]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
a2604b0ce2d83eb91bba44b78f3350703e112ea0
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "extents.h"
15 #include "journal.h"
16 #include "journal_reclaim.h"
17 #include "keylist.h"
18 #include "replicas.h"
19 #include "super-io.h"
20
21 #include <linux/random.h>
22 #include <trace/events/bcachefs.h>
23
24 /* Debug code: */
25
26 /*
27  * Verify that child nodes correctly span parent node's range:
28  */
29 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
30 {
31 #ifdef CONFIG_BCACHEFS_DEBUG
32         struct bpos next_node = b->data->min_key;
33         struct btree_node_iter iter;
34         struct bkey_s_c k;
35         struct bkey_s_c_btree_ptr_v2 bp;
36         struct bkey unpacked;
37
38         BUG_ON(!b->c.level);
39
40         if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags))
41                 return;
42
43         bch2_btree_node_iter_init_from_start(&iter, b);
44
45         while (1) {
46                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
47                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
48                         break;
49                 bp = bkey_s_c_to_btree_ptr_v2(k);
50
51                 BUG_ON(bkey_cmp(next_node, bp.v->min_key));
52
53                 bch2_btree_node_iter_advance(&iter, b);
54
55                 if (bch2_btree_node_iter_end(&iter)) {
56                         BUG_ON(bkey_cmp(k.k->p, b->key.k.p));
57                         break;
58                 }
59
60                 next_node = bkey_successor(k.k->p);
61         }
62 #endif
63 }
64
65 /* Calculate ideal packed bkey format for new btree nodes: */
66
67 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
68 {
69         struct bkey_packed *k;
70         struct bset_tree *t;
71         struct bkey uk;
72
73         bch2_bkey_format_add_pos(s, b->data->min_key);
74
75         for_each_bset(b, t)
76                 bset_tree_for_each_key(b, t, k)
77                         if (!bkey_whiteout(k)) {
78                                 uk = bkey_unpack_key(b, k);
79                                 bch2_bkey_format_add_key(s, &uk);
80                         }
81 }
82
83 static struct bkey_format bch2_btree_calc_format(struct btree *b)
84 {
85         struct bkey_format_state s;
86
87         bch2_bkey_format_init(&s);
88         __bch2_btree_calc_format(&s, b);
89
90         return bch2_bkey_format_done(&s);
91 }
92
93 static size_t btree_node_u64s_with_format(struct btree *b,
94                                           struct bkey_format *new_f)
95 {
96         struct bkey_format *old_f = &b->format;
97
98         /* stupid integer promotion rules */
99         ssize_t delta =
100             (((int) new_f->key_u64s - old_f->key_u64s) *
101              (int) b->nr.packed_keys) +
102             (((int) new_f->key_u64s - BKEY_U64s) *
103              (int) b->nr.unpacked_keys);
104
105         BUG_ON(delta + b->nr.live_u64s < 0);
106
107         return b->nr.live_u64s + delta;
108 }
109
110 /**
111  * btree_node_format_fits - check if we could rewrite node with a new format
112  *
113  * This assumes all keys can pack with the new format -- it just checks if
114  * the re-packed keys would fit inside the node itself.
115  */
116 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
117                                  struct bkey_format *new_f)
118 {
119         size_t u64s = btree_node_u64s_with_format(b, new_f);
120
121         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
122 }
123
124 /* Btree node freeing/allocation: */
125
126 static void __btree_node_free(struct bch_fs *c, struct btree *b)
127 {
128         trace_btree_node_free(c, b);
129
130         BUG_ON(btree_node_dirty(b));
131         BUG_ON(btree_node_need_write(b));
132         BUG_ON(b == btree_node_root(c, b));
133         BUG_ON(b->ob.nr);
134         BUG_ON(!list_empty(&b->write_blocked));
135         BUG_ON(b->will_make_reachable);
136
137         clear_btree_node_noevict(b);
138
139         bch2_btree_node_hash_remove(&c->btree_cache, b);
140
141         mutex_lock(&c->btree_cache.lock);
142         list_move(&b->list, &c->btree_cache.freeable);
143         mutex_unlock(&c->btree_cache.lock);
144 }
145
146 void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b)
147 {
148         struct open_buckets ob = b->ob;
149
150         b->ob.nr = 0;
151
152         clear_btree_node_dirty(b);
153
154         btree_node_lock_type(c, b, SIX_LOCK_write);
155         __btree_node_free(c, b);
156         six_unlock_write(&b->c.lock);
157
158         bch2_open_buckets_put(c, &ob);
159 }
160
161 void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b,
162                                 struct btree_iter *iter)
163 {
164         struct btree_iter *linked;
165
166         trans_for_each_iter(iter->trans, linked)
167                 BUG_ON(linked->l[b->c.level].b == b);
168
169         six_lock_write(&b->c.lock, NULL, NULL);
170         __btree_node_free(c, b);
171         six_unlock_write(&b->c.lock);
172         six_unlock_intent(&b->c.lock);
173 }
174
175 static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
176                                              struct disk_reservation *res,
177                                              struct closure *cl,
178                                              unsigned flags)
179 {
180         struct write_point *wp;
181         struct btree *b;
182         BKEY_PADDED(k) tmp;
183         struct open_buckets ob = { .nr = 0 };
184         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
185         unsigned nr_reserve;
186         enum alloc_reserve alloc_reserve;
187
188         if (flags & BTREE_INSERT_USE_ALLOC_RESERVE) {
189                 nr_reserve      = 0;
190                 alloc_reserve   = RESERVE_ALLOC;
191         } else if (flags & BTREE_INSERT_USE_RESERVE) {
192                 nr_reserve      = BTREE_NODE_RESERVE / 2;
193                 alloc_reserve   = RESERVE_BTREE;
194         } else {
195                 nr_reserve      = BTREE_NODE_RESERVE;
196                 alloc_reserve   = RESERVE_NONE;
197         }
198
199         mutex_lock(&c->btree_reserve_cache_lock);
200         if (c->btree_reserve_cache_nr > nr_reserve) {
201                 struct btree_alloc *a =
202                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
203
204                 ob = a->ob;
205                 bkey_copy(&tmp.k, &a->k);
206                 mutex_unlock(&c->btree_reserve_cache_lock);
207                 goto mem_alloc;
208         }
209         mutex_unlock(&c->btree_reserve_cache_lock);
210
211 retry:
212         wp = bch2_alloc_sectors_start(c, c->opts.foreground_target, 0,
213                                       writepoint_ptr(&c->btree_write_point),
214                                       &devs_have,
215                                       res->nr_replicas,
216                                       c->opts.metadata_replicas_required,
217                                       alloc_reserve, 0, cl);
218         if (IS_ERR(wp))
219                 return ERR_CAST(wp);
220
221         if (wp->sectors_free < c->opts.btree_node_size) {
