]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
70da4fa25c01e21bb7ca27ddf5048a1762fc8c4c
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "btree_iter.h"
13 #include "btree_locking.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "journal_reclaim.h"
20 #include "keylist.h"
21 #include "replicas.h"
22 #include "super-io.h"
23 #include "trace.h"
24
25 #include <linux/random.h>
26
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28                                   btree_path_idx_t, struct btree *,
29                                   struct keylist *, unsigned);
30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
31
32 static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans,
33                                               enum btree_id btree_id,
34                                               unsigned level,
35                                               struct bpos pos)
36 {
37         btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level,
38                              BTREE_ITER_NOPRESERVE|
39                              BTREE_ITER_INTENT, _RET_IP_);
40         path_idx = bch2_btree_path_make_mut(trans, path_idx, true, _RET_IP_);
41
42         struct btree_path *path = trans->paths + path_idx;
43         bch2_btree_path_downgrade(trans, path);
44         __bch2_btree_path_unlock(trans, path);
45         return path_idx;
46 }
47
48 /* Debug code: */
49
50 /*
51  * Verify that child nodes correctly span parent node's range:
52  */
53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
54 {
55 #ifdef CONFIG_BCACHEFS_DEBUG
56         struct bpos next_node = b->data->min_key;
57         struct btree_node_iter iter;
58         struct bkey_s_c k;
59         struct bkey_s_c_btree_ptr_v2 bp;
60         struct bkey unpacked;
61         struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
62
63         BUG_ON(!b->c.level);
64
65         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
66                 return;
67
68         bch2_btree_node_iter_init_from_start(&iter, b);
69
70         while (1) {
71                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
72                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
73                         break;
74                 bp = bkey_s_c_to_btree_ptr_v2(k);
75
76                 if (!bpos_eq(next_node, bp.v->min_key)) {
77                         bch2_dump_btree_node(c, b);
78                         bch2_bpos_to_text(&buf1, next_node);
79                         bch2_bpos_to_text(&buf2, bp.v->min_key);
80                         panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
81                 }
82
83                 bch2_btree_node_iter_advance(&iter, b);
84
85                 if (bch2_btree_node_iter_end(&iter)) {
86                         if (!bpos_eq(k.k->p, b->key.k.p)) {
87                                 bch2_dump_btree_node(c, b);
88                                 bch2_bpos_to_text(&buf1, b->key.k.p);
89                                 bch2_bpos_to_text(&buf2, k.k->p);
90                                 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
91                         }
92                         break;
93                 }
94
95                 next_node = bpos_successor(k.k->p);
96         }
97 #endif
98 }
99
100 /* Calculate ideal packed bkey format for new btree nodes: */
101
102 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
103 {
104         struct bkey_packed *k;
105         struct bset_tree *t;
106         struct bkey uk;
107
108         for_each_bset(b, t)
109                 bset_tree_for_each_key(b, t, k)
110                         if (!bkey_deleted(k)) {
111                                 uk = bkey_unpack_key(b, k);
112                                 bch2_bkey_format_add_key(s, &uk);
113                         }
114 }
115
116 static struct bkey_format bch2_btree_calc_format(struct btree *b)
117 {
118         struct bkey_format_state s;
119
120         bch2_bkey_format_init(&s);
121         bch2_bkey_format_add_pos(&s, b->data->min_key);
122         bch2_bkey_format_add_pos(&s, b->data->max_key);
123         __bch2_btree_calc_format(&s, b);
124
125         return bch2_bkey_format_done(&s);
126 }
127
128 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
129                                           struct bkey_format *old_f,
130                                           struct bkey_format *new_f)
131 {
132         /* stupid integer promotion rules */
133         ssize_t delta =
134             (((int) new_f->key_u64s - old_f->key_u64s) *
135              (int) nr.packed_keys) +
136             (((int) new_f->key_u64s - BKEY_U64s) *
137              (int) nr.unpacked_keys);
138
139         BUG_ON(delta + nr.live_u64s < 0);
140
141         return nr.live_u64s + delta;
142 }
143
144 /**
145  * bch2_btree_node_format_fits - check if we could rewrite node with a new format
146  *
147  * @c:          filesystem handle
148  * @b:          btree node to rewrite
149  * @nr:         number of keys for new node (i.e. b->nr)
150  * @new_f:      bkey format to translate keys to
151  *
152  * Returns: true if all re-packed keys will be able to fit in a new node.
153  *
154  * Assumes all keys will successfully pack with the new format.
155  */
156 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
157                                  struct btree_nr_keys nr,
158                                  struct bkey_format *new_f)
159 {
160         size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
161
162         return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
163 }
164
165 /* Btree node freeing/allocation: */
166
167 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
168 {
169         struct bch_fs *c = trans->c;
170
171         trace_and_count(c, btree_node_free, trans, b);
172
173         BUG_ON(btree_node_write_blocked(b));
174         BUG_ON(btree_node_dirty(b));
175         BUG_ON(btree_node_need_write(b));
176         BUG_ON(b == btree_node_root(c, b));
177         BUG_ON(b->ob.nr);
178         BUG_ON(!list_empty(&b->write_blocked));
179         BUG_ON(b->will_make_reachable);
180
181         clear_btree_node_noevict(b);
182
183         mutex_lock(&c->btree_cache.lock);
184         list_move(&b->list, &c->btree_cache.freeable);
185         mutex_unlock(&c->btree_cache.lock);
186 }
187
188 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
189                                        struct btree_path *path,
190                                        struct btree *b)
191 {
192         struct bch_fs *c = trans->c;
193         unsigned i, level = b->c.level;
194
195         bch2_btree_node_lock_write_nofail(trans, path, &b->c);
196         bch2_btree_node_hash_remove(&c->btree_cache, b);
197         __btree_node_free(trans, b);
198         six_unlock_write(&b->c.lock);
199         mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
200
201         trans_for_each_path(trans, path, i)
202                 if (path->l[level].b == b) {
203                         btree_node_unlock(trans, path, level);
204                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
205                 }
206 }
207
208 static void bch2_btree_node_free_never_used(struct btree_update *as,
209                                             struct btree_trans *trans,
210                                             struct btree *b)
211 {
212         struct bch_fs *c = as->c;
213         struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
214         struct btree_path *path;
215         unsigned i, level = b->c.level;
216
217         BUG_ON(!list_empty(&b->write_blocked));
218         BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
219
220         b->will_make_reachable = 0;
221         closure_put(&as->cl);
222
223         clear_btree_node_will_make_reachable(b);
224         clear_btree_node_accessed(b);
225         clear_btree_node_dirty_acct(c, b);
226         clear_btree_node_need_write(b);
227
228         mutex_lock(&c->btree_cache.lock);
229         list_del_init(&b->list);
230         bch2_btree_node_hash_remove(&c->btree_cache, b);
231         mutex_unlock(&c->btree_cache.lock);
232
233         BUG_ON(p->nr >= ARRAY_SIZE(p->b));
234         p->b[p->nr++] = b;
235
236         six_unlock_intent(&b->c.lock);
237
238         trans_for_each_path(trans, path, i)
239                 if (path->l[level].b == b) {
240                         btree_node_unlock(trans, path, level);
241                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
242                 }
243 }
244
245 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
246                                              struct disk_reservation *res,
247                                              struct closure *cl,
248                                              bool interior_node,
249                                              unsigned flags)
250 {
251         struct bch_fs *c = trans->c;
252         struct write_point *wp;
253         struct btree *b;
254         BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
255         struct open_buckets obs = { .nr = 0 };
256         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
257         enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
258         unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim
259                 ? BTREE_NODE_RESERVE
260                 : 0;
261         int ret;
262
263         mutex_lock(&c->btree_reserve_cache_lock);
264         if (c->btree_reserve_cache_nr > nr_reserve) {
265                 struct btree_alloc *a =
266                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
267
268                 obs = a->ob;
269                 bkey_copy(&tmp.k, &a->k);
270                 mutex_unlock(&c->btree_reserve_cache_lock);
271                 goto mem_alloc;
272         }
273         mutex_unlock(&c->btree_reserve_cache_lock);
274
275 retry:
276         ret = bch2_alloc_sectors_start_trans(trans,
277                                       c->opts.metadata_target ?:
278                                       c->opts.foreground_target,
279                                       0,
280                                       writepoint_ptr(&c->btree_write_point),
281                                       &devs_have,
282                                       res->nr_replicas,
283                                       min(res->nr_replicas,
284                                           c->opts.metadata_replicas_required),
285                                       watermark, 0, cl, &wp);
286         if (unlikely(ret))
287                 return ERR_PTR(ret);
288
289         if (wp->sectors_free < btree_sectors(c)) {
290                 struct open_bucket *ob;
291                 unsigned i;
292
293                 open_bucket_for_each(c, &wp->ptrs, ob, i)
294                         if (ob->sectors_free < btree_sectors(c))
295                                 ob->sectors_free = 0;
296
297                 bch2_alloc_sectors_done(c, wp);
298                 goto retry;
299         }
300
301         bkey_btree_ptr_v2_init(&tmp.k);
302         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
303
304         bch2_open_bucket_get(c, wp, &obs);
305         bch2_alloc_sectors_done(c, wp);
306 mem_alloc:
307         b = bch2_btree_node_mem_alloc(trans, interior_node);
308         six_unlock_write(&b->c.lock);
309         six_unlock_intent(&b->c.lock);
310
311         /* we hold cannibalize_lock: */
312         BUG_ON(IS_ERR(b));
313         BUG_ON(b->ob.nr);
314
315         bkey_copy(&b->key, &tmp.k);
316         b->ob = obs;
317
318         return b;
319 }
320
321 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
322                                            struct btree_trans *trans,
