1314         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1315                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1316                 ;
1317
1318         while (!bch2_keylist_empty(keys)) {
1319                 insert = bch2_keylist_front(keys);
1320
1321                 if (bpos_gt(insert->k.p, b->key.k.p))
1322                         break;
1323
1324                 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1325                 bch2_keylist_pop_front(keys);
1326         }
1327 }
1328
1329 /*
1330  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1331  * node)
1332  */
1333 static void __btree_split_node(struct btree_update *as,
1334                                struct btree_trans *trans,
1335                                struct btree *b,
1336                                struct btree *n[2])
1337 {
1338         struct bkey_packed *k;
1339         struct bpos n1_pos = POS_MIN;
1340         struct btree_node_iter iter;
1341         struct bset *bsets[2];
1342         struct bkey_format_state format[2];
1343         struct bkey_packed *out[2];
1344         struct bkey uk;
1345         unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1346         int i;
1347
1348         for (i = 0; i < 2; i++) {
1349                 BUG_ON(n[i]->nsets != 1);
1350
1351                 bsets[i] = btree_bset_first(n[i]);
1352                 out[i] = bsets[i]->start;
1353
1354                 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1355                 bch2_bkey_format_init(&format[i]);
1356         }
1357
1358         u64s = 0;
1359         for_each_btree_node_key(b, k, &iter) {
1360                 if (bkey_deleted(k))
1361                         continue;
1362
1363                 i = u64s >= n1_u64s;
1364                 u64s += k->u64s;
1365                 uk = bkey_unpack_key(b, k);
1366                 if (!i)
1367                         n1_pos = uk.p;
1368                 bch2_bkey_format_add_key(&format[i], &uk);
1369         }
1370
1371         btree_set_min(n[0], b->data->min_key);
1372         btree_set_max(n[0], n1_pos);
1373         btree_set_min(n[1], bpos_successor(n1_pos));
1374         btree_set_max(n[1], b->data->max_key);
1375
1376         for (i = 0; i < 2; i++) {
1377                 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1378                 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1379
1380                 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1381                 btree_node_set_format(n[i], n[i]->data->format);
1382         }
1383
1384         u64s = 0;
1385         for_each_btree_node_key(b, k, &iter) {
1386                 if (bkey_deleted(k))
1387                         continue;
1388
1389                 i = u64s >= n1_u64s;
1390                 u64s += k->u64s;
1391
1392                 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1393                                         ? &b->format: &bch2_bkey_format_current, k))
1394                         out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1395                 else
1396                         bch2_bkey_unpack(b, (void *) out[i], k);
1397
1398                 out[i]->needs_whiteout = false;
1399
1400                 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1401                 out[i] = bkey_p_next(out[i]);
1402         }
1403
1404         for (i = 0; i < 2; i++) {
1405                 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1406
1407                 BUG_ON(!bsets[i]->u64s);
1408
1409                 set_btree_bset_end(n[i], n[i]->set);
1410
1411                 btree_node_reset_sib_u64s(n[i]);
1412
1413                 bch2_verify_btree_nr_keys(n[i]);
1414
1415                 if (b->c.level)
1416                         btree_node_interior_verify(as->c, n[i]);
1417         }
1418 }
1419
1420 /*
1421  * For updates to interior nodes, we've got to do the insert before we split
1422  * because the stuff we're inserting has to be inserted atomically. Post split,
1423  * the keys might have to go in different nodes and the split would no longer be
1424  * atomic.