222                 struct open_bucket *ob;
223                 unsigned i;
224
225                 open_bucket_for_each(c, &wp->ptrs, ob, i)
226                         if (ob->sectors_free < c->opts.btree_node_size)
227                                 ob->sectors_free = 0;
228
229                 bch2_alloc_sectors_done(c, wp);
230                 goto retry;
231         }
232
233         if (c->sb.features & (1ULL << BCH_FEATURE_btree_ptr_v2))
234                 bkey_btree_ptr_v2_init(&tmp.k);
235         else
236                 bkey_btree_ptr_init(&tmp.k);
237
238         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, c->opts.btree_node_size);
239
240         bch2_open_bucket_get(c, wp, &ob);
241         bch2_alloc_sectors_done(c, wp);
242 mem_alloc:
243         b = bch2_btree_node_mem_alloc(c);
244
245         /* we hold cannibalize_lock: */
246         BUG_ON(IS_ERR(b));
247         BUG_ON(b->ob.nr);
248
249         bkey_copy(&b->key, &tmp.k);
250         b->ob = ob;
251
252         return b;
253 }
254
255 static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
256 {
257         struct bch_fs *c = as->c;
258         struct btree *b;
259         int ret;
260
261         BUG_ON(level >= BTREE_MAX_DEPTH);
262         BUG_ON(!as->nr_prealloc_nodes);
263
264         b = as->prealloc_nodes[--as->nr_prealloc_nodes];
265
266         set_btree_node_accessed(b);
267         set_btree_node_dirty(b);
268         set_btree_node_need_write(b);
269
270         bch2_bset_init_first(b, &b->data->keys);
271         b->c.level      = level;
272         b->c.btree_id   = as->btree_id;
273
274         memset(&b->nr, 0, sizeof(b->nr));
275         b->data->magic = cpu_to_le64(bset_magic(c));
276         b->data->flags = 0;
277         SET_BTREE_NODE_ID(b->data, as->btree_id);
278         SET_BTREE_NODE_LEVEL(b->data, level);
279         b->data->ptr = bch2_bkey_ptrs_c(bkey_i_to_s_c(&b->key)).start->ptr;
280
281         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
282                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
283
284                 bp->v.mem_ptr           = 0;
285                 bp->v.seq               = b->data->keys.seq;
286                 bp->v.sectors_written   = 0;
287                 bp->v.sectors           = cpu_to_le16(c->opts.btree_node_size);
288         }
289
290         if (c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))
291                 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
292
293         if (btree_node_is_extents(b) &&
294             !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data)) {
295                 set_btree_node_old_extent_overwrite(b);
296                 set_btree_node_need_rewrite(b);
297         }
298
299         bch2_btree_build_aux_trees(b);
300
301         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
302         BUG_ON(ret);
303
304         trace_btree_node_alloc(c, b);
305         return b;
306 }
307
308 static void btree_set_min(struct btree *b, struct bpos pos)
309 {
310         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
311                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
312         b->data->min_key = pos;
313 }
314
315 static void btree_set_max(struct btree *b, struct bpos pos)
316 {
317         b->key.k.p = pos;
318         b->data->max_key = pos;
319 }
320
321 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
322                                                   struct btree *b,
323                                                   struct bkey_format format)
324 {
325         struct btree *n;
326
327         n = bch2_btree_node_alloc(as, b->c.level);
328
329         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
330
331         btree_set_min(n, b->data->min_key);
332         btree_set_max(n, b->data->max_key);
333
334         n->data->format         = format;
335         btree_node_set_format(n, format);
336
337         bch2_btree_sort_into(as->c, n, b);
338
339         btree_node_reset_sib_u64s(n);
340
341         n->key.k.p = b->key.k.p;
342         return n;
343 }
344
345 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
346                                                        struct btree *b)
347 {
348         struct bkey_format new_f = bch2_btree_calc_format(b);
349
350         /*
351          * The keys might expand with the new format - if they wouldn't fit in
352          * the btree node anymore, use the old format for now:
353          */
354         if (!bch2_btree_node_format_fits(as->c, b, &new_f))
355                 new_f = b->format;
356
357         return __bch2_btree_node_alloc_replacement(as, b, new_f);
358 }
359
360 static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
361 {
362         struct btree *b = bch2_btree_node_alloc(as, level);
363
364         btree_set_min(b, POS_MIN);
365         btree_set_max(b, POS_MAX);
366         b->data->format = bch2_btree_calc_format(b);
367
368         btree_node_set_format(b, b->data->format);
369         bch2_btree_build_aux_trees(b);
370
371         bch2_btree_update_add_new_node(as, b);
372         six_unlock_write(&b->c.lock);
373
374         return b;
375 }
376
377 static void bch2_btree_reserve_put(struct btree_update *as)
378 {
379         struct bch_fs *c = as->c;
380
381         mutex_lock(&c->btree_reserve_cache_lock);
382
383         while (as->nr_prealloc_nodes) {
384                 struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes];
385
386                 six_unlock_write(&b->c.lock);
387
388                 if (c->btree_reserve_cache_nr <
389                     ARRAY_SIZE(c->btree_reserve_cache)) {
390                         struct btree_alloc *a =
391                                 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
392
393                         a->ob = b->ob;
394                         b->ob.nr = 0;
395                         bkey_copy(&a->k, &b->key);
396                 } else {
397                         bch2_open_buckets_put(c, &b->ob);
398                 }
399
400                 btree_node_lock_type(c, b, SIX_LOCK_write);
401                 __btree_node_free(c, b);
402                 six_unlock_write(&b->c.lock);
403
404                 six_unlock_intent(&b->c.lock);
405         }
406
407         mutex_unlock(&c->btree_reserve_cache_lock);
408 }
409
410 static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes,
411                                   unsigned flags, struct closure *cl)
412 {
413         struct bch_fs *c = as->c;
414         struct btree *b;
415         int ret;
416
417         BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
418
419         /*
420          * Protects reaping from the btree node cache and using the btree node
421          * open bucket reserve:
422          */
423         ret = bch2_btree_cache_cannibalize_lock(c, cl);
424         if (ret)
425                 return ret;
426
427         while (as->nr_prealloc_nodes < nr_nodes) {
428                 b = __bch2_btree_node_alloc(c, &as->disk_res,
429                                             flags & BTREE_INSERT_NOWAIT
430                                             ? NULL : cl, flags);