323                                            unsigned level)
324 {
325         struct bch_fs *c = as->c;
326         struct btree *b;
327         struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
328         int ret;
329
330         BUG_ON(level >= BTREE_MAX_DEPTH);
331         BUG_ON(!p->nr);
332
333         b = p->b[--p->nr];
334
335         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
336         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
337
338         set_btree_node_accessed(b);
339         set_btree_node_dirty_acct(c, b);
340         set_btree_node_need_write(b);
341
342         bch2_bset_init_first(b, &b->data->keys);
343         b->c.level      = level;
344         b->c.btree_id   = as->btree_id;
345         b->version_ondisk = c->sb.version;
346
347         memset(&b->nr, 0, sizeof(b->nr));
348         b->data->magic = cpu_to_le64(bset_magic(c));
349         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
350         b->data->flags = 0;
351         SET_BTREE_NODE_ID(b->data, as->btree_id);
352         SET_BTREE_NODE_LEVEL(b->data, level);
353
354         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
355                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
356
357                 bp->v.mem_ptr           = 0;
358                 bp->v.seq               = b->data->keys.seq;
359                 bp->v.sectors_written   = 0;
360         }
361
362         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
363
364         bch2_btree_build_aux_trees(b);
365
366         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
367         BUG_ON(ret);
368
369         trace_and_count(c, btree_node_alloc, trans, b);
370         bch2_increment_clock(c, btree_sectors(c), WRITE);
371         return b;
372 }
373
374 static void btree_set_min(struct btree *b, struct bpos pos)
375 {
376         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
377                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
378         b->data->min_key = pos;
379 }
380
381 static void btree_set_max(struct btree *b, struct bpos pos)
382 {
383         b->key.k.p = pos;
384         b->data->max_key = pos;
385 }
386
387 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
388                                                        struct btree_trans *trans,
389                                                        struct btree *b)
390 {
391         struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
392         struct bkey_format format = bch2_btree_calc_format(b);
393
394         /*
395          * The keys might expand with the new format - if they wouldn't fit in
396          * the btree node anymore, use the old format for now:
397          */
398         if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
399                 format = b->format;
400
401         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
402
403         btree_set_min(n, b->data->min_key);
404         btree_set_max(n, b->data->max_key);
405
406         n->data->format         = format;
407         btree_node_set_format(n, format);
408
409         bch2_btree_sort_into(as->c, n, b);
410
411         btree_node_reset_sib_u64s(n);
412         return n;
413 }
414
415 static struct btree *__btree_root_alloc(struct btree_update *as,
416                                 struct btree_trans *trans, unsigned level)
417 {
418         struct btree *b = bch2_btree_node_alloc(as, trans, level);
419
420         btree_set_min(b, POS_MIN);
421         btree_set_max(b, SPOS_MAX);
422         b->data->format = bch2_btree_calc_format(b);
423
424         btree_node_set_format(b, b->data->format);
425         bch2_btree_build_aux_trees(b);
426
427         return b;
428 }
429
430 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
431 {
432         struct bch_fs *c = as->c;
433         struct prealloc_nodes *p;
434
435         for (p = as->prealloc_nodes;
436              p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
437              p++) {
438                 while (p->nr) {
439                         struct btree *b = p->b[--p->nr];
440
441                         mutex_lock(&c->btree_reserve_cache_lock);
442
443                         if (c->btree_reserve_cache_nr <
444                             ARRAY_SIZE(c->btree_reserve_cache)) {
445                                 struct btree_alloc *a =
446                                         &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
447
448                                 a->ob = b->ob;
449                                 b->ob.nr = 0;
450                                 bkey_copy(&a->k, &b->key);
451                         } else {
452                                 bch2_open_buckets_put(c, &b->ob);
453                         }
454
455                         mutex_unlock(&c->btree_reserve_cache_lock);
456
457                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
458                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
459                         __btree_node_free(trans, b);
460                         six_unlock_write(&b->c.lock);
461                         six_unlock_intent(&b->c.lock);
462                 }
463         }
464 }
465
466 static int bch2_btree_reserve_get(struct btree_trans *trans,
467                                   struct btree_update *as,
468                                   unsigned nr_nodes[2],
469                                   unsigned flags,
470                                   struct closure *cl)
471 {
472         struct btree *b;
473         unsigned interior;
474         int ret = 0;
475
476         BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
477
478         /*
479          * Protects reaping from the btree node cache and using the btree node
480          * open bucket reserve:
481          */
482         ret = bch2_btree_cache_cannibalize_lock(trans, cl);
483         if (ret)
484                 return ret;
485
486         for (interior = 0; interior < 2; interior++) {
487                 struct prealloc_nodes *p = as->prealloc_nodes + interior;
488
489                 while (p->nr < nr_nodes[interior]) {
490                         b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
491                                                     interior, flags);
492                         if (IS_ERR(b)) {
493                                 ret = PTR_ERR(b);
494                                 goto err;
495                         }
496
497                         p->b[p->nr++] = b;
498                 }
499         }
500 err:
501         bch2_btree_cache_cannibalize_unlock(trans);
502         return ret;
503 }
504
505 /* Asynchronous interior node update machinery */
506
507 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
508 {
509         struct bch_fs *c = as->c;
510
511         if (as->took_gc_lock)
512                 up_read(&c->gc_lock);
513         as->took_gc_lock = false;
514
515         bch2_journal_pin_drop(&c->journal, &as->journal);
516         bch2_journal_pin_flush(&c->journal, &as->journal);
517         bch2_disk_reservation_put(c, &as->disk_res);
518         bch2_btree_reserve_put(as, trans);
519
520         time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
521                                as->start_time);
522
523         mutex_lock(&c->btree_interior_update_lock);
524         list_del(&as->unwritten_list);
525         list_del(&as->list);
526
527         closure_debug_destroy(&as->cl);
528         mempool_free(as, &c->btree_interior_update_pool);
529
530         /*
531          * Have to do the wakeup with btree_interior_update_lock still held,
532          * since being on btree_interior_update_list is our ref on @c:
533          */
534         closure_wake_up(&c->btree_interior_update_wait);
535
536         mutex_unlock(&c->btree_interior_update_lock);
537 }
538
539 static void btree_update_add_key(struct btree_update *as,
540                                  struct keylist *keys, struct btree *b)
541 {
542         struct bkey_i *k = &b->key;
543
544         BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
545                ARRAY_SIZE(as->_old_keys));
546
547         bkey_copy(keys->top, k);
548         bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
549
550         bch2_keylist_push(keys);
551 }
552
553 /*
554  * The transactional part of an interior btree node update, where we journal the
555  * update we did to the interior node and update alloc info:
556  */
557 static int btree_update_nodes_written_trans(struct btree_trans *trans,
558                                             struct btree_update *as)
559 {
560         struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
561         int ret = PTR_ERR_OR_ZERO(e);
562         if (ret)
563                 return ret;
564
565         memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
566
567         trans->journal_pin = &as->journal;
568
569         for_each_keylist_key(&as->old_keys, k) {
570                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
571
572                 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
573                                            BTREE_TRIGGER_TRANSACTIONAL);
574                 if (ret)
575                         return ret;
576         }
577
578         for_each_keylist_key(&as->new_keys, k) {
579                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
580
581                 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
582                                            BTREE_TRIGGER_TRANSACTIONAL);
583                 if (ret)
584                         return ret;
585         }
586
587         return 0;
588 }
589
590 static void btree_update_nodes_written(struct btree_update *as)
591 {
592         struct bch_fs *c = as->c;
593         struct btree *b;
594         struct btree_trans *trans = bch2_trans_get(c);
595         u64 journal_seq = 0;
596         unsigned i;
597         int ret;
598
599         /*
600          * If we're already in an error state, it might be because a btree node
601          * was never written, and we might be trying to free that same btree
602          * node here, but it won't have been marked as allocated and we'll see
603          * spurious disk usage inconsistencies in the transactional part below
604          * if we don't skip it:
605          */
606         ret = bch2_journal_error(&c->journal);
607         if (ret)
608                 goto err;
609
610         /*
611          * Wait for any in flight writes to finish before we free the old nodes
612          * on disk:
613          */
614         for (i = 0; i < as->nr_old_nodes; i++) {
615                 __le64 seq;
616
617                 b = as->old_nodes[i];
618
619                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
620                 seq = b->data ? b->data->keys.seq : 0;
621                 six_unlock_read(&b->c.lock);
622
623                 if (seq == as->old_nodes_seq[i])
624                         wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
625                                        TASK_UNINTERRUPTIBLE);
626         }
627
628         /*
629          * We did an update to a parent node where the pointers we added pointed
630          * to child nodes that weren't written yet: now, the child nodes have
631          * been written so we can write out the update to the interior node.
632          */
633
634         /*
635          * We can't call into journal reclaim here: we'd block on the journal
636          * reclaim lock, but we may need to release the open buckets we have
637          * pinned in order for other btree updates to make forward progress, and
638          * journal reclaim does btree updates when flushing bkey_cached entries,
639          * which may require allocations as well.