1425  *
1426  * Worse, if the insert is from btree node coalescing, if we do the insert after
1427  * we do the split (and pick the pivot) - the pivot we pick might be between
1428  * nodes that were coalesced, and thus in the middle of a child node post
1429  * coalescing:
1430  */
1431 static void btree_split_insert_keys(struct btree_update *as,
1432                                     struct btree_trans *trans,
1433                                     struct btree_path *path,
1434                                     struct btree *b,
1435                                     struct keylist *keys)
1436 {
1437         if (!bch2_keylist_empty(keys) &&
1438             bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1439                 struct btree_node_iter node_iter;
1440
1441                 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1442
1443                 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1444
1445                 btree_node_interior_verify(as->c, b);
1446         }
1447 }
1448
1449 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1450                        struct btree_path *path, struct btree *b,
1451                        struct keylist *keys, unsigned flags)
1452 {
1453         struct bch_fs *c = as->c;
1454         struct btree *parent = btree_node_parent(path, b);
1455         struct btree *n1, *n2 = NULL, *n3 = NULL;
1456         struct btree_path *path1 = NULL, *path2 = NULL;
1457         u64 start_time = local_clock();
1458         int ret = 0;
1459
1460         BUG_ON(!parent && (b != btree_node_root(c, b)));
1461         BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1));
1462
1463         bch2_btree_interior_update_will_free_node(as, b);
1464
1465         if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1466                 struct btree *n[2];
1467
1468                 trace_and_count(c, btree_node_split, c, b);
1469
1470                 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1471                 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1472
1473                 __btree_split_node(as, trans, b, n);
1474
1475                 if (keys) {
1476                         btree_split_insert_keys(as, trans, path, n1, keys);
1477                         btree_split_insert_keys(as, trans, path, n2, keys);
1478                         BUG_ON(!bch2_keylist_empty(keys));
1479                 }
1480
1481                 bch2_btree_build_aux_trees(n2);
1482                 bch2_btree_build_aux_trees(n1);
1483
1484                 bch2_btree_update_add_new_node(as, n1);
1485                 bch2_btree_update_add_new_node(as, n2);
1486                 six_unlock_write(&n2->c.lock);
1487                 six_unlock_write(&n1->c.lock);
1488
1489                 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1490                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1491                 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1492                 bch2_btree_path_level_init(trans, path1, n1);
1493
1494                 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p);
1495                 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1496                 mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1497                 bch2_btree_path_level_init(trans, path2, n2);
1498
1499                 /*
1500                  * Note that on recursive parent_keys == keys, so we
1501                  * can't start adding new keys to parent_keys before emptying it
1502                  * out (which we did with btree_split_insert_keys() above)
1503                  */
1504                 bch2_keylist_add(&as->parent_keys, &n1->key);
1505                 bch2_keylist_add(&as->parent_keys, &n2->key);
1506
1507                 if (!parent) {
1508                         /* Depth increases, make a new root */
1509                         n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1510
1511                         bch2_btree_update_add_new_node(as, n3);
1512                         six_unlock_write(&n3->c.lock);
1513
1514                         path2->locks_want++;
1515                         BUG_ON(btree_node_locked(path2, n3->c.level));
1516                         six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1517                         mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1518                         bch2_btree_path_level_init(trans, path2, n3);
1519
1520                         n3->sib_u64s[0] = U16_MAX;
1521                         n3->sib_u64s[1] = U16_MAX;
1522
1523                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1524                 }
1525         } else {
1526                 trace_and_count(c, btree_node_compact, c, b);
1527
1528                 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1529
1530                 if (keys) {
1531                         btree_split_insert_keys(as, trans, path, n1, keys);
1532                         BUG_ON(!bch2_keylist_empty(keys));
1533                 }
1534
1535                 bch2_btree_build_aux_trees(n1);
1536                 bch2_btree_update_add_new_node(as, n1);
1537                 six_unlock_write(&n1->c.lock);
1538
1539                 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1540                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1541                 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1542                 bch2_btree_path_level_init(trans, path1, n1);
1543
1544                 if (parent)
1545                         bch2_keylist_add(&as->parent_keys, &n1->key);
1546         }
1547
1548         /* New nodes all written, now make them visible: */