431                 if (IS_ERR(b)) {
432                         ret = PTR_ERR(b);
433                         goto err_free;
434                 }
435
436                 ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(&b->key));
437                 if (ret)
438                         goto err_free;
439
440                 as->prealloc_nodes[as->nr_prealloc_nodes++] = b;
441         }
442
443         bch2_btree_cache_cannibalize_unlock(c);
444         return 0;
445 err_free:
446         bch2_btree_cache_cannibalize_unlock(c);
447         trace_btree_reserve_get_fail(c, nr_nodes, cl);
448         return ret;
449 }
450
451 /* Asynchronous interior node update machinery */
452
453 static void bch2_btree_update_free(struct btree_update *as)
454 {
455         struct bch_fs *c = as->c;
456
457         bch2_journal_preres_put(&c->journal, &as->journal_preres);
458
459         bch2_journal_pin_drop(&c->journal, &as->journal);
460         bch2_journal_pin_flush(&c->journal, &as->journal);
461         bch2_disk_reservation_put(c, &as->disk_res);
462         bch2_btree_reserve_put(as);
463
464         mutex_lock(&c->btree_interior_update_lock);
465         list_del(&as->unwritten_list);
466         list_del(&as->list);
467         mutex_unlock(&c->btree_interior_update_lock);
468
469         closure_debug_destroy(&as->cl);
470         mempool_free(as, &c->btree_interior_update_pool);
471
472         closure_wake_up(&c->btree_interior_update_wait);
473 }
474
475 static void btree_update_will_delete_key(struct btree_update *as,
476                                          struct bkey_i *k)
477 {
478         BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s >
479                ARRAY_SIZE(as->_old_keys));
480         bch2_keylist_add(&as->old_keys, k);
481 }
482
483 static void btree_update_will_add_key(struct btree_update *as,
484                                       struct bkey_i *k)
485 {
486         BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s >
487                ARRAY_SIZE(as->_new_keys));
488         bch2_keylist_add(&as->new_keys, k);
489 }
490
491 /*
492  * The transactional part of an interior btree node update, where we journal the
493  * update we did to the interior node and update alloc info:
494  */
495 static int btree_update_nodes_written_trans(struct btree_trans *trans,
496                                             struct btree_update *as)
497 {
498         struct bkey_i *k;
499         int ret;
500
501         trans->extra_journal_entries = (void *) &as->journal_entries[0];
502         trans->extra_journal_entry_u64s = as->journal_u64s;
503         trans->journal_pin = &as->journal;
504
505         for_each_keylist_key(&as->new_keys, k) {
506                 ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(k),
507                                           0, 0, BTREE_TRIGGER_INSERT);
508                 if (ret)
509                         return ret;
510         }
511
512         for_each_keylist_key(&as->old_keys, k) {
513                 ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(k),
514                                           0, 0, BTREE_TRIGGER_OVERWRITE);
515                 if (ret)
516                         return ret;
517         }
518
519         return 0;
520 }
521
522 static void btree_update_nodes_written(struct btree_update *as)
523 {
524         struct bch_fs *c = as->c;
525         struct btree *b = as->b;
526         u64 journal_seq = 0;
527         unsigned i;
528         int ret;
529
530         /*
531          * We did an update to a parent node where the pointers we added pointed
532          * to child nodes that weren't written yet: now, the child nodes have
533          * been written so we can write out the update to the interior node.
534          */
535
536         /*
537          * We can't call into journal reclaim here: we'd block on the journal
538          * reclaim lock, but we may need to release the open buckets we have
539          * pinned in order for other btree updates to make forward progress, and
540          * journal reclaim does btree updates when flushing bkey_cached entries,
541          * which may require allocations as well.
542          */
543         ret = bch2_trans_do(c, &as->disk_res, &journal_seq,
544                             BTREE_INSERT_NOFAIL|
545                             BTREE_INSERT_USE_RESERVE|
546                             BTREE_INSERT_USE_ALLOC_RESERVE|
547                             BTREE_INSERT_NOCHECK_RW|
548                             BTREE_INSERT_JOURNAL_RECLAIM|
549                             BTREE_INSERT_JOURNAL_RESERVED,
550                             btree_update_nodes_written_trans(&trans, as));
551         BUG_ON(ret && !bch2_journal_error(&c->journal));
552
553         if (b) {
554                 /*
555                  * @b is the node we did the final insert into:
556                  *
557                  * On failure to get a journal reservation, we still have to
558                  * unblock the write and allow most of the write path to happen
559                  * so that shutdown works, but the i->journal_seq mechanism
560                  * won't work to prevent the btree write from being visible (we
561                  * didn't get a journal sequence number) - instead
562                  * __bch2_btree_node_write() doesn't do the actual write if
563                  * we're in journal error state:
564                  */
565
566                 btree_node_lock_type(c, b, SIX_LOCK_intent);
567                 btree_node_lock_type(c, b, SIX_LOCK_write);
568                 mutex_lock(&c->btree_interior_update_lock);
569
570                 list_del(&as->write_blocked_list);
571
572                 if (!ret && as->b == b) {
573                         struct bset *i = btree_bset_last(b);
574
575                         BUG_ON(!b->c.level);
576                         BUG_ON(!btree_node_dirty(b));
577
578                         i->journal_seq = cpu_to_le64(
579                                 max(journal_seq,
580                                     le64_to_cpu(i->journal_seq)));
581
582                         bch2_btree_add_journal_pin(c, b, journal_seq);
583                 }
584
585                 mutex_unlock(&c->btree_interior_update_lock);
586                 six_unlock_write(&b->c.lock);
587
588                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
589                 six_unlock_intent(&b->c.lock);
590         }
591
592         bch2_journal_pin_drop(&c->journal, &as->journal);
593
594         bch2_journal_preres_put(&c->journal, &as->journal_preres);
595
596         mutex_lock(&c->btree_interior_update_lock);
597         for (i = 0; i < as->nr_new_nodes; i++) {
598                 b = as->new_nodes[i];
599
600                 BUG_ON(b->will_make_reachable != (unsigned long) as);
601                 b->will_make_reachable = 0;
602         }
603         mutex_unlock(&c->btree_interior_update_lock);
604
605         for (i = 0; i < as->nr_new_nodes; i++) {
606                 b = as->new_nodes[i];
607
608                 btree_node_lock_type(c, b, SIX_LOCK_read);
609                 btree_node_write_if_need(c, b, SIX_LOCK_read);