640          */
641         ret = commit_do(trans, &as->disk_res, &journal_seq,
642                         BCH_WATERMARK_reclaim|
643                         BCH_TRANS_COMMIT_no_enospc|
644                         BCH_TRANS_COMMIT_no_check_rw|
645                         BCH_TRANS_COMMIT_journal_reclaim,
646                         btree_update_nodes_written_trans(trans, as));
647         bch2_trans_unlock(trans);
648
649         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
650                              "%s(): error %s", __func__, bch2_err_str(ret));
651 err:
652         if (as->b) {
653
654                 b = as->b;
655                 btree_path_idx_t path_idx = get_unlocked_mut_path(trans,
656                                                 as->btree_id, b->c.level, b->key.k.p);
657                 struct btree_path *path = trans->paths + path_idx;
658                 /*
659                  * @b is the node we did the final insert into:
660                  *
661                  * On failure to get a journal reservation, we still have to
662                  * unblock the write and allow most of the write path to happen
663                  * so that shutdown works, but the i->journal_seq mechanism
664                  * won't work to prevent the btree write from being visible (we
665                  * didn't get a journal sequence number) - instead
666                  * __bch2_btree_node_write() doesn't do the actual write if
667                  * we're in journal error state:
668                  */
669
670                 /*
671                  * Ensure transaction is unlocked before using
672                  * btree_node_lock_nopath() (the use of which is always suspect,
673                  * we need to work on removing this in the future)
674                  *
675                  * It should be, but get_unlocked_mut_path() -> bch2_path_get()
676                  * calls bch2_path_upgrade(), before we call path_make_mut(), so
677                  * we may rarely end up with a locked path besides the one we
678                  * have here:
679                  */
680                 bch2_trans_unlock(trans);
681                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
682                 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
683                 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
684                 path->l[b->c.level].b = b;
685
686                 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
687
688                 mutex_lock(&c->btree_interior_update_lock);
689
690                 list_del(&as->write_blocked_list);
691                 if (list_empty(&b->write_blocked))
692                         clear_btree_node_write_blocked(b);
693
694                 /*
695                  * Node might have been freed, recheck under
696                  * btree_interior_update_lock:
697                  */
698                 if (as->b == b) {
699                         BUG_ON(!b->c.level);
700                         BUG_ON(!btree_node_dirty(b));
701
702                         if (!ret) {
703                                 struct bset *last = btree_bset_last(b);
704
705                                 last->journal_seq = cpu_to_le64(
706                                                              max(journal_seq,
707                                                                  le64_to_cpu(last->journal_seq)));
708
709                                 bch2_btree_add_journal_pin(c, b, journal_seq);
710                         } else {
711                                 /*
712                                  * If we didn't get a journal sequence number we
713                                  * can't write this btree node, because recovery
714                                  * won't know to ignore this write:
715                                  */
716                                 set_btree_node_never_write(b);
717                         }
718                 }
719
720                 mutex_unlock(&c->btree_interior_update_lock);
721
722                 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
723                 six_unlock_write(&b->c.lock);
724
725                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
726                 btree_node_unlock(trans, path, b->c.level);
727                 bch2_path_put(trans, path_idx, true);
728         }
729
730         bch2_journal_pin_drop(&c->journal, &as->journal);
731
732         mutex_lock(&c->btree_interior_update_lock);
733         for (i = 0; i < as->nr_new_nodes; i++) {
734                 b = as->new_nodes[i];
735
736                 BUG_ON(b->will_make_reachable != (unsigned long) as);
737                 b->will_make_reachable = 0;
738                 clear_btree_node_will_make_reachable(b);
739         }
740         mutex_unlock(&c->btree_interior_update_lock);
741
742         for (i = 0; i < as->nr_new_nodes; i++) {
743                 b = as->new_nodes[i];
744
745                 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
746                 btree_node_write_if_need(c, b, SIX_LOCK_read);
747                 six_unlock_read(&b->c.lock);
748         }
749
750         for (i = 0; i < as->nr_open_buckets; i++)
751                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
752
753         bch2_btree_update_free(as, trans);
754         bch2_trans_put(trans);
755 }
756
757 static void btree_interior_update_work(struct work_struct *work)
758 {
759         struct bch_fs *c =
760                 container_of(work, struct bch_fs, btree_interior_update_work);
761         struct btree_update *as;
762
763         while (1) {
764                 mutex_lock(&c->btree_interior_update_lock);
765                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
766                                               struct btree_update, unwritten_list);
767                 if (as && !as->nodes_written)
768                         as = NULL;
769                 mutex_unlock(&c->btree_interior_update_lock);
770
771                 if (!as)
772                         break;
773
774                 btree_update_nodes_written(as);
775         }
776 }
777
778 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
779 {
780         closure_type(as, struct btree_update, cl);
781         struct bch_fs *c = as->c;
782
783         mutex_lock(&c->btree_interior_update_lock);
784         as->nodes_written = true;
785         mutex_unlock(&c->btree_interior_update_lock);
786
787         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
788 }
789
790 /*
791  * We're updating @b with pointers to nodes that haven't finished writing yet:
792  * block @b from being written until @as completes
793  */
794 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
795 {
796         struct bch_fs *c = as->c;
797
798         mutex_lock(&c->btree_interior_update_lock);
799         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
800
801         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
802         BUG_ON(!btree_node_dirty(b));
803         BUG_ON(!b->c.level);
804
805         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
806         as->b           = b;
807
808         set_btree_node_write_blocked(b);
809         list_add(&as->write_blocked_list, &b->write_blocked);
810
811         mutex_unlock(&c->btree_interior_update_lock);
812 }
813
814 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
815                                 struct journal_entry_pin *_pin, u64 seq)
816 {
817         return 0;
818 }
819
820 static void btree_update_reparent(struct btree_update *as,
821                                   struct btree_update *child)
822 {
823         struct bch_fs *c = as->c;
824
825         lockdep_assert_held(&c->btree_interior_update_lock);
826
827         child->b = NULL;
828         child->mode = BTREE_INTERIOR_UPDATING_AS;
829
830         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
831                               bch2_update_reparent_journal_pin_flush);
832 }
833
834 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
835 {
836         struct bkey_i *insert = &b->key;
837         struct bch_fs *c = as->c;
838
839         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
840
841         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
842                ARRAY_SIZE(as->journal_entries));
843
844         as->journal_u64s +=
845                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
846                                   BCH_JSET_ENTRY_btree_root,
847                                   b->c.btree_id, b->c.level,
848                                   insert, insert->k.u64s);
849
850         mutex_lock(&c->btree_interior_update_lock);
851         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
852
853         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
854         mutex_unlock(&c->btree_interior_update_lock);
855 }
856
857 /*
858  * bch2_btree_update_add_new_node:
859  *
860  * This causes @as to wait on @b to be written, before it gets to
861  * bch2_btree_update_nodes_written
862  *
863  * Additionally, it sets b->will_make_reachable to prevent any additional writes
864  * to @b from happening besides the first until @b is reachable on disk
865  *
866  * And it adds @b to the list of @as's new nodes, so that we can update sector
867  * counts in bch2_btree_update_nodes_written:
868  */
869 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
870 {
871         struct bch_fs *c = as->c;
872
873         closure_get(&as->cl);
874
875         mutex_lock(&c->btree_interior_update_lock);
876         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
877         BUG_ON(b->will_make_reachable);
878
879         as->new_nodes[as->nr_new_nodes++] = b;
880         b->will_make_reachable = 1UL|(unsigned long) as;
881         set_btree_node_will_make_reachable(b);
882
883         mutex_unlock(&c->btree_interior_update_lock);
884
885         btree_update_add_key(as, &as->new_keys, b);
886
887         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
888                 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
889                 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
890
891                 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
892                         cpu_to_le16(sectors);
893         }
894 }
895
896 /*
897  * returns true if @b was a new node
898  */
899 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
900 {
901         struct btree_update *as;
902         unsigned long v;
903         unsigned i;
904
905         mutex_lock(&c->btree_interior_update_lock);
906         /*
907          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
908          * dropped when it gets written by bch2_btree_complete_write - the
909          * xchg() is for synchronization with bch2_btree_complete_write:
910          */
911         v = xchg(&b->will_make_reachable, 0);
912         clear_btree_node_will_make_reachable(b);
913         as = (struct btree_update *) (v & ~1UL);
914
915         if (!as) {
916                 mutex_unlock(&c->btree_interior_update_lock);
917                 return;
918         }
919
920         for (i = 0; i < as->nr_new_nodes; i++)
921                 if (as->new_nodes[i] == b)
922                         goto found;
923
924         BUG();
925 found:
926         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
927         mutex_unlock(&c->btree_interior_update_lock);
928
929         if (v & 1)
930                 closure_put(&as->cl);
931 }
932
933 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
934 {
935         while (b->ob.nr)
936                 as->open_buckets[as->nr_open_buckets++] =
937                         b->ob.v[--b->ob.nr];
938 }
939
940 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
941                                 struct journal_entry_pin *_pin, u64 seq)
942 {
943         return 0;
944 }
945
946 /*
947  * @b is being split/rewritten: it may have pointers to not-yet-written btree
948  * nodes and thus outstanding btree_updates - redirect @b's
949  * btree_updates to point to this btree_update:
950  */
951 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
952                                                       struct btree *b)
953 {
954         struct bch_fs *c = as->c;
955         struct btree_update *p, *n;
956         struct btree_write *w;
957
958         set_btree_node_dying(b);
959
960         if (btree_node_fake(b))
961                 return;
962
963         mutex_lock(&c->btree_interior_update_lock);
964
965         /*
966          * Does this node have any btree_update operations preventing
967          * it from being written?
968          *
969          * If so, redirect them to point to this btree_update: we can
970          * write out our new nodes, but we won't make them visible until those
971          * operations complete
972          */
973         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
974                 list_del_init(&p->write_blocked_list);
975                 btree_update_reparent(as, p);
976
977                 /*
978                  * for flush_held_btree_writes() waiting on updates to flush or
979                  * nodes to be writeable:
980                  */
981                 closure_wake_up(&c->btree_interior_update_wait);
982         }
983
984         clear_btree_node_dirty_acct(c, b);
985         clear_btree_node_need_write(b);
986         clear_btree_node_write_blocked(b);
987
988         /*
989          * Does this node have unwritten data that has a pin on the journal?