1549
1550         if (parent) {
1551                 /* Split a non root node */
1552                 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1553                 if (ret)
1554                         goto err;
1555         } else if (n3) {
1556                 bch2_btree_set_root(as, trans, path, n3);
1557         } else {
1558                 /* Root filled up but didn't need to be split */
1559                 bch2_btree_set_root(as, trans, path, n1);
1560         }
1561
1562         if (n3) {
1563                 bch2_btree_update_get_open_buckets(as, n3);
1564                 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1565         }
1566         if (n2) {
1567                 bch2_btree_update_get_open_buckets(as, n2);
1568                 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1569         }
1570         bch2_btree_update_get_open_buckets(as, n1);
1571         bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1572
1573         /*
1574          * The old node must be freed (in memory) _before_ unlocking the new
1575          * nodes - else another thread could re-acquire a read lock on the old
1576          * node after another thread has locked and updated the new node, thus
1577          * seeing stale data:
1578          */
1579         bch2_btree_node_free_inmem(trans, path, b);
1580
1581         if (n3)
1582                 bch2_trans_node_add(trans, n3);
1583         if (n2)
1584                 bch2_trans_node_add(trans, n2);
1585         bch2_trans_node_add(trans, n1);
1586
1587         if (n3)
1588                 six_unlock_intent(&n3->c.lock);
1589         if (n2)
1590                 six_unlock_intent(&n2->c.lock);
1591         six_unlock_intent(&n1->c.lock);
1592 out:
1593         if (path2) {
1594                 __bch2_btree_path_unlock(trans, path2);
1595                 bch2_path_put(trans, path2, true);
1596         }
1597         if (path1) {
1598                 __bch2_btree_path_unlock(trans, path1);
1599                 bch2_path_put(trans, path1, true);
1600         }
1601
1602         bch2_trans_verify_locks(trans);
1603
1604         bch2_time_stats_update(&c->times[n2
1605                                ? BCH_TIME_btree_node_split
1606                                : BCH_TIME_btree_node_compact],
1607                                start_time);
1608         return ret;
1609 err:
1610         if (n3)
1611                 bch2_btree_node_free_never_used(as, trans, n3);
1612         if (n2)
1613                 bch2_btree_node_free_never_used(as, trans, n2);
1614         bch2_btree_node_free_never_used(as, trans, n1);
1615         goto out;
1616 }
1617
1618 static void
1619 bch2_btree_insert_keys_interior(struct btree_update *as,
1620                                 struct btree_trans *trans,
1621                                 struct btree_path *path,
1622                                 struct btree *b,
1623                                 struct keylist *keys)
1624 {
1625         struct btree_path *linked;
1626
1627         __bch2_btree_insert_keys_interior(as, trans, path, b,
1628                                           path->l[b->c.level].iter, keys);
1629
1630         btree_update_updated_node(as, b);
1631
1632         trans_for_each_path_with_node(trans, b, linked)
1633                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1634
1635         bch2_trans_verify_paths(trans);
1636 }
1637
1638 /**
1639  * bch2_btree_insert_node - insert bkeys into a given btree node
1640  *
1641  * @as:                 btree_update object
1642  * @trans:              btree_trans object
1643  * @path:               path that points to current node
1644  * @b:                  node to insert keys into
1645  * @keys:               list of keys to insert
1646  * @flags:              transaction commit flags
1647  *
1648  * Returns: 0 on success, typically transaction restart error on failure
1649  *
1650  * Inserts as many keys as it can into a given btree node, splitting it if full.
1651  * If a split occurred, this function will return early. This can only happen
1652  * for leaf nodes -- inserts into interior nodes have to be atomic.
1653  */
1654 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1655                                   struct btree_path *path, struct btree *b,
1656                                   struct keylist *keys, unsigned flags)
1657 {
1658         struct bch_fs *c = as->c;
1659         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1660         int old_live_u64s = b->nr.live_u64s;
1661         int live_u64s_added, u64s_added;
1662         int ret;
1663
1664         lockdep_assert_held(&c->gc_lock);
1665         BUG_ON(!btree_node_intent_locked(path, b->c.level));
1666         BUG_ON(!b->c.level);
1667         BUG_ON(!as || as->b);
1668         bch2_verify_keylist_sorted(keys);
1669
1670         ret = bch2_btree_node_lock_write(trans, path, &b->c);
1671         if (ret)
1672                 return ret;
1673
1674         bch2_btree_node_prep_for_write(trans, path, b);
1675
1676         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1677                 bch2_btree_node_unlock_write(trans, path, b);
1678                 goto split;
1679         }
1680
1681         btree_node_interior_verify(c, b);
1682
1683         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1684
1685         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1686         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1687
1688         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1689                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1690         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1691                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1692