610                 six_unlock_read(&b->c.lock);
611         }
612
613         for (i = 0; i < as->nr_open_buckets; i++)
614                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
615
616         bch2_btree_update_free(as);
617 }
618
619 static void btree_interior_update_work(struct work_struct *work)
620 {
621         struct bch_fs *c =
622                 container_of(work, struct bch_fs, btree_interior_update_work);
623         struct btree_update *as;
624
625         while (1) {
626                 mutex_lock(&c->btree_interior_update_lock);
627                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
628                                               struct btree_update, unwritten_list);
629                 if (as && !as->nodes_written)
630                         as = NULL;
631                 mutex_unlock(&c->btree_interior_update_lock);
632
633                 if (!as)
634                         break;
635
636                 btree_update_nodes_written(as);
637         }
638 }
639
640 static void btree_update_set_nodes_written(struct closure *cl)
641 {
642         struct btree_update *as = container_of(cl, struct btree_update, cl);
643         struct bch_fs *c = as->c;
644
645         mutex_lock(&c->btree_interior_update_lock);
646         as->nodes_written = true;
647         mutex_unlock(&c->btree_interior_update_lock);
648
649         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
650 }
651
652 /*
653  * We're updating @b with pointers to nodes that haven't finished writing yet:
654  * block @b from being written until @as completes
655  */
656 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
657 {
658         struct bch_fs *c = as->c;
659
660         mutex_lock(&c->btree_interior_update_lock);
661         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
662
663         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
664         BUG_ON(!btree_node_dirty(b));
665
666         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
667         as->b           = b;
668         list_add(&as->write_blocked_list, &b->write_blocked);
669
670         mutex_unlock(&c->btree_interior_update_lock);
671 }
672
673 static void btree_update_reparent(struct btree_update *as,
674                                   struct btree_update *child)
675 {
676         struct bch_fs *c = as->c;
677
678         lockdep_assert_held(&c->btree_interior_update_lock);
679
680         child->b = NULL;
681         child->mode = BTREE_INTERIOR_UPDATING_AS;
682
683         /*
684          * When we write a new btree root, we have to drop our journal pin
685          * _before_ the new nodes are technically reachable; see
686          * btree_update_nodes_written().
687          *
688          * This goes for journal pins that are recursively blocked on us - so,
689          * just transfer the journal pin to the new interior update so
690          * btree_update_nodes_written() can drop it.
691          */
692         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
693         bch2_journal_pin_drop(&c->journal, &child->journal);
694 }
695
696 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
697 {
698         struct bkey_i *insert = &b->key;
699         struct bch_fs *c = as->c;
700
701         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
702
703         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
704                ARRAY_SIZE(as->journal_entries));
705
706         as->journal_u64s +=
707                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
708                                   BCH_JSET_ENTRY_btree_root,
709                                   b->c.btree_id, b->c.level,
710                                   insert, insert->k.u64s);
711
712         mutex_lock(&c->btree_interior_update_lock);
713         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
714
715         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
716         mutex_unlock(&c->btree_interior_update_lock);
717 }
718
719 /*
720  * bch2_btree_update_add_new_node:
721  *
722  * This causes @as to wait on @b to be written, before it gets to
723  * bch2_btree_update_nodes_written
724  *
725  * Additionally, it sets b->will_make_reachable to prevent any additional writes
726  * to @b from happening besides the first until @b is reachable on disk
727  *
728  * And it adds @b to the list of @as's new nodes, so that we can update sector
729  * counts in bch2_btree_update_nodes_written:
730  */
731 void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
732 {
733         struct bch_fs *c = as->c;
734
735         closure_get(&as->cl);
736
737         mutex_lock(&c->btree_interior_update_lock);
738         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
739         BUG_ON(b->will_make_reachable);
740
741         as->new_nodes[as->nr_new_nodes++] = b;
742         b->will_make_reachable = 1UL|(unsigned long) as;
743
744         mutex_unlock(&c->btree_interior_update_lock);
745
746         btree_update_will_add_key(as, &b->key);
747 }
748
749 /*
750  * returns true if @b was a new node
751  */
752 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
753 {
754         struct btree_update *as;
755         unsigned long v;
756         unsigned i;
757
758         mutex_lock(&c->btree_interior_update_lock);
759         /*
760          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
761          * dropped when it gets written by bch2_btree_complete_write - the
762          * xchg() is for synchronization with bch2_btree_complete_write:
763          */
764         v = xchg(&b->will_make_reachable, 0);
765         as = (struct btree_update *) (v & ~1UL);
766
767         if (!as) {
768                 mutex_unlock(&c->btree_interior_update_lock);
769                 return;
770         }
771
772         for (i = 0; i < as->nr_new_nodes; i++)
773                 if (as->new_nodes[i] == b)
774                         goto found;
775
776         BUG();
777 found:
778         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
779         mutex_unlock(&c->btree_interior_update_lock);
780
781         if (v & 1)
782                 closure_put(&as->cl);
783 }
784
785 void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
786 {
787         while (b->ob.nr)
788                 as->open_buckets[as->nr_open_buckets++] =
789                         b->ob.v[--b->ob.nr];
790 }
791
792 /*
793  * @b is being split/rewritten: it may have pointers to not-yet-written btree
794  * nodes and thus outstanding btree_updates - redirect @b's
795  * btree_updates to point to this btree_update:
796  */
797 void bch2_btree_interior_update_will_free_node(struct btree_update *as,
798                                                struct btree *b)
799 {
800         struct bch_fs *c = as->c;
801         struct btree_update *p, *n;
802         struct btree_write *w;
803
804         set_btree_node_dying(b);
805
806         if (btree_node_fake(b))
807                 return;
808
809         mutex_lock(&c->btree_interior_update_lock);
810
811         /*
812          * Does this node have any btree_update operations preventing
813          * it from being written?