990          *
991          * If so, transfer that pin to the btree_update operation -
992          * note that if we're freeing multiple nodes, we only need to keep the
993          * oldest pin of any of the nodes we're freeing. We'll release the pin
994          * when the new nodes are persistent and reachable on disk:
995          */
996         w = btree_current_write(b);
997         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
998                               bch2_btree_update_will_free_node_journal_pin_flush);
999         bch2_journal_pin_drop(&c->journal, &w->journal);
1000
1001         w = btree_prev_write(b);
1002         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1003                               bch2_btree_update_will_free_node_journal_pin_flush);
1004         bch2_journal_pin_drop(&c->journal, &w->journal);
1005
1006         mutex_unlock(&c->btree_interior_update_lock);
1007
1008         /*
1009          * Is this a node that isn't reachable on disk yet?
1010          *
1011          * Nodes that aren't reachable yet have writes blocked until they're
1012          * reachable - now that we've cancelled any pending writes and moved
1013          * things waiting on that write to wait on this update, we can drop this
1014          * node from the list of nodes that the other update is making
1015          * reachable, prior to freeing it:
1016          */
1017         btree_update_drop_new_node(c, b);
1018
1019         btree_update_add_key(as, &as->old_keys, b);
1020
1021         as->old_nodes[as->nr_old_nodes] = b;
1022         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1023         as->nr_old_nodes++;
1024 }
1025
1026 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1027 {
1028         struct bch_fs *c = as->c;
1029         u64 start_time = as->start_time;
1030
1031         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1032
1033         if (as->took_gc_lock)
1034                 up_read(&as->c->gc_lock);
1035         as->took_gc_lock = false;
1036
1037         bch2_btree_reserve_put(as, trans);
1038
1039         continue_at(&as->cl, btree_update_set_nodes_written,
1040                     as->c->btree_interior_update_worker);
1041
1042         time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1043                                start_time);
1044 }
1045
1046 static struct btree_update *
1047 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1048                         unsigned level, bool split, unsigned flags)
1049 {
1050         struct bch_fs *c = trans->c;
1051         struct btree_update *as;
1052         u64 start_time = local_clock();
1053         int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1054                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1055         unsigned nr_nodes[2] = { 0, 0 };
1056         unsigned update_level = level;
1057         enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1058         int ret = 0;
1059         u32 restart_count = trans->restart_count;
1060
1061         BUG_ON(!path->should_be_locked);
1062
1063         if (watermark == BCH_WATERMARK_copygc)
1064                 watermark = BCH_WATERMARK_btree_copygc;
1065         if (watermark < BCH_WATERMARK_btree)
1066                 watermark = BCH_WATERMARK_btree;
1067
1068         flags &= ~BCH_WATERMARK_MASK;
1069         flags |= watermark;
1070
1071         if (!(flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1072             watermark < c->journal.watermark) {
1073                 struct journal_res res = { 0 };
1074
1075                 ret = drop_locks_do(trans,
1076                         bch2_journal_res_get(&c->journal, &res, 1,
1077                                              watermark|JOURNAL_RES_GET_CHECK));
1078                 if (ret)
1079                         return ERR_PTR(ret);
1080         }
1081
1082         while (1) {
1083                 nr_nodes[!!update_level] += 1 + split;
1084                 update_level++;
1085
1086                 ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1087                 if (ret)
1088                         return ERR_PTR(ret);
1089
1090                 if (!btree_path_node(path, update_level)) {
1091                         /* Allocating new root? */
1092                         nr_nodes[1] += split;
1093                         update_level = BTREE_MAX_DEPTH;
1094                         break;
1095                 }
1096
1097                 /*
1098                  * Always check for space for two keys, even if we won't have to
1099                  * split at prior level - it might have been a merge instead:
1100                  */
1101                 if (bch2_btree_node_insert_fits(path->l[update_level].b,
1102                                                 BKEY_BTREE_PTR_U64s_MAX * 2))
1103                         break;
1104
1105                 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1106         }
1107
1108         if (!down_read_trylock(&c->gc_lock)) {
1109                 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1110                 if (ret) {
1111                         up_read(&c->gc_lock);
1112                         return ERR_PTR(ret);
1113                 }
1114         }
1115
1116         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1117         memset(as, 0, sizeof(*as));
1118         closure_init(&as->cl, NULL);
1119         as->c           = c;
1120         as->start_time  = start_time;
1121         as->mode        = BTREE_INTERIOR_NO_UPDATE;
1122         as->took_gc_lock = true;
1123         as->btree_id    = path->btree_id;
1124         as->update_level = update_level;
1125         INIT_LIST_HEAD(&as->list);
1126         INIT_LIST_HEAD(&as->unwritten_list);
1127         INIT_LIST_HEAD(&as->write_blocked_list);
1128         bch2_keylist_init(&as->old_keys, as->_old_keys);
1129         bch2_keylist_init(&as->new_keys, as->_new_keys);
1130         bch2_keylist_init(&as->parent_keys, as->inline_keys);
1131
1132         mutex_lock(&c->btree_interior_update_lock);
1133         list_add_tail(&as->list, &c->btree_interior_update_list);
1134         mutex_unlock(&c->btree_interior_update_lock);
1135
1136         /*
1137          * We don't want to allocate if we're in an error state, that can cause
1138          * deadlock on emergency shutdown due to open buckets getting stuck in
1139          * the btree_reserve_cache after allocator shutdown has cleared it out.
1140          * This check needs to come after adding us to the btree_interior_update
1141          * list but before calling bch2_btree_reserve_get, to synchronize with
1142          * __bch2_fs_read_only().
1143          */
1144         ret = bch2_journal_error(&c->journal);
1145         if (ret)
1146                 goto err;
1147
1148         ret = bch2_disk_reservation_get(c, &as->disk_res,
1149                         (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1150                         c->opts.metadata_replicas,
1151                         disk_res_flags);
1152         if (ret)
1153                 goto err;
1154
1155         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1156         if (bch2_err_matches(ret, ENOSPC) ||
1157             bch2_err_matches(ret, ENOMEM)) {
1158                 struct closure cl;
1159
1160                 /*
1161                  * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1162                  * flag
1163                  */
1164                 if (bch2_err_matches(ret, ENOSPC) &&
1165                     (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1166                     watermark != BCH_WATERMARK_reclaim) {
1167                         ret = -BCH_ERR_journal_reclaim_would_deadlock;
1168                         goto err;
1169                 }
1170
1171                 closure_init_stack(&cl);
1172
1173                 do {
1174                         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1175
1176                         bch2_trans_unlock(trans);
1177                         closure_sync(&cl);
1178                 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1179         }
1180
1181         if (ret) {
1182                 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1183                                 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1184                 goto err;
1185         }
1186
1187         ret = bch2_trans_relock(trans);
1188         if (ret)
1189                 goto err;
1190
1191         bch2_trans_verify_not_restarted(trans, restart_count);
1192         return as;
1193 err:
1194         bch2_btree_update_free(as, trans);
1195         if (!bch2_err_matches(ret, ENOSPC) &&
1196             !bch2_err_matches(ret, EROFS))
1197                 bch_err_fn_ratelimited(c, ret);
1198         return ERR_PTR(ret);
1199 }
1200
1201 /* Btree root updates: */
1202
1203 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1204 {
1205         /* Root nodes cannot be reaped */
1206         mutex_lock(&c->btree_cache.lock);
1207         list_del_init(&b->list);
1208         mutex_unlock(&c->btree_cache.lock);
1209
1210         mutex_lock(&c->btree_root_lock);
1211         BUG_ON(btree_node_root(c, b) &&
1212                (b->c.level < btree_node_root(c, b)->c.level ||
1213                 !btree_node_dying(btree_node_root(c, b))));
1214
1215         bch2_btree_id_root(c, b->c.btree_id)->b = b;
1216         mutex_unlock(&c->btree_root_lock);
1217
1218         bch2_recalc_btree_reserve(c);
1219 }
1220
1221 static void bch2_btree_set_root(struct btree_update *as,
1222                                 struct btree_trans *trans,
1223                                 struct btree_path *path,
1224                                 struct btree *b)
1225 {
1226         struct bch_fs *c = as->c;
1227         struct btree *old;
1228
1229         trace_and_count(c, btree_node_set_root, trans, b);
1230
1231         old = btree_node_root(c, b);
1232
1233         /*
1234          * Ensure no one is using the old root while we switch to the
1235          * new root:
1236          */
1237         bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1238
1239         bch2_btree_set_root_inmem(c, b);
1240
1241         btree_update_updated_root(as, b);
1242
1243         /*
1244          * Unlock old root after new root is visible:
1245          *
1246          * The new root isn't persistent, but that's ok: we still have
1247          * an intent lock on the new root, and any updates that would
1248          * depend on the new root would have to update the new root.