1693         if (u64s_added > live_u64s_added &&
1694             bch2_maybe_compact_whiteouts(c, b))
1695                 bch2_trans_node_reinit_iter(trans, b);
1696
1697         bch2_btree_node_unlock_write(trans, path, b);
1698
1699         btree_node_interior_verify(c, b);
1700         return 0;
1701 split:
1702         /*
1703          * We could attempt to avoid the transaction restart, by calling
1704          * bch2_btree_path_upgrade() and allocating more nodes:
1705          */
1706         if (b->c.level >= as->update_level) {
1707                 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1708                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1709         }
1710
1711         return btree_split(as, trans, path, b, keys, flags);
1712 }
1713
1714 int bch2_btree_split_leaf(struct btree_trans *trans,
1715                           struct btree_path *path,
1716                           unsigned flags)
1717 {
1718         struct btree *b = path_l(path)->b;
1719         struct btree_update *as;
1720         unsigned l;
1721         int ret = 0;
1722
1723         as = bch2_btree_update_start(trans, path, path->level,
1724                                      true, flags);
1725         if (IS_ERR(as))
1726                 return PTR_ERR(as);
1727
1728         ret = btree_split(as, trans, path, b, NULL, flags);
1729         if (ret) {
1730                 bch2_btree_update_free(as, trans);
1731                 return ret;
1732         }
1733
1734         bch2_btree_update_done(as, trans);
1735
1736         for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++)
1737                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1738
1739         return ret;
1740 }
1741
1742 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1743                                   struct btree_path *path,
1744                                   unsigned level,
1745                                   unsigned flags,
1746                                   enum btree_node_sibling sib)
1747 {
1748         struct bch_fs *c = trans->c;
1749         struct btree_path *sib_path = NULL, *new_path = NULL;
1750         struct btree_update *as;
1751         struct bkey_format_state new_s;
1752         struct bkey_format new_f;
1753         struct bkey_i delete;
1754         struct btree *b, *m, *n, *prev, *next, *parent;
1755         struct bpos sib_pos;
1756         size_t sib_u64s;
1757         u64 start_time = local_clock();
1758         int ret = 0;
1759
1760         BUG_ON(!path->should_be_locked);
1761         BUG_ON(!btree_node_locked(path, level));
1762
1763         b = path->l[level].b;
1764
1765         if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1766             (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1767                 b->sib_u64s[sib] = U16_MAX;
1768                 return 0;
1769         }
1770
1771         sib_pos = sib == btree_prev_sib
1772                 ? bpos_predecessor(b->data->min_key)
1773                 : bpos_successor(b->data->max_key);
1774
1775         sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1776                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1777         ret = bch2_btree_path_traverse(trans, sib_path, false);
1778         if (ret)
1779                 goto err;
1780
1781         btree_path_set_should_be_locked(sib_path);
1782
1783         m = sib_path->l[level].b;
1784
1785         if (btree_node_parent(path, b) !=
1786             btree_node_parent(sib_path, m)) {
1787                 b->sib_u64s[sib] = U16_MAX;
1788                 goto out;
1789         }
1790
1791         if (sib == btree_prev_sib) {
1792                 prev = m;
1793                 next = b;
1794         } else {
1795                 prev = b;
1796                 next = m;
1797         }
1798
1799         if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1800                 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1801
1802                 bch2_bpos_to_text(&buf1, prev->data->max_key);
1803                 bch2_bpos_to_text(&buf2, next->data->min_key);
1804                 bch_err(c,
1805                         "%s(): btree topology error:\n"
1806                         "  prev ends at   %s\n"
1807                         "  next starts at %s",
1808                         __func__, buf1.buf, buf2.buf);
1809                 printbuf_exit(&buf1);
1810                 printbuf_exit(&buf2);
1811                 bch2_topology_error(c);
1812                 ret = -EIO;
1813                 goto err;
1814         }
1815
1816         bch2_bkey_format_init(&new_s);
1817         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1818         __bch2_btree_calc_format(&new_s, prev);
1819         __bch2_btree_calc_format(&new_s, next);
1820         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1821         new_f = bch2_bkey_format_done(&new_s);
1822
1823         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1824                 btree_node_u64s_with_format(m, &new_f);
1825
1826         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1827                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1828                 sib_u64s /= 2;
1829                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1830         }
1831
1832         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1833         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1834         b->sib_u64s[sib] = sib_u64s;
1835
1836         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1837                 goto out;
1838