814          *
815          * If so, redirect them to point to this btree_update: we can
816          * write out our new nodes, but we won't make them visible until those
817          * operations complete
818          */
819         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
820                 list_del_init(&p->write_blocked_list);
821                 btree_update_reparent(as, p);
822
823                 /*
824                  * for flush_held_btree_writes() waiting on updates to flush or
825                  * nodes to be writeable:
826                  */
827                 closure_wake_up(&c->btree_interior_update_wait);
828         }
829
830         clear_btree_node_dirty(b);
831         clear_btree_node_need_write(b);
832
833         /*
834          * Does this node have unwritten data that has a pin on the journal?
835          *
836          * If so, transfer that pin to the btree_update operation -
837          * note that if we're freeing multiple nodes, we only need to keep the
838          * oldest pin of any of the nodes we're freeing. We'll release the pin
839          * when the new nodes are persistent and reachable on disk:
840          */
841         w = btree_current_write(b);
842         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
843         bch2_journal_pin_drop(&c->journal, &w->journal);
844
845         w = btree_prev_write(b);
846         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
847         bch2_journal_pin_drop(&c->journal, &w->journal);
848
849         mutex_unlock(&c->btree_interior_update_lock);
850
851         /*
852          * Is this a node that isn't reachable on disk yet?
853          *
854          * Nodes that aren't reachable yet have writes blocked until they're
855          * reachable - now that we've cancelled any pending writes and moved
856          * things waiting on that write to wait on this update, we can drop this
857          * node from the list of nodes that the other update is making
858          * reachable, prior to freeing it:
859          */
860         btree_update_drop_new_node(c, b);
861
862         btree_update_will_delete_key(as, &b->key);
863 }
864
865 void bch2_btree_update_done(struct btree_update *as)
866 {
867         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
868
869         bch2_btree_reserve_put(as);
870
871         continue_at(&as->cl, btree_update_set_nodes_written, system_freezable_wq);
872 }
873
874 struct btree_update *
875 bch2_btree_update_start(struct btree_trans *trans, enum btree_id id,
876                         unsigned nr_nodes, unsigned flags,
877                         struct closure *cl)
878 {
879         struct bch_fs *c = trans->c;
880         struct btree_update *as;
881         int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
882                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
883         int journal_flags = (flags & BTREE_INSERT_JOURNAL_RESERVED)
884                 ? JOURNAL_RES_GET_RECLAIM : 0;
885         int ret = 0;
886
887         /*
888          * This check isn't necessary for correctness - it's just to potentially
889          * prevent us from doing a lot of work that'll end up being wasted:
890          */
891         ret = bch2_journal_error(&c->journal);
892         if (ret)
893                 return ERR_PTR(ret);
894
895         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
896         memset(as, 0, sizeof(*as));
897         closure_init(&as->cl, NULL);
898         as->c           = c;
899         as->mode        = BTREE_INTERIOR_NO_UPDATE;
900         as->btree_id    = id;
901         INIT_LIST_HEAD(&as->list);
902         INIT_LIST_HEAD(&as->unwritten_list);
903         INIT_LIST_HEAD(&as->write_blocked_list);
904         bch2_keylist_init(&as->old_keys, as->_old_keys);
905         bch2_keylist_init(&as->new_keys, as->_new_keys);
906         bch2_keylist_init(&as->parent_keys, as->inline_keys);
907
908         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
909                                       BTREE_UPDATE_JOURNAL_RES,
910                                       journal_flags|JOURNAL_RES_GET_NONBLOCK);
911         if (ret == -EAGAIN) {
912                 if (flags & BTREE_INSERT_NOUNLOCK)
913                         return ERR_PTR(-EINTR);
914
915                 bch2_trans_unlock(trans);
916
917                 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
918                                 BTREE_UPDATE_JOURNAL_RES,
919                                 journal_flags);
920                 if (ret)
921                         return ERR_PTR(ret);
922
923                 if (!bch2_trans_relock(trans)) {
924                         ret = -EINTR;
925                         goto err;
926                 }
927         }
928
929         ret = bch2_disk_reservation_get(c, &as->disk_res,
930                         nr_nodes * c->opts.btree_node_size,
931                         c->opts.metadata_replicas,
932                         disk_res_flags);
933         if (ret)
934                 goto err;
935
936         ret = bch2_btree_reserve_get(as, nr_nodes, flags, cl);
937         if (ret)
938                 goto err;
939
940         mutex_lock(&c->btree_interior_update_lock);
941         list_add_tail(&as->list, &c->btree_interior_update_list);
942         mutex_unlock(&c->btree_interior_update_lock);
943
944         return as;
945 err:
946         bch2_btree_update_free(as);
947         return ERR_PTR(ret);
948 }
949
950 /* Btree root updates: */
951
952 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
953 {
954         /* Root nodes cannot be reaped */
955         mutex_lock(&c->btree_cache.lock);
956         list_del_init(&b->list);
957         mutex_unlock(&c->btree_cache.lock);
958
959         mutex_lock(&c->btree_root_lock);
960         BUG_ON(btree_node_root(c, b) &&
961                (b->c.level < btree_node_root(c, b)->c.level ||
962                 !btree_node_dying(btree_node_root(c, b))));
963
964         btree_node_root(c, b) = b;
965         mutex_unlock(&c->btree_root_lock);
966
967         bch2_recalc_btree_reserve(c);
968 }
969
970 /**
971  * bch_btree_set_root - update the root in memory and on disk
972  *
973  * To ensure forward progress, the current task must not be holding any
974  * btree node write locks. However, you must hold an intent lock on the
975  * old root.
976  *
977  * Note: This allocates a journal entry but doesn't add any keys to
978  * it.  All the btree roots are part of every journal write, so there
979  * is nothing new to be done.  This just guarantees that there is a
980  * journal write.