1249          */
1250         bch2_btree_node_unlock_write(trans, path, old);
1251 }
1252
1253 /* Interior node updates: */
1254
1255 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1256                                         struct btree_trans *trans,
1257                                         struct btree_path *path,
1258                                         struct btree *b,
1259                                         struct btree_node_iter *node_iter,
1260                                         struct bkey_i *insert)
1261 {
1262         struct bch_fs *c = as->c;
1263         struct bkey_packed *k;
1264         struct printbuf buf = PRINTBUF;
1265         unsigned long old, new, v;
1266
1267         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1268                !btree_ptr_sectors_written(insert));
1269
1270         if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1271                 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1272
1273         if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1274                               btree_node_type(b), WRITE, &buf) ?:
1275             bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1276                 printbuf_reset(&buf);
1277                 prt_printf(&buf, "inserting invalid bkey\n  ");
1278                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1279                 prt_printf(&buf, "\n  ");
1280                 bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1281                                   btree_node_type(b), WRITE, &buf);
1282                 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1283
1284                 bch2_fs_inconsistent(c, "%s", buf.buf);
1285                 dump_stack();
1286         }
1287
1288         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1289                ARRAY_SIZE(as->journal_entries));
1290
1291         as->journal_u64s +=
1292                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1293                                   BCH_JSET_ENTRY_btree_keys,
1294                                   b->c.btree_id, b->c.level,
1295                                   insert, insert->k.u64s);
1296
1297         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1298                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1299                 bch2_btree_node_iter_advance(node_iter, b);
1300
1301         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1302         set_btree_node_dirty_acct(c, b);
1303
1304         v = READ_ONCE(b->flags);
1305         do {
1306                 old = new = v;
1307
1308                 new &= ~BTREE_WRITE_TYPE_MASK;
1309                 new |= BTREE_WRITE_interior;
1310                 new |= 1 << BTREE_NODE_need_write;
1311         } while ((v = cmpxchg(&b->flags, old, new)) != old);
1312
1313         printbuf_exit(&buf);
1314 }
1315
1316 static void
1317 __bch2_btree_insert_keys_interior(struct btree_update *as,
1318                                   struct btree_trans *trans,
1319                                   struct btree_path *path,
1320                                   struct btree *b,
1321                                   struct btree_node_iter node_iter,
1322                                   struct keylist *keys)
1323 {
1324         struct bkey_i *insert = bch2_keylist_front(keys);
1325         struct bkey_packed *k;
1326
1327         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1328
1329         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1330                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1331                 ;
1332
1333         while (!bch2_keylist_empty(keys)) {
1334                 insert = bch2_keylist_front(keys);
1335
1336                 if (bpos_gt(insert->k.p, b->key.k.p))
1337                         break;
1338
1339                 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1340                 bch2_keylist_pop_front(keys);
1341         }
1342 }
1343
1344 /*
1345  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1346  * node)
1347  */
1348 static void __btree_split_node(struct btree_update *as,
1349                                struct btree_trans *trans,
1350                                struct btree *b,
1351                                struct btree *n[2])
1352 {
1353         struct bkey_packed *k;
1354         struct bpos n1_pos = POS_MIN;
1355         struct btree_node_iter iter;
1356         struct bset *bsets[2];
1357         struct bkey_format_state format[2];
1358         struct bkey_packed *out[2];
1359         struct bkey uk;
1360         unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1361         struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1362         int i;
1363
1364         memset(&nr_keys, 0, sizeof(nr_keys));
1365
1366         for (i = 0; i < 2; i++) {
1367                 BUG_ON(n[i]->nsets != 1);
1368
1369                 bsets[i] = btree_bset_first(n[i]);
1370                 out[i] = bsets[i]->start;
1371
1372                 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1373                 bch2_bkey_format_init(&format[i]);
1374         }
1375
1376         u64s = 0;
1377         for_each_btree_node_key(b, k, &iter) {
1378                 if (bkey_deleted(k))
1379                         continue;
1380
1381                 i = u64s >= n1_u64s;
1382                 u64s += k->u64s;
1383                 uk = bkey_unpack_key(b, k);
1384                 if (!i)
1385                         n1_pos = uk.p;
1386                 bch2_bkey_format_add_key(&format[i], &uk);
1387
1388                 nr_keys[i].nr_keys++;
1389                 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1390         }
1391
1392         btree_set_min(n[0], b->data->min_key);
1393         btree_set_max(n[0], n1_pos);
1394         btree_set_min(n[1], bpos_successor(n1_pos));
1395         btree_set_max(n[1], b->data->max_key);
1396
1397         for (i = 0; i < 2; i++) {
1398                 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1399                 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1400
1401                 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1402
1403                 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1404                         nr_keys[i].val_u64s;
1405                 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1406                         n[i]->data->format = b->format;
1407
1408                 btree_node_set_format(n[i], n[i]->data->format);
1409         }
1410
1411         u64s = 0;
1412         for_each_btree_node_key(b, k, &iter) {
1413                 if (bkey_deleted(k))
1414                         continue;
1415
1416                 i = u64s >= n1_u64s;
1417                 u64s += k->u64s;
1418
1419                 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1420                                         ? &b->format: &bch2_bkey_format_current, k))
1421                         out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1422                 else
1423                         bch2_bkey_unpack(b, (void *) out[i], k);
1424
1425                 out[i]->needs_whiteout = false;
1426
1427                 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1428                 out[i] = bkey_p_next(out[i]);
1429         }
1430
1431         for (i = 0; i < 2; i++) {
1432                 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1433
1434                 BUG_ON(!bsets[i]->u64s);
1435
1436                 set_btree_bset_end(n[i], n[i]->set);
1437
1438                 btree_node_reset_sib_u64s(n[i]);
1439
1440                 bch2_verify_btree_nr_keys(n[i]);
1441
1442                 if (b->c.level)
1443                         btree_node_interior_verify(as->c, n[i]);
1444         }
1445 }
1446
1447 /*
1448  * For updates to interior nodes, we've got to do the insert before we split
1449  * because the stuff we're inserting has to be inserted atomically. Post split,
1450  * the keys might have to go in different nodes and the split would no longer be
1451  * atomic.
1452  *
1453  * Worse, if the insert is from btree node coalescing, if we do the insert after
1454  * we do the split (and pick the pivot) - the pivot we pick might be between
1455  * nodes that were coalesced, and thus in the middle of a child node post
1456  * coalescing:
1457  */
1458 static void btree_split_insert_keys(struct btree_update *as,
1459                                     struct btree_trans *trans,
1460                                     btree_path_idx_t path_idx,
1461                                     struct btree *b,
1462                                     struct keylist *keys)
1463 {
1464         struct btree_path *path = trans->paths + path_idx;
1465
1466         if (!bch2_keylist_empty(keys) &&
1467             bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1468                 struct btree_node_iter node_iter;
1469
1470                 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1471
1472                 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1473
1474                 btree_node_interior_verify(as->c, b);
1475         }
1476 }
1477
1478 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1479                        btree_path_idx_t path, struct btree *b,
1480                        struct keylist *keys, unsigned flags)
1481 {
1482         struct bch_fs *c = as->c;
1483         struct btree *parent = btree_node_parent(trans->paths + path, b);
1484         struct btree *n1, *n2 = NULL, *n3 = NULL;
1485         btree_path_idx_t path1 = 0, path2 = 0;
1486         u64 start_time = local_clock();
1487         int ret = 0;
1488
1489         BUG_ON(!parent && (b != btree_node_root(c, b)));
1490         BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1491
1492         bch2_btree_interior_update_will_free_node(as, b);
1493
1494         if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1495                 struct btree *n[2];
1496
1497                 trace_and_count(c, btree_node_split, trans, b);
1498
1499                 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1500                 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1501
1502                 __btree_split_node(as, trans, b, n);
1503
1504                 if (keys) {
1505                         btree_split_insert_keys(as, trans, path, n1, keys);
1506                         btree_split_insert_keys(as, trans, path, n2, keys);
1507                         BUG_ON(!bch2_keylist_empty(keys));
1508                 }
1509
1510                 bch2_btree_build_aux_trees(n2);
1511                 bch2_btree_build_aux_trees(n1);
1512
1513                 bch2_btree_update_add_new_node(as, n1);
1514                 bch2_btree_update_add_new_node(as, n2);
1515                 six_unlock_write(&n2->c.lock);
1516                 six_unlock_write(&n1->c.lock);
1517
1518                 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1519                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1520                 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1521                 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1522
1523                 path2 = get_unlocked_mut_path(trans, as->btree_id, n2->c.level, n2->key.k.p);
1524                 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1525                 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1526                 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1527
1528                 /*
1529                  * Note that on recursive parent_keys == keys, so we
1530                  * can't start adding new keys to parent_keys before emptying it
1531                  * out (which we did with btree_split_insert_keys() above)
1532                  */
1533                 bch2_keylist_add(&as->parent_keys, &n1->key);
1534                 bch2_keylist_add(&as->parent_keys, &n2->key);
1535
1536                 if (!parent) {
1537                         /* Depth increases, make a new root */
1538                         n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1539
1540                         bch2_btree_update_add_new_node(as, n3);
1541                         six_unlock_write(&n3->c.lock);