1839         parent = btree_node_parent(path, b);
1840         as = bch2_btree_update_start(trans, path, level, false,
1841                                      BCH_TRANS_COMMIT_no_enospc|flags);
1842         ret = PTR_ERR_OR_ZERO(as);
1843         if (ret)
1844                 goto err;
1845
1846         trace_and_count(c, btree_node_merge, c, b);
1847
1848         bch2_btree_interior_update_will_free_node(as, b);
1849         bch2_btree_interior_update_will_free_node(as, m);
1850
1851         n = bch2_btree_node_alloc(as, trans, b->c.level);
1852
1853         SET_BTREE_NODE_SEQ(n->data,
1854                            max(BTREE_NODE_SEQ(b->data),
1855                                BTREE_NODE_SEQ(m->data)) + 1);
1856
1857         btree_set_min(n, prev->data->min_key);
1858         btree_set_max(n, next->data->max_key);
1859
1860         n->data->format  = new_f;
1861         btree_node_set_format(n, new_f);
1862
1863         bch2_btree_sort_into(c, n, prev);
1864         bch2_btree_sort_into(c, n, next);
1865
1866         bch2_btree_build_aux_trees(n);
1867         bch2_btree_update_add_new_node(as, n);
1868         six_unlock_write(&n->c.lock);
1869
1870         new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p);
1871         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1872         mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1873         bch2_btree_path_level_init(trans, new_path, n);
1874
1875         bkey_init(&delete.k);
1876         delete.k.p = prev->key.k.p;
1877         bch2_keylist_add(&as->parent_keys, &delete);
1878         bch2_keylist_add(&as->parent_keys, &n->key);
1879
1880         bch2_trans_verify_paths(trans);
1881
1882         ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1883         if (ret)
1884                 goto err_free_update;
1885
1886         bch2_trans_verify_paths(trans);
1887
1888         bch2_btree_update_get_open_buckets(as, n);
1889         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1890
1891         bch2_btree_node_free_inmem(trans, path, b);
1892         bch2_btree_node_free_inmem(trans, sib_path, m);
1893
1894         bch2_trans_node_add(trans, n);
1895
1896         bch2_trans_verify_paths(trans);
1897
1898         six_unlock_intent(&n->c.lock);
1899
1900         bch2_btree_update_done(as, trans);
1901
1902         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1903 out:
1904 err:
1905         if (new_path)
1906                 bch2_path_put(trans, new_path, true);
1907         bch2_path_put(trans, sib_path, true);
1908         bch2_trans_verify_locks(trans);
1909         return ret;
1910 err_free_update:
1911         bch2_btree_node_free_never_used(as, trans, n);
1912         bch2_btree_update_free(as, trans);
1913         goto out;
1914 }
1915
1916 int bch2_btree_node_rewrite(struct btree_trans *trans,
1917                             struct btree_iter *iter,
1918                             struct btree *b,
1919                             unsigned flags)
1920 {
1921         struct bch_fs *c = trans->c;
1922         struct btree_path *new_path = NULL;
1923         struct btree *n, *parent;
1924         struct btree_update *as;
1925         int ret;
1926
1927         flags |= BCH_TRANS_COMMIT_no_enospc;
1928
1929         parent = btree_node_parent(iter->path, b);
1930         as = bch2_btree_update_start(trans, iter->path, b->c.level,
1931                                      false, flags);
1932         ret = PTR_ERR_OR_ZERO(as);
1933         if (ret)
1934                 goto out;
1935
1936         bch2_btree_interior_update_will_free_node(as, b);
1937
1938         n = bch2_btree_node_alloc_replacement(as, trans, b);
1939
1940         bch2_btree_build_aux_trees(n);
1941         bch2_btree_update_add_new_node(as, n);
1942         six_unlock_write(&n->c.lock);
1943
1944         new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
1945         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1946         mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1947         bch2_btree_path_level_init(trans, new_path, n);
1948
1949         trace_and_count(c, btree_node_rewrite, c, b);
1950
1951         if (parent) {
1952                 bch2_keylist_add(&as->parent_keys, &n->key);
1953                 ret = bch2_btree_insert_node(as, trans, iter->path, parent,
1954                                              &as->parent_keys, flags);
1955                 if (ret)
1956                         goto err;
1957         } else {
1958                 bch2_btree_set_root(as, trans, iter->path, n);
1959         }
1960
1961         bch2_btree_update_get_open_buckets(as, n);
1962         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1963
1964         bch2_btree_node_free_inmem(trans, iter->path, b);
1965
1966         bch2_trans_node_add(trans, n);
1967         six_unlock_intent(&n->c.lock);
1968
1969         bch2_btree_update_done(as, trans);
1970 out:
1971         if (new_path)
1972                 bch2_path_put(trans, new_path, true);
1973         bch2_trans_downgrade(trans);
1974         return ret;
1975 err:
1976         bch2_btree_node_free_never_used(as, trans, n);
1977         bch2_btree_update_free(as, trans);
1978         goto out;
1979 }
1980
1981 struct async_btree_rewrite {
1982         struct bch_fs           *c;
1983         struct work_struct      work;
1984         struct list_head        list;
1985         enum btree_id           btree_id;
1986         unsigned                level;
1987         struct bpos             pos;
1988         __le64                  seq;
1989 };
1990
1991 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
1992                                           struct async_btree_rewrite *a)
1993 {