981  */
982 static void bch2_btree_set_root(struct btree_update *as, struct btree *b,
983                                 struct btree_iter *iter)
984 {
985         struct bch_fs *c = as->c;
986         struct btree *old;
987
988         trace_btree_set_root(c, b);
989         BUG_ON(!b->written &&
990                !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags));
991
992         old = btree_node_root(c, b);
993
994         /*
995          * Ensure no one is using the old root while we switch to the
996          * new root:
997          */
998         bch2_btree_node_lock_write(old, iter);
999
1000         bch2_btree_set_root_inmem(c, b);
1001
1002         btree_update_updated_root(as, b);
1003
1004         /*
1005          * Unlock old root after new root is visible:
1006          *
1007          * The new root isn't persistent, but that's ok: we still have
1008          * an intent lock on the new root, and any updates that would
1009          * depend on the new root would have to update the new root.
1010          */
1011         bch2_btree_node_unlock_write(old, iter);
1012 }
1013
1014 /* Interior node updates: */
1015
1016 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b,
1017                                         struct btree_iter *iter,
1018                                         struct bkey_i *insert,
1019                                         struct btree_node_iter *node_iter)
1020 {
1021         struct bkey_packed *k;
1022
1023         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1024                ARRAY_SIZE(as->journal_entries));
1025
1026         as->journal_u64s +=
1027                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1028                                   BCH_JSET_ENTRY_btree_keys,
1029                                   b->c.btree_id, b->c.level,
1030                                   insert, insert->k.u64s);
1031
1032         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1033                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1034                 bch2_btree_node_iter_advance(node_iter, b);
1035
1036         bch2_btree_bset_insert_key(iter, b, node_iter, insert);
1037         set_btree_node_dirty(b);
1038         set_btree_node_need_write(b);
1039 }
1040
1041 /*
1042  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1043  * node)
1044  */
1045 static struct btree *__btree_split_node(struct btree_update *as,
1046                                         struct btree *n1,
1047                                         struct btree_iter *iter)
1048 {
1049         size_t nr_packed = 0, nr_unpacked = 0;
1050         struct btree *n2;
1051         struct bset *set1, *set2;
1052         struct bkey_packed *k, *prev = NULL;
1053
1054         n2 = bch2_btree_node_alloc(as, n1->c.level);
1055         bch2_btree_update_add_new_node(as, n2);
1056
1057         n2->data->max_key       = n1->data->max_key;
1058         n2->data->format        = n1->format;
1059         SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
1060         n2->key.k.p = n1->key.k.p;
1061
1062         btree_node_set_format(n2, n2->data->format);
1063
1064         set1 = btree_bset_first(n1);
1065         set2 = btree_bset_first(n2);
1066
1067         /*
1068          * Has to be a linear search because we don't have an auxiliary
1069          * search tree yet
1070          */
1071         k = set1->start;
1072         while (1) {
1073                 struct bkey_packed *n = bkey_next_skip_noops(k, vstruct_last(set1));
1074
1075                 if (n == vstruct_last(set1))
1076                         break;
1077                 if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
1078                         break;
1079
1080                 if (bkey_packed(k))
1081                         nr_packed++;
1082                 else
1083                         nr_unpacked++;
1084
1085                 prev = k;
1086                 k = n;
1087         }
1088
1089         BUG_ON(!prev);
1090
1091         btree_set_max(n1, bkey_unpack_pos(n1, prev));
1092         btree_set_min(n2, bkey_successor(n1->key.k.p));
1093
1094         set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k);
1095         set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s));
1096
1097         set_btree_bset_end(n1, n1->set);
1098         set_btree_bset_end(n2, n2->set);
1099
1100         n2->nr.live_u64s        = le16_to_cpu(set2->u64s);
1101         n2->nr.bset_u64s[0]     = le16_to_cpu(set2->u64s);
1102         n2->nr.packed_keys      = n1->nr.packed_keys - nr_packed;
1103         n2->nr.unpacked_keys    = n1->nr.unpacked_keys - nr_unpacked;
1104
1105         n1->nr.live_u64s        = le16_to_cpu(set1->u64s);
1106         n1->nr.bset_u64s[0]     = le16_to_cpu(set1->u64s);
1107         n1->nr.packed_keys      = nr_packed;
1108         n1->nr.unpacked_keys    = nr_unpacked;
1109
1110         BUG_ON(!set1->u64s);
1111         BUG_ON(!set2->u64s);
1112
1113         memcpy_u64s(set2->start,
1114                     vstruct_end(set1),
1115                     le16_to_cpu(set2->u64s));
1116
1117         btree_node_reset_sib_u64s(n1);
1118         btree_node_reset_sib_u64s(n2);
1119
1120         bch2_verify_btree_nr_keys(n1);
1121         bch2_verify_btree_nr_keys(n2);
1122
1123         if (n1->c.level) {
1124                 btree_node_interior_verify(as->c, n1);
1125                 btree_node_interior_verify(as->c, n2);
1126         }
1127
1128         return n2;
1129 }
1130
1131 /*
1132  * For updates to interior nodes, we've got to do the insert before we split
1133  * because the stuff we're inserting has to be inserted atomically. Post split,
1134  * the keys might have to go in different nodes and the split would no longer be
1135  * atomic.