1542
1543                         trans->paths[path2].locks_want++;
1544                         BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1545                         six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1546                         mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1547                         bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1548
1549                         n3->sib_u64s[0] = U16_MAX;
1550                         n3->sib_u64s[1] = U16_MAX;
1551
1552                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1553                 }
1554         } else {
1555                 trace_and_count(c, btree_node_compact, trans, b);
1556
1557                 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1558
1559                 if (keys) {
1560                         btree_split_insert_keys(as, trans, path, n1, keys);
1561                         BUG_ON(!bch2_keylist_empty(keys));
1562                 }
1563
1564                 bch2_btree_build_aux_trees(n1);
1565                 bch2_btree_update_add_new_node(as, n1);
1566                 six_unlock_write(&n1->c.lock);
1567
1568                 path1 = get_unlocked_mut_path(trans, as->btree_id, n1->c.level, n1->key.k.p);
1569                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1570                 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1571                 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1572
1573                 if (parent)
1574                         bch2_keylist_add(&as->parent_keys, &n1->key);
1575         }
1576
1577         /* New nodes all written, now make them visible: */
1578
1579         if (parent) {
1580                 /* Split a non root node */
1581                 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1582                 if (ret)
1583                         goto err;
1584         } else if (n3) {
1585                 bch2_btree_set_root(as, trans, trans->paths + path, n3);
1586         } else {
1587                 /* Root filled up but didn't need to be split */
1588                 bch2_btree_set_root(as, trans, trans->paths + path, n1);
1589         }
1590
1591         if (n3) {
1592                 bch2_btree_update_get_open_buckets(as, n3);
1593                 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1594         }
1595         if (n2) {
1596                 bch2_btree_update_get_open_buckets(as, n2);
1597                 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1598         }
1599         bch2_btree_update_get_open_buckets(as, n1);
1600         bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1601
1602         /*
1603          * The old node must be freed (in memory) _before_ unlocking the new
1604          * nodes - else another thread could re-acquire a read lock on the old
1605          * node after another thread has locked and updated the new node, thus
1606          * seeing stale data:
1607          */
1608         bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1609
1610         if (n3)
1611                 bch2_trans_node_add(trans, trans->paths + path, n3);
1612         if (n2)
1613                 bch2_trans_node_add(trans, trans->paths + path2, n2);
1614         bch2_trans_node_add(trans, trans->paths + path1, n1);
1615
1616         if (n3)
1617                 six_unlock_intent(&n3->c.lock);
1618         if (n2)
1619                 six_unlock_intent(&n2->c.lock);
1620         six_unlock_intent(&n1->c.lock);
1621 out:
1622         if (path2) {
1623                 __bch2_btree_path_unlock(trans, trans->paths + path2);
1624                 bch2_path_put(trans, path2, true);
1625         }
1626         if (path1) {
1627                 __bch2_btree_path_unlock(trans, trans->paths + path1);
1628                 bch2_path_put(trans, path1, true);
1629         }
1630
1631         bch2_trans_verify_locks(trans);
1632
1633         time_stats_update(&c->times[n2
1634                                ? BCH_TIME_btree_node_split
1635                                : BCH_TIME_btree_node_compact],
1636                                start_time);
1637         return ret;
1638 err:
1639         if (n3)
1640                 bch2_btree_node_free_never_used(as, trans, n3);
1641         if (n2)
1642                 bch2_btree_node_free_never_used(as, trans, n2);
1643         bch2_btree_node_free_never_used(as, trans, n1);
1644         goto out;
1645 }
1646
1647 static void
1648 bch2_btree_insert_keys_interior(struct btree_update *as,
1649                                 struct btree_trans *trans,
1650                                 struct btree_path *path,
1651                                 struct btree *b,
1652                                 struct keylist *keys)
1653 {
1654         struct btree_path *linked;
1655         unsigned i;
1656
1657         __bch2_btree_insert_keys_interior(as, trans, path, b,
1658                                           path->l[b->c.level].iter, keys);
1659
1660         btree_update_updated_node(as, b);
1661
1662         trans_for_each_path_with_node(trans, b, linked, i)
1663                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1664
1665         bch2_trans_verify_paths(trans);
1666 }
1667
1668 /**
1669  * bch2_btree_insert_node - insert bkeys into a given btree node
1670  *
1671  * @as:                 btree_update object
1672  * @trans:              btree_trans object
1673  * @path_idx:           path that points to current node
1674  * @b:                  node to insert keys into
1675  * @keys:               list of keys to insert
1676  * @flags:              transaction commit flags
1677  *
1678  * Returns: 0 on success, typically transaction restart error on failure
1679  *
1680  * Inserts as many keys as it can into a given btree node, splitting it if full.
1681  * If a split occurred, this function will return early. This can only happen
1682  * for leaf nodes -- inserts into interior nodes have to be atomic.
1683  */
1684 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1685                                   btree_path_idx_t path_idx, struct btree *b,
1686                                   struct keylist *keys, unsigned flags)
1687 {
1688         struct bch_fs *c = as->c;
1689         struct btree_path *path = trans->paths + path_idx;
1690         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1691         int old_live_u64s = b->nr.live_u64s;
1692         int live_u64s_added, u64s_added;
1693         int ret;
1694
1695         lockdep_assert_held(&c->gc_lock);
1696         BUG_ON(!btree_node_intent_locked(path, b->c.level));
1697         BUG_ON(!b->c.level);
1698         BUG_ON(!as || as->b);
1699         bch2_verify_keylist_sorted(keys);
1700
1701         ret = bch2_btree_node_lock_write(trans, path, &b->c);
1702         if (ret)
1703                 return ret;
1704
1705         bch2_btree_node_prep_for_write(trans, path, b);
1706
1707         if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1708                 bch2_btree_node_unlock_write(trans, path, b);
1709                 goto split;
1710         }
1711
1712         btree_node_interior_verify(c, b);
1713
1714         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1715
1716         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1717         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1718
1719         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1720                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1721         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1722                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1723
1724         if (u64s_added > live_u64s_added &&
1725             bch2_maybe_compact_whiteouts(c, b))
1726                 bch2_trans_node_reinit_iter(trans, b);
1727
1728         bch2_btree_node_unlock_write(trans, path, b);
1729
1730         btree_node_interior_verify(c, b);
1731         return 0;
1732 split:
1733         /*
1734          * We could attempt to avoid the transaction restart, by calling
1735          * bch2_btree_path_upgrade() and allocating more nodes:
1736          */
1737         if (b->c.level >= as->update_level) {
1738                 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1739                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1740         }
1741
1742         return btree_split(as, trans, path_idx, b, keys, flags);
1743 }
1744
1745 int bch2_btree_split_leaf(struct btree_trans *trans,
1746                           btree_path_idx_t path,
1747                           unsigned flags)
1748 {
1749         /* btree_split & merge may both cause paths array to be reallocated */
1750
1751         struct btree *b = path_l(trans->paths + path)->b;
1752         struct btree_update *as;
1753         unsigned l;
1754         int ret = 0;
1755
1756         as = bch2_btree_update_start(trans, trans->paths + path,
1757                                      trans->paths[path].level,
1758                                      true, flags);
1759         if (IS_ERR(as))
1760                 return PTR_ERR(as);
1761
1762         ret = btree_split(as, trans, path, b, NULL, flags);
1763         if (ret) {
1764                 bch2_btree_update_free(as, trans);
1765                 return ret;
1766         }
1767
1768         bch2_btree_update_done(as, trans);
1769
1770         for (l = trans->paths[path].level + 1;
1771              btree_node_intent_locked(&trans->paths[path], l) && !ret;
1772              l++)
1773                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1774
1775         return ret;
1776 }
1777
1778 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1779                                   btree_path_idx_t path,
1780                                   unsigned level,
1781                                   unsigned flags,
1782                                   enum btree_node_sibling sib)
1783 {
1784         struct bch_fs *c = trans->c;
1785         struct btree_update *as;
1786         struct bkey_format_state new_s;
1787         struct bkey_format new_f;
1788         struct bkey_i delete;
1789         struct btree *b, *m, *n, *prev, *next, *parent;
1790         struct bpos sib_pos;
1791         size_t sib_u64s;
1792         enum btree_id btree = trans->paths[path].btree_id;
1793         btree_path_idx_t sib_path = 0, new_path = 0;
1794         u64 start_time = local_clock();
1795         int ret = 0;
1796
1797         BUG_ON(!trans->paths[path].should_be_locked);
1798         BUG_ON(!btree_node_locked(&trans->paths[path], level));
1799
1800         b = trans->paths[path].l[level].b;
1801
1802         if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1803             (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1804                 b->sib_u64s[sib] = U16_MAX;
1805                 return 0;
1806         }
1807
1808         sib_pos = sib == btree_prev_sib
1809                 ? bpos_predecessor(b->data->min_key)
1810                 : bpos_successor(b->data->max_key);
1811
1812         sib_path = bch2_path_get(trans, btree, sib_pos,
1813                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1814         ret = bch2_btree_path_traverse(trans, sib_path, false);
1815         if (ret)
1816                 goto err;
1817
1818         btree_path_set_should_be_locked(trans->paths + sib_path);
1819
1820         m = trans->paths[sib_path].l[level].b;
1821
1822         if (btree_node_parent(trans->paths + path, b) !=
1823             btree_node_parent(trans->paths + sib_path, m)) {
1824                 b->sib_u64s[sib] = U16_MAX;
1825                 goto out;
1826         }
1827
1828         if (sib == btree_prev_sib) {
1829                 prev = m;
1830                 next = b;
1831         } else {
1832                 prev = b;
1833                 next = m;
1834         }
1835
1836         if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1837                 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1838
1839                 bch2_bpos_to_text(&buf1, prev->data->max_key);
1840                 bch2_bpos_to_text(&buf2, next->data->min_key);
1841                 bch_err(c,
1842                         "%s(): btree topology error:\n"
1843                         "  prev ends at   %s\n"