1994         struct bch_fs *c = trans->c;
1995         struct btree_iter iter;
1996         struct btree *b;
1997         int ret;
1998
1999         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2000                                   BTREE_MAX_DEPTH, a->level, 0);
2001         b = bch2_btree_iter_peek_node(&iter);
2002         ret = PTR_ERR_OR_ZERO(b);
2003         if (ret)
2004                 goto out;
2005
2006         if (!b || b->data->keys.seq != a->seq) {
2007                 struct printbuf buf = PRINTBUF;
2008
2009                 if (b)
2010                         bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2011                 else
2012                         prt_str(&buf, "(null");
2013                 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2014                          __func__, a->seq, buf.buf);
2015                 printbuf_exit(&buf);
2016                 goto out;
2017         }
2018
2019         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2020 out:
2021         bch2_trans_iter_exit(trans, &iter);
2022
2023         return ret;
2024 }
2025
2026 static void async_btree_node_rewrite_work(struct work_struct *work)
2027 {
2028         struct async_btree_rewrite *a =
2029                 container_of(work, struct async_btree_rewrite, work);
2030         struct bch_fs *c = a->c;
2031         int ret;
2032
2033         ret = bch2_trans_do(c, NULL, NULL, 0,
2034                       async_btree_node_rewrite_trans(trans, a));
2035         if (ret)
2036                 bch_err_fn(c, ret);
2037         bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2038         kfree(a);
2039 }
2040
2041 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2042 {
2043         struct async_btree_rewrite *a;
2044         int ret;
2045
2046         a = kmalloc(sizeof(*a), GFP_NOFS);
2047         if (!a) {
2048                 bch_err(c, "%s: error allocating memory", __func__);
2049                 return;
2050         }
2051
2052         a->c            = c;
2053         a->btree_id     = b->c.btree_id;
2054         a->level        = b->c.level;
2055         a->pos          = b->key.k.p;
2056         a->seq          = b->data->keys.seq;
2057         INIT_WORK(&a->work, async_btree_node_rewrite_work);
2058
2059         if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2060                 mutex_lock(&c->pending_node_rewrites_lock);
2061                 list_add(&a->list, &c->pending_node_rewrites);
2062                 mutex_unlock(&c->pending_node_rewrites_lock);
2063                 return;
2064         }
2065
2066         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2067                 if (test_bit(BCH_FS_started, &c->flags)) {
2068                         bch_err(c, "%s: error getting c->writes ref", __func__);
2069                         kfree(a);
2070                         return;
2071                 }
2072
2073                 ret = bch2_fs_read_write_early(c);
2074                 if (ret) {
2075                         bch_err_msg(c, ret, "going read-write");
2076                         kfree(a);
2077                         return;
2078                 }
2079
2080                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2081         }
2082
2083         queue_work(c->btree_interior_update_worker, &a->work);
2084 }
2085
2086 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2087 {
2088         struct async_btree_rewrite *a, *n;
2089
2090         mutex_lock(&c->pending_node_rewrites_lock);
2091         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2092                 list_del(&a->list);
2093
2094                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2095                 queue_work(c->btree_interior_update_worker, &a->work);
2096         }
2097         mutex_unlock(&c->pending_node_rewrites_lock);
2098 }
2099
2100 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2101 {
2102         struct async_btree_rewrite *a, *n;
2103
2104         mutex_lock(&c->pending_node_rewrites_lock);
2105         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2106                 list_del(&a->list);
2107
2108                 kfree(a);
2109         }
2110         mutex_unlock(&c->pending_node_rewrites_lock);
2111 }
2112
2113 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2114                                         struct btree_iter *iter,
2115                                         struct btree *b, struct btree *new_hash,
2116                                         struct bkey_i *new_key,
2117                                         unsigned commit_flags,
2118                                         bool skip_triggers)
2119 {
2120         struct bch_fs *c = trans->c;
2121         struct btree_iter iter2 = { NULL };
2122         struct btree *parent;
2123         int ret;
2124
2125         if (!skip_triggers) {
2126                 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1,
2127                                           bkey_i_to_s_c(&b->key), 0);
2128                 if (ret)
2129                         return ret;
2130
2131                 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1,
2132                                           new_key, 0);
2133                 if (ret)
2134                         return ret;
2135         }
2136
2137         if (new_hash) {
2138                 bkey_copy(&new_hash->key, new_key);
2139                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2140                                 new_hash, b->c.level, b->c.btree_id);
2141                 BUG_ON(ret);
2142         }
2143
2144         parent = btree_node_parent(iter->path, b);
2145         if (parent) {