1136  *
1137  * Worse, if the insert is from btree node coalescing, if we do the insert after
1138  * we do the split (and pick the pivot) - the pivot we pick might be between
1139  * nodes that were coalesced, and thus in the middle of a child node post
1140  * coalescing:
1141  */
1142 static void btree_split_insert_keys(struct btree_update *as, struct btree *b,
1143                                     struct btree_iter *iter,
1144                                     struct keylist *keys)
1145 {
1146         struct btree_node_iter node_iter;
1147         struct bkey_i *k = bch2_keylist_front(keys);
1148         struct bkey_packed *src, *dst, *n;
1149         struct bset *i;
1150
1151         BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE);
1152
1153         bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
1154
1155         while (!bch2_keylist_empty(keys)) {
1156                 k = bch2_keylist_front(keys);
1157
1158                 bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter);
1159                 bch2_keylist_pop_front(keys);
1160         }
1161
1162         /*
1163          * We can't tolerate whiteouts here - with whiteouts there can be
1164          * duplicate keys, and it would be rather bad if we picked a duplicate
1165          * for the pivot:
1166          */
1167         i = btree_bset_first(b);
1168         src = dst = i->start;
1169         while (src != vstruct_last(i)) {
1170                 n = bkey_next_skip_noops(src, vstruct_last(i));
1171                 if (!bkey_deleted(src)) {
1172                         memmove_u64s_down(dst, src, src->u64s);
1173                         dst = bkey_next(dst);
1174                 }
1175                 src = n;
1176         }
1177
1178         i->u64s = cpu_to_le16((u64 *) dst - i->_data);
1179         set_btree_bset_end(b, b->set);
1180
1181         BUG_ON(b->nsets != 1 ||
1182                b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
1183
1184         btree_node_interior_verify(as->c, b);
1185 }
1186
1187 static void btree_split(struct btree_update *as, struct btree *b,
1188                         struct btree_iter *iter, struct keylist *keys,
1189                         unsigned flags)
1190 {
1191         struct bch_fs *c = as->c;
1192         struct btree *parent = btree_node_parent(iter, b);
1193         struct btree *n1, *n2 = NULL, *n3 = NULL;
1194         u64 start_time = local_clock();
1195
1196         BUG_ON(!parent && (b != btree_node_root(c, b)));
1197         BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level));
1198
1199         bch2_btree_interior_update_will_free_node(as, b);
1200
1201         n1 = bch2_btree_node_alloc_replacement(as, b);
1202         bch2_btree_update_add_new_node(as, n1);
1203
1204         if (keys)
1205                 btree_split_insert_keys(as, n1, iter, keys);
1206
1207         if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
1208                 trace_btree_split(c, b);
1209
1210                 n2 = __btree_split_node(as, n1, iter);
1211
1212                 bch2_btree_build_aux_trees(n2);
1213                 bch2_btree_build_aux_trees(n1);
1214                 six_unlock_write(&n2->c.lock);
1215                 six_unlock_write(&n1->c.lock);
1216
1217                 bch2_btree_node_write(c, n2, SIX_LOCK_intent);
1218
1219                 /*
1220                  * Note that on recursive parent_keys == keys, so we
1221                  * can't start adding new keys to parent_keys before emptying it
1222                  * out (which we did with btree_split_insert_keys() above)
1223                  */
1224                 bch2_keylist_add(&as->parent_keys, &n1->key);
1225                 bch2_keylist_add(&as->parent_keys, &n2->key);
1226
1227                 if (!parent) {
1228                         /* Depth increases, make a new root */
1229                         n3 = __btree_root_alloc(as, b->c.level + 1);
1230
1231                         n3->sib_u64s[0] = U16_MAX;
1232                         n3->sib_u64s[1] = U16_MAX;
1233
1234                         btree_split_insert_keys(as, n3, iter, &as->parent_keys);
1235
1236                         bch2_btree_node_write(c, n3, SIX_LOCK_intent);
1237                 }
1238         } else {
1239                 trace_btree_compact(c, b);
1240
1241                 bch2_btree_build_aux_trees(n1);
1242                 six_unlock_write(&n1->c.lock);
1243
1244                 if (parent)
1245                         bch2_keylist_add(&as->parent_keys, &n1->key);
1246         }
1247
1248         bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1249
1250         /* New nodes all written, now make them visible: */
1251
1252         if (parent) {
1253                 /* Split a non root node */
1254                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1255         } else if (n3) {
1256                 bch2_btree_set_root(as, n3, iter);
1257         } else {
1258                 /* Root filled up but didn't need to be split */
1259                 bch2_btree_set_root(as, n1, iter);
1260         }
1261
1262         bch2_btree_update_get_open_buckets(as, n1);
1263         if (n2)
1264                 bch2_btree_update_get_open_buckets(as, n2);
1265         if (n3)
1266                 bch2_btree_update_get_open_buckets(as, n3);
1267
1268         /* Successful split, update the iterator to point to the new nodes: */
1269
1270         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1271         bch2_btree_iter_node_drop(iter, b);
1272         if (n3)
1273                 bch2_btree_iter_node_replace(iter, n3);
1274         if (n2)
1275                 bch2_btree_iter_node_replace(iter, n2);
1276         bch2_btree_iter_node_replace(iter, n1);
1277
1278         /*
1279          * The old node must be freed (in memory) _before_ unlocking the new
1280          * nodes - else another thread could re-acquire a read lock on the old
1281          * node after another thread has locked and updated the new node, thus
1282          * seeing stale data:
1283          */
1284         bch2_btree_node_free_inmem(c, b, iter);
1285
1286         if (n3)
1287                 six_unlock_intent(&n3->c.lock);
1288         if (n2)
1289                 six_unlock_intent(&n2->c.lock);
1290         six_unlock_intent(&n1->c.lock);
1291
1292         bch2_btree_trans_verify_locks(iter->trans);
1293
1294         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_split],
1295                                start_time);
1296 }
1297
1298 static void
1299 bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
1300                                 struct btree_iter *iter, struct keylist *keys)
1301 {
1302         struct btree_iter *linked;
1303         struct btree_node_iter node_iter;
1304         struct bkey_i *insert = bch2_keylist_front(keys);
1305         struct bkey_packed *k;
1306
1307         /* Don't screw up @iter's position: */
1308         node_iter = iter->l[b->c.level].iter;
1309
1310         /*
1311          * btree_split(), btree_gc_coalesce() will insert keys before
1312          * the iterator's current position - they know the keys go in
1313          * the node the iterator points to:
1314          */
1315         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1316                (bkey_cmp_packed(b, k, &insert->k) >= 0))
1317                 ;
1318
1319         for_each_keylist_key(keys, insert)
1320                 bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter);
1321
1322         btree_update_updated_node(as, b);
1323
1324         trans_for_each_iter_with_node(iter->trans, b, linked)
1325                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1326
1327         bch2_btree_trans_verify_iters(iter->trans, b);
1328 }
1329
1330 /**
1331  * bch_btree_insert_node - insert bkeys into a given btree node
1332  *
1333  * @iter:               btree iterator
1334  * @keys:               list of keys to insert
1335  * @hook:               insert callback
1336  * @persistent:         if not null, @persistent will wait on journal write
1337  *
1338  * Inserts as many keys as it can into a given btree node, splitting it if full.