1844                         "  next starts at %s",
1845                         __func__, buf1.buf, buf2.buf);
1846                 printbuf_exit(&buf1);
1847                 printbuf_exit(&buf2);
1848                 ret = bch2_topology_error(c);
1849                 goto err;
1850         }
1851
1852         bch2_bkey_format_init(&new_s);
1853         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1854         __bch2_btree_calc_format(&new_s, prev);
1855         __bch2_btree_calc_format(&new_s, next);
1856         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1857         new_f = bch2_bkey_format_done(&new_s);
1858
1859         sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
1860                 btree_node_u64s_with_format(m->nr, &m->format, &new_f);
1861
1862         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1863                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1864                 sib_u64s /= 2;
1865                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1866         }
1867
1868         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1869         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1870         b->sib_u64s[sib] = sib_u64s;
1871
1872         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1873                 goto out;
1874
1875         parent = btree_node_parent(trans->paths + path, b);
1876         as = bch2_btree_update_start(trans, trans->paths + path, level, false,
1877                                      BCH_TRANS_COMMIT_no_enospc|flags);
1878         ret = PTR_ERR_OR_ZERO(as);
1879         if (ret)
1880                 goto err;
1881
1882         trace_and_count(c, btree_node_merge, trans, b);
1883
1884         bch2_btree_interior_update_will_free_node(as, b);
1885         bch2_btree_interior_update_will_free_node(as, m);
1886
1887         n = bch2_btree_node_alloc(as, trans, b->c.level);
1888
1889         SET_BTREE_NODE_SEQ(n->data,
1890                            max(BTREE_NODE_SEQ(b->data),
1891                                BTREE_NODE_SEQ(m->data)) + 1);
1892
1893         btree_set_min(n, prev->data->min_key);
1894         btree_set_max(n, next->data->max_key);
1895
1896         n->data->format  = new_f;
1897         btree_node_set_format(n, new_f);
1898
1899         bch2_btree_sort_into(c, n, prev);
1900         bch2_btree_sort_into(c, n, next);
1901
1902         bch2_btree_build_aux_trees(n);
1903         bch2_btree_update_add_new_node(as, n);
1904         six_unlock_write(&n->c.lock);
1905
1906         new_path = get_unlocked_mut_path(trans, btree, n->c.level, n->key.k.p);
1907         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1908         mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1909         bch2_btree_path_level_init(trans, trans->paths + new_path, n);
1910
1911         bkey_init(&delete.k);
1912         delete.k.p = prev->key.k.p;
1913         bch2_keylist_add(&as->parent_keys, &delete);
1914         bch2_keylist_add(&as->parent_keys, &n->key);
1915
1916         bch2_trans_verify_paths(trans);
1917
1918         ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1919         if (ret)
1920                 goto err_free_update;
1921
1922         bch2_trans_verify_paths(trans);
1923
1924         bch2_btree_update_get_open_buckets(as, n);
1925         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1926
1927         bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1928         bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
1929
1930         bch2_trans_node_add(trans, trans->paths + path, n);
1931
1932         bch2_trans_verify_paths(trans);
1933
1934         six_unlock_intent(&n->c.lock);
1935
1936         bch2_btree_update_done(as, trans);
1937
1938         time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1939 out:
1940 err:
1941         if (new_path)
1942                 bch2_path_put(trans, new_path, true);
1943         bch2_path_put(trans, sib_path, true);
1944         bch2_trans_verify_locks(trans);
1945         return ret;
1946 err_free_update:
1947         bch2_btree_node_free_never_used(as, trans, n);
1948         bch2_btree_update_free(as, trans);
1949         goto out;
1950 }
1951
1952 int bch2_btree_node_rewrite(struct btree_trans *trans,
1953                             struct btree_iter *iter,
1954                             struct btree *b,
1955                             unsigned flags)
1956 {
1957         struct bch_fs *c = trans->c;
1958         struct btree *n, *parent;
1959         struct btree_update *as;
1960         btree_path_idx_t new_path = 0;
1961         int ret;
1962
1963         flags |= BCH_TRANS_COMMIT_no_enospc;
1964
1965         struct btree_path *path = btree_iter_path(trans, iter);
1966         parent = btree_node_parent(path, b);
1967         as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
1968         ret = PTR_ERR_OR_ZERO(as);
1969         if (ret)
1970                 goto out;
1971
1972         bch2_btree_interior_update_will_free_node(as, b);
1973
1974         n = bch2_btree_node_alloc_replacement(as, trans, b);
1975
1976         bch2_btree_build_aux_trees(n);
1977         bch2_btree_update_add_new_node(as, n);
1978         six_unlock_write(&n->c.lock);
1979
1980         new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
1981         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1982         mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1983         bch2_btree_path_level_init(trans, trans->paths + new_path, n);
1984
1985         trace_and_count(c, btree_node_rewrite, trans, b);
1986
1987         if (parent) {
1988                 bch2_keylist_add(&as->parent_keys, &n->key);
1989                 ret = bch2_btree_insert_node(as, trans, iter->path,
1990                                              parent, &as->parent_keys, flags);
1991                 if (ret)
1992                         goto err;
1993         } else {
1994                 bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n);
1995         }
1996
1997         bch2_btree_update_get_open_buckets(as, n);
1998         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1999
2000         bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2001
2002         bch2_trans_node_add(trans, trans->paths + iter->path, n);
2003         six_unlock_intent(&n->c.lock);
2004
2005         bch2_btree_update_done(as, trans);
2006 out:
2007         if (new_path)
2008                 bch2_path_put(trans, new_path, true);
2009         bch2_trans_downgrade(trans);
2010         return ret;
2011 err:
2012         bch2_btree_node_free_never_used(as, trans, n);
2013         bch2_btree_update_free(as, trans);
2014         goto out;
2015 }
2016
2017 struct async_btree_rewrite {
2018         struct bch_fs           *c;
2019         struct work_struct      work;
2020         struct list_head        list;
2021         enum btree_id           btree_id;
2022         unsigned                level;
2023         struct bpos             pos;
2024         __le64                  seq;
2025 };
2026
2027 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2028                                           struct async_btree_rewrite *a)
2029 {
2030         struct bch_fs *c = trans->c;
2031         struct btree_iter iter;
2032         struct btree *b;
2033         int ret;
2034
2035         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2036                                   BTREE_MAX_DEPTH, a->level, 0);
2037         b = bch2_btree_iter_peek_node(&iter);
2038         ret = PTR_ERR_OR_ZERO(b);
2039         if (ret)
2040                 goto out;
2041
2042         if (!b || b->data->keys.seq != a->seq) {
2043                 struct printbuf buf = PRINTBUF;
2044
2045                 if (b)
2046                         bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2047                 else
2048                         prt_str(&buf, "(null");
2049                 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2050                          __func__, a->seq, buf.buf);
2051                 printbuf_exit(&buf);
2052                 goto out;
2053         }
2054
2055         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2056 out:
2057         bch2_trans_iter_exit(trans, &iter);
2058
2059         return ret;
2060 }
2061
2062 static void async_btree_node_rewrite_work(struct work_struct *work)
2063 {
2064         struct async_btree_rewrite *a =
2065                 container_of(work, struct async_btree_rewrite, work);
2066         struct bch_fs *c = a->c;
2067         int ret;
2068
2069         ret = bch2_trans_do(c, NULL, NULL, 0,
2070                       async_btree_node_rewrite_trans(trans, a));
2071         bch_err_fn(c, ret);
2072         bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2073         kfree(a);
2074 }
2075
2076 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2077 {
2078         struct async_btree_rewrite *a;
2079         int ret;
2080
2081         a = kmalloc(sizeof(*a), GFP_NOFS);
2082         if (!a) {
2083                 bch_err(c, "%s: error allocating memory", __func__);
2084                 return;
2085         }
2086
2087         a->c            = c;
2088         a->btree_id     = b->c.btree_id;
2089         a->level        = b->c.level;
2090         a->pos          = b->key.k.p;
2091         a->seq          = b->data->keys.seq;
2092         INIT_WORK(&a->work, async_btree_node_rewrite_work);
2093
2094         if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2095                 mutex_lock(&c->pending_node_rewrites_lock);
2096                 list_add(&a->list, &c->pending_node_rewrites);
2097                 mutex_unlock(&c->pending_node_rewrites_lock);
2098                 return;
2099         }
2100
2101         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2102                 if (test_bit(BCH_FS_started, &c->flags)) {
2103                         bch_err(c, "%s: error getting c->writes ref", __func__);
2104                         kfree(a);
2105                         return;
2106                 }
2107
2108                 ret = bch2_fs_read_write_early(c);
2109                 bch_err_msg(c, ret, "going read-write");
2110                 if (ret) {
2111                         kfree(a);
2112                         return;
2113                 }
2114
2115                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2116         }
2117
2118         queue_work(c->btree_interior_update_worker, &a->work);
2119 }
2120
2121 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2122 {
2123         struct async_btree_rewrite *a, *n;
2124
2125         mutex_lock(&c->pending_node_rewrites_lock);
2126         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2127                 list_del(&a->list);
2128
2129                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2130                 queue_work(c->btree_interior_update_worker, &a->work);
2131         }
2132         mutex_unlock(&c->pending_node_rewrites_lock);
2133 }
2134
2135 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2136 {
2137         struct async_btree_rewrite *a, *n;
2138
2139         mutex_lock(&c->pending_node_rewrites_lock);
2140         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2141                 list_del(&a->list);
2142
2143                 kfree(a);
2144         }
2145         mutex_unlock(&c->pending_node_rewrites_lock);
2146 }
2147
2148 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2149                                         struct btree_iter *iter,
2150                                         struct btree *b, struct btree *new_hash,
2151                                         struct bkey_i *new_key,
2152                                         unsigned commit_flags,
2153                                         bool skip_triggers)
2154 {
2155         struct bch_fs *c = trans->c;
2156         struct btree_iter iter2 = { NULL };
2157         struct btree *parent;
2158         int ret;
2159
2160         if (!skip_triggers) {
2161                 ret   = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2162                                              bkey_i_to_s_c(&b->key),
2163                                              BTREE_TRIGGER_TRANSACTIONAL) ?:
2164                         bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2165                                              bkey_i_to_s(new_key),
2166                                              BTREE_TRIGGER_TRANSACTIONAL);
2167                 if (ret)
2168                         return ret;
2169         }
2170
2171         if (new_hash) {
2172                 bkey_copy(&new_hash->key, new_key);
2173                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2174                                 new_hash, b->c.level, b->c.btree_id);
2175                 BUG_ON(ret);
2176         }
2177
2178         parent = btree_node_parent(btree_iter_path(trans, iter), b);
2179         if (parent) {
2180                 bch2_trans_copy_iter(&iter2, iter);
2181
2182                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2183                                 iter2.flags & BTREE_ITER_INTENT,
2184                                 _THIS_IP_);
2185
2186                 struct btree_path *path2 = btree_iter_path(trans, &iter2);
2187                 BUG_ON(path2->level != b->c.level);
2188                 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2189
2190                 btree_path_set_level_up(trans, path2);
2191
2192                 trans->paths_sorted = false;
2193
2194                 ret   = bch2_btree_iter_traverse(&iter2) ?:
2195                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2196                 if (ret)
2197                         goto err;
2198         } else {
2199                 BUG_ON(btree_node_root(c, b) != b);
2200
2201                 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2202                                        jset_u64s(new_key->k.u64s));
2203                 ret = PTR_ERR_OR_ZERO(e);
2204                 if (ret)
2205                         return ret;
2206
2207                 journal_entry_set(e,
2208                                   BCH_JSET_ENTRY_btree_root,
2209                                   b->c.btree_id, b->c.level,
2210                                   new_key, new_key->k.u64s);
2211         }
2212
2213         ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2214         if (ret)
2215                 goto err;
2216
2217         bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2218
2219         if (new_hash) {
2220                 mutex_lock(&c->btree_cache.lock);
2221                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2222                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2223
2224                 bkey_copy(&b->key, new_key);
2225                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2226                 BUG_ON(ret);
2227                 mutex_unlock(&c->btree_cache.lock);
2228         } else {
2229                 bkey_copy(&b->key, new_key);
2230         }
2231
2232         bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2233 out:
2234         bch2_trans_iter_exit(trans, &iter2);
2235         return ret;
2236 err:
2237         if (new_hash) {
2238                 mutex_lock(&c->btree_cache.lock);
2239                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2240                 mutex_unlock(&c->btree_cache.lock);
2241         }
2242         goto out;
2243 }
2244
2245 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2246                                struct btree *b, struct bkey_i *new_key,
2247                                unsigned commit_flags, bool skip_triggers)
2248 {
2249         struct bch_fs *c = trans->c;
2250         struct btree *new_hash = NULL;
2251         struct btree_path *path = btree_iter_path(trans, iter);
2252         struct closure cl;
2253         int ret = 0;
2254
2255         ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2256         if (ret)
2257                 return ret;
2258
2259         closure_init_stack(&cl);
2260
2261         /*
2262          * check btree_ptr_hash_val() after @b is locked by
2263          * btree_iter_traverse():
2264          */
2265         if (btree_ptr_hash_val(new_key) != b->hash_val) {
2266                 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2267                 if (ret) {
2268                         ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2269                         if (ret)
2270                                 return ret;
2271                 }
2272
2273                 new_hash = bch2_btree_node_mem_alloc(trans, false);
2274         }
2275
2276         path->intent_ref++;
2277         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2278                                            commit_flags, skip_triggers);
2279         --path->intent_ref;
2280
2281         if (new_hash) {
2282                 mutex_lock(&c->btree_cache.lock);
2283                 list_move(&new_hash->list, &c->btree_cache.freeable);
2284                 mutex_unlock(&c->btree_cache.lock);
2285
2286                 six_unlock_write(&new_hash->c.lock);
2287                 six_unlock_intent(&new_hash->c.lock);
2288         }
2289         closure_sync(&cl);
2290         bch2_btree_cache_cannibalize_unlock(trans);
2291         return ret;
2292 }
2293
2294 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2295                                         struct btree *b, struct bkey_i *new_key,
2296                                         unsigned commit_flags, bool skip_triggers)
2297 {
2298         struct btree_iter iter;
2299         int ret;
2300
2301         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2302                                   BTREE_MAX_DEPTH, b->c.level,
2303                                   BTREE_ITER_INTENT);
2304         ret = bch2_btree_iter_traverse(&iter);
2305         if (ret)
2306                 goto out;
2307
2308         /* has node been freed? */
2309         if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2310                 /* node has been freed: */
2311                 BUG_ON(!btree_node_dying(b));
2312                 goto out;
2313         }
2314
2315         BUG_ON(!btree_node_hashed(b));
2316
2317         struct bch_extent_ptr *ptr;
2318         bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2319                             !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2320
2321         ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2322                                          commit_flags, skip_triggers);
2323 out:
2324         bch2_trans_iter_exit(trans, &iter);
2325         return ret;
2326 }
2327
2328 /* Init code: */
2329
2330 /*
2331  * Only for filesystem bringup, when first reading the btree roots or allocating
2332  * btree roots when initializing a new filesystem:
2333  */
2334 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2335 {
2336         BUG_ON(btree_node_root(c, b));
2337
2338         bch2_btree_set_root_inmem(c, b);
2339 }
2340
2341 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2342 {
2343         struct bch_fs *c = trans->c;
2344         struct closure cl;
2345         struct btree *b;
2346         int ret;
2347
2348         closure_init_stack(&cl);
2349
2350         do {
2351                 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2352                 closure_sync(&cl);
2353         } while (ret);
2354
2355         b = bch2_btree_node_mem_alloc(trans, false);
2356         bch2_btree_cache_cannibalize_unlock(trans);
2357
2358         set_btree_node_fake(b);
2359         set_btree_node_need_rewrite(b);
2360         b->c.level      = 0;
2361         b->c.btree_id   = id;
2362
2363         bkey_btree_ptr_init(&b->key);
2364         b->key.k.p = SPOS_MAX;
2365         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2366
2367         bch2_bset_init_first(b, &b->data->keys);
2368         bch2_btree_build_aux_trees(b);
2369
2370         b->data->flags = 0;
2371         btree_set_min(b, POS_MIN);
2372         btree_set_max(b, SPOS_MAX);
2373         b->data->format = bch2_btree_calc_format(b);
2374         btree_node_set_format(b, b->data->format);
2375
2376         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2377                                           b->c.level, b->c.btree_id);
2378         BUG_ON(ret);
2379
2380         bch2_btree_set_root_inmem(c, b);
2381
2382         six_unlock_write(&b->c.lock);
2383         six_unlock_intent(&b->c.lock);
2384         return 0;
2385 }
2386
2387 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2388 {
2389         bch2_trans_run(c, __bch2_btree_root_alloc(trans, id));
2390 }
2391
2392 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2393 {
2394         struct btree_update *as;
2395
2396         mutex_lock(&c->btree_interior_update_lock);
2397         list_for_each_entry(as, &c->btree_interior_update_list, list)
2398                 prt_printf(out, "%p m %u w %u r %u j %llu\n",
2399                        as,
2400                        as->mode,
2401                        as->nodes_written,
2402                        closure_nr_remaining(&as->cl),
2403                        as->journal.seq);
2404         mutex_unlock(&c->btree_interior_update_lock);
2405 }
2406
2407 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2408 {
2409         bool ret;
2410
2411         mutex_lock(&c->btree_interior_update_lock);
2412         ret = !list_empty(&c->btree_interior_update_list);
2413         mutex_unlock(&c->btree_interior_update_lock);
2414
2415         return ret;
2416 }
2417
2418 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2419 {
2420         bool ret = bch2_btree_interior_updates_pending(c);
2421
2422         if (ret)
2423                 closure_wait_event(&c->btree_interior_update_wait,
2424                                    !bch2_btree_interior_updates_pending(c));
2425         return ret;
2426 }
2427
2428 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2429 {
2430         struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2431
2432         mutex_lock(&c->btree_root_lock);
2433
2434         r->level = entry->level;
2435         r->alive = true;
2436         bkey_copy(&r->key, (struct bkey_i *) entry->start);
2437
2438         mutex_unlock(&c->btree_root_lock);
2439 }
2440
2441 struct jset_entry *
2442 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2443                                     struct jset_entry *end,
2444                                     unsigned long skip)
2445 {
2446         unsigned i;
2447
2448         mutex_lock(&c->btree_root_lock);
2449
2450         for (i = 0; i < btree_id_nr_alive(c); i++) {
2451                 struct btree_root *r = bch2_btree_id_root(c, i);
2452
2453                 if (r->alive && !test_bit(i, &skip)) {
2454                         journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2455                                           i, r->level, &r->key, r->key.k.u64s);
2456                         end = vstruct_next(end);
2457                 }
2458         }
2459
2460         mutex_unlock(&c->btree_root_lock);
2461
2462         return end;
2463 }
2464
2465 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2466 {
2467         if (c->btree_interior_update_worker)
2468                 destroy_workqueue(c->btree_interior_update_worker);
2469         mempool_exit(&c->btree_interior_update_pool);
2470 }
2471
2472 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2473 {
2474         mutex_init(&c->btree_reserve_cache_lock);
2475         INIT_LIST_HEAD(&c->btree_interior_update_list);
2476         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2477         mutex_init(&c->btree_interior_update_lock);
2478         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2479
2480         INIT_LIST_HEAD(&c->pending_node_rewrites);
2481         mutex_init(&c->pending_node_rewrites_lock);
2482 }
2483
2484 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2485 {
2486         c->btree_interior_update_worker =
2487                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2488         if (!c->btree_interior_update_worker)
2489                 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2490
2491         if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2492                                       sizeof(struct btree_update)))
2493                 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2494
2495         return 0;
2496 }