2146                 bch2_trans_copy_iter(&iter2, iter);
2147
2148                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2149                                 iter2.flags & BTREE_ITER_INTENT,
2150                                 _THIS_IP_);
2151
2152                 BUG_ON(iter2.path->level != b->c.level);
2153                 BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p));
2154
2155                 btree_path_set_level_up(trans, iter2.path);
2156
2157                 trans->paths_sorted = false;
2158
2159                 ret   = bch2_btree_iter_traverse(&iter2) ?:
2160                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2161                 if (ret)
2162                         goto err;
2163         } else {
2164                 BUG_ON(btree_node_root(c, b) != b);
2165
2166                 ret = darray_make_room(&trans->extra_journal_entries,
2167                                        jset_u64s(new_key->k.u64s));
2168                 if (ret)
2169                         return ret;
2170
2171                 journal_entry_set((void *) &darray_top(trans->extra_journal_entries),
2172                                   BCH_JSET_ENTRY_btree_root,
2173                                   b->c.btree_id, b->c.level,
2174                                   new_key, new_key->k.u64s);
2175                 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s);
2176         }
2177
2178         ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2179         if (ret)
2180                 goto err;
2181
2182         bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c);
2183
2184         if (new_hash) {
2185                 mutex_lock(&c->btree_cache.lock);
2186                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2187                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2188
2189                 bkey_copy(&b->key, new_key);
2190                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2191                 BUG_ON(ret);
2192                 mutex_unlock(&c->btree_cache.lock);
2193         } else {
2194                 bkey_copy(&b->key, new_key);
2195         }
2196
2197         bch2_btree_node_unlock_write(trans, iter->path, b);
2198 out:
2199         bch2_trans_iter_exit(trans, &iter2);
2200         return ret;
2201 err:
2202         if (new_hash) {
2203                 mutex_lock(&c->btree_cache.lock);
2204                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2205                 mutex_unlock(&c->btree_cache.lock);
2206         }
2207         goto out;
2208 }
2209
2210 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2211                                struct btree *b, struct bkey_i *new_key,
2212                                unsigned commit_flags, bool skip_triggers)
2213 {
2214         struct bch_fs *c = trans->c;
2215         struct btree *new_hash = NULL;
2216         struct btree_path *path = iter->path;
2217         struct closure cl;
2218         int ret = 0;
2219
2220         ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2221         if (ret)
2222                 return ret;
2223
2224         closure_init_stack(&cl);
2225
2226         /*
2227          * check btree_ptr_hash_val() after @b is locked by
2228          * btree_iter_traverse():
2229          */
2230         if (btree_ptr_hash_val(new_key) != b->hash_val) {
2231                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2232                 if (ret) {
2233                         ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2234                         if (ret)
2235                                 return ret;
2236                 }
2237
2238                 new_hash = bch2_btree_node_mem_alloc(trans, false);
2239         }
2240
2241         path->intent_ref++;
2242         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2243                                            commit_flags, skip_triggers);
2244         --path->intent_ref;
2245
2246         if (new_hash) {
2247                 mutex_lock(&c->btree_cache.lock);
2248                 list_move(&new_hash->list, &c->btree_cache.freeable);
2249                 mutex_unlock(&c->btree_cache.lock);
2250
2251                 six_unlock_write(&new_hash->c.lock);
2252                 six_unlock_intent(&new_hash->c.lock);
2253         }
2254         closure_sync(&cl);
2255         bch2_btree_cache_cannibalize_unlock(c);
2256         return ret;
2257 }
2258
2259 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2260                                         struct btree *b, struct bkey_i *new_key,
2261                                         unsigned commit_flags, bool skip_triggers)
2262 {
2263         struct btree_iter iter;
2264         int ret;
2265
2266         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2267                                   BTREE_MAX_DEPTH, b->c.level,
2268                                   BTREE_ITER_INTENT);
2269         ret = bch2_btree_iter_traverse(&iter);
2270         if (ret)
2271                 goto out;
2272
2273         /* has node been freed? */
2274         if (iter.path->l[b->c.level].b != b) {
2275                 /* node has been freed: */
2276                 BUG_ON(!btree_node_dying(b));
2277                 goto out;
2278         }
2279
2280         BUG_ON(!btree_node_hashed(b));
2281
2282         ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2283                                          commit_flags, skip_triggers);
2284 out:
2285         bch2_trans_iter_exit(trans, &iter);
2286         return ret;
2287 }
2288
2289 /* Init code: */
2290
2291 /*
2292  * Only for filesystem bringup, when first reading the btree roots or allocating
2293  * btree roots when initializing a new filesystem:
2294  */
2295 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2296 {
2297         BUG_ON(btree_node_root(c, b));
2298
2299         bch2_btree_set_root_inmem(c, b);
2300 }
2301
2302 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2303 {
2304         struct bch_fs *c = trans->c;
2305         struct closure cl;
2306         struct btree *b;
2307         int ret;
2308
2309         closure_init_stack(&cl);
2310
2311         do {
2312                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2313                 closure_sync(&cl);
2314         } while (ret);
2315
2316         b = bch2_btree_node_mem_alloc(trans, false);
2317         bch2_btree_cache_cannibalize_unlock(c);
2318
2319         set_btree_node_fake(b);
2320         set_btree_node_need_rewrite(b);
2321         b->c.level      = 0;
2322         b->c.btree_id   = id;
2323
2324         bkey_btree_ptr_init(&b->key);
2325         b->key.k.p = SPOS_MAX;
2326         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2327
2328         bch2_bset_init_first(b, &b->data->keys);
2329         bch2_btree_build_aux_trees(b);
2330
2331         b->data->flags = 0;
2332         btree_set_min(b, POS_MIN);
2333         btree_set_max(b, SPOS_MAX);
2334         b->data->format = bch2_btree_calc_format(b);
2335         btree_node_set_format(b, b->data->format);
2336
2337         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2338                                           b->c.level, b->c.btree_id);
2339         BUG_ON(ret);
2340
2341         bch2_btree_set_root_inmem(c, b);
2342
2343         six_unlock_write(&b->c.lock);
2344         six_unlock_intent(&b->c.lock);
2345         return 0;
2346 }
2347
2348 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2349 {
2350         bch2_trans_run(c, __bch2_btree_root_alloc(trans, id));
2351 }
2352
2353 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2354 {
2355         struct btree_update *as;
2356
2357         mutex_lock(&c->btree_interior_update_lock);
2358         list_for_each_entry(as, &c->btree_interior_update_list, list)
2359                 prt_printf(out, "%p m %u w %u r %u j %llu\n",
2360                        as,
2361                        as->mode,
2362                        as->nodes_written,
2363                        closure_nr_remaining(&as->cl),
2364                        as->journal.seq);
2365         mutex_unlock(&c->btree_interior_update_lock);
2366 }
2367
2368 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2369 {
2370         bool ret;
2371
2372         mutex_lock(&c->btree_interior_update_lock);
2373         ret = !list_empty(&c->btree_interior_update_list);
2374         mutex_unlock(&c->btree_interior_update_lock);
2375
2376         return ret;
2377 }
2378
2379 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2380 {
2381         bool ret = bch2_btree_interior_updates_pending(c);
2382
2383         if (ret)
2384                 closure_wait_event(&c->btree_interior_update_wait,
2385                                    !bch2_btree_interior_updates_pending(c));
2386         return ret;
2387 }
2388
2389 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2390 {
2391         struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2392
2393         mutex_lock(&c->btree_root_lock);
2394
2395         r->level = entry->level;
2396         r->alive = true;
2397         bkey_copy(&r->key, (struct bkey_i *) entry->start);
2398
2399         mutex_unlock(&c->btree_root_lock);
2400 }
2401
2402 struct jset_entry *
2403 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2404                                     struct jset_entry *end,
2405                                     unsigned long skip)
2406 {
2407         unsigned i;
2408
2409         mutex_lock(&c->btree_root_lock);
2410
2411         for (i = 0; i < btree_id_nr_alive(c); i++) {
2412                 struct btree_root *r = bch2_btree_id_root(c, i);
2413
2414                 if (r->alive && !test_bit(i, &skip)) {
2415                         journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2416                                           i, r->level, &r->key, r->key.k.u64s);
2417                         end = vstruct_next(end);
2418                 }
2419         }
2420
2421         mutex_unlock(&c->btree_root_lock);
2422
2423         return end;
2424 }
2425
2426 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2427 {
2428         if (c->btree_interior_update_worker)
2429                 destroy_workqueue(c->btree_interior_update_worker);
2430         mempool_exit(&c->btree_interior_update_pool);
2431 }
2432
2433 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2434 {
2435         mutex_init(&c->btree_reserve_cache_lock);
2436         INIT_LIST_HEAD(&c->btree_interior_update_list);
2437         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2438         mutex_init(&c->btree_interior_update_lock);
2439         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2440
2441         INIT_LIST_HEAD(&c->pending_node_rewrites);
2442         mutex_init(&c->pending_node_rewrites_lock);
2443 }
2444
2445 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2446 {
2447         c->btree_interior_update_worker =
2448                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2449         if (!c->btree_interior_update_worker)
2450                 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2451
2452         if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2453                                       sizeof(struct btree_update)))
2454                 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2455
2456         return 0;
2457 }