1339  * If a split occurred, this function will return early. This can only happen
1340  * for leaf nodes -- inserts into interior nodes have to be atomic.
1341  */
1342 void bch2_btree_insert_node(struct btree_update *as, struct btree *b,
1343                             struct btree_iter *iter, struct keylist *keys,
1344                             unsigned flags)
1345 {
1346         struct bch_fs *c = as->c;
1347         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1348         int old_live_u64s = b->nr.live_u64s;
1349         int live_u64s_added, u64s_added;
1350
1351         BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level));
1352         BUG_ON(!b->c.level);
1353         BUG_ON(!as || as->b);
1354         bch2_verify_keylist_sorted(keys);
1355
1356         if (as->must_rewrite)
1357                 goto split;
1358
1359         bch2_btree_node_lock_for_insert(c, b, iter);
1360
1361         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1362                 bch2_btree_node_unlock_write(b, iter);
1363                 goto split;
1364         }
1365
1366         bch2_btree_insert_keys_interior(as, b, iter, keys);
1367
1368         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1369         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1370
1371         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1372                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1373         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1374                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1375
1376         if (u64s_added > live_u64s_added &&
1377             bch2_maybe_compact_whiteouts(c, b))
1378                 bch2_btree_iter_reinit_node(iter, b);
1379
1380         bch2_btree_node_unlock_write(b, iter);
1381
1382         btree_node_interior_verify(c, b);
1383
1384         /*
1385          * when called from the btree_split path the new nodes aren't added to
1386          * the btree iterator yet, so the merge path's unlock/wait/relock dance
1387          * won't work:
1388          */
1389         bch2_foreground_maybe_merge(c, iter, b->c.level,
1390                                     flags|BTREE_INSERT_NOUNLOCK);
1391         return;
1392 split:
1393         btree_split(as, b, iter, keys, flags);
1394 }
1395
1396 int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter,
1397                           unsigned flags)
1398 {
1399         struct btree_trans *trans = iter->trans;
1400         struct btree *b = iter_l(iter)->b;
1401         struct btree_update *as;
1402         struct closure cl;
1403         int ret = 0;
1404         struct btree_insert_entry *i;
1405
1406         /*
1407          * We already have a disk reservation and open buckets pinned; this
1408          * allocation must not block:
1409          */
1410         trans_for_each_update(trans, i)
1411                 if (btree_node_type_needs_gc(i->iter->btree_id))
1412                         flags |= BTREE_INSERT_USE_RESERVE;
1413
1414         closure_init_stack(&cl);
1415
1416         /* Hack, because gc and splitting nodes doesn't mix yet: */
1417         if (!(flags & BTREE_INSERT_GC_LOCK_HELD) &&
1418             !down_read_trylock(&c->gc_lock)) {
1419                 if (flags & BTREE_INSERT_NOUNLOCK) {
1420                         trace_transaction_restart_ip(trans->ip, _THIS_IP_);
1421                         return -EINTR;
1422                 }
1423
1424                 bch2_trans_unlock(trans);
1425                 down_read(&c->gc_lock);
1426
1427                 if (!bch2_trans_relock(trans))
1428                         ret = -EINTR;
1429         }
1430
1431         /*
1432          * XXX: figure out how far we might need to split,
1433          * instead of locking/reserving all the way to the root:
1434          */
1435         if (!bch2_btree_iter_upgrade(iter, U8_MAX)) {
1436                 trace_trans_restart_iter_upgrade(trans->ip);
1437                 ret = -EINTR;
1438                 goto out;
1439         }
1440
1441         as = bch2_btree_update_start(trans, iter->btree_id,
1442                 btree_update_reserve_required(c, b), flags,
1443                 !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
1444         if (IS_ERR(as)) {
1445                 ret = PTR_ERR(as);
1446                 if (ret == -EAGAIN) {
1447                         BUG_ON(flags & BTREE_INSERT_NOUNLOCK);
1448                         bch2_trans_unlock(trans);
1449                         ret = -EINTR;
1450
1451                         trace_transaction_restart_ip(trans->ip, _THIS_IP_);
1452                 }
1453                 goto out;
1454         }
1455
1456         btree_split(as, b, iter, NULL, flags);
1457         bch2_btree_update_done(as);
1458
1459         /*
1460          * We haven't successfully inserted yet, so don't downgrade all the way
1461          * back to read locks;
1462          */
1463         __bch2_btree_iter_downgrade(iter, 1);
1464 out:
1465         if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
1466                 up_read(&c->gc_lock);
1467         closure_sync(&cl);
1468         return ret;
1469 }
1470
1471 void __bch2_foreground_maybe_merge(struct bch_fs *c,
1472                                    struct btree_iter *iter,
1473                                    unsigned level,
1474                                    unsigned flags,
1475                                    enum btree_node_sibling sib)
1476 {
1477         struct btree_trans *trans = iter->trans;
1478         struct btree_update *as;
1479         struct bkey_format_state new_s;
1480         struct bkey_format new_f;
1481         struct bkey_i delete;
1482         struct btree *b, *m, *n, *prev, *next, *parent;
1483         struct closure cl;
1484         size_t sib_u64s;
1485         int ret = 0;
1486
1487         BUG_ON(!btree_node_locked(iter, level));
1488
1489         closure_init_stack(&cl);
1490 retry:
1491         BUG_ON(!btree_node_locked(iter, level));
1492
1493         b = iter->l[level].b;
1494
1495         parent = btree_node_parent(iter, b);
1496         if (!parent)
1497                 goto out;
1498
1499         if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
1500                 goto out;
1501
1502         /* XXX: can't be holding read locks */
1503         m = bch2_btree_node_get_sibling(c, iter, b, sib);
1504         if (IS_ERR(m)) {
1505                 ret = PTR_ERR(m);
1506                 goto err;
1507         }
1508
1509         /* NULL means no sibling: */
1510         if (!m) {
1511                 b->sib_u64s[sib] = U16_MAX;
1512                 goto out;
1513         }
1514
1515         if (sib == btree_prev_sib) {
1516                 prev = m;
1517                 next = b;
1518         } else {
1519                 prev = b;
1520                 next = m;
1521         }
1522
1523         bch2_bkey_format_init(&new_s);
1524         __bch2_btree_calc_format(&new_s, b);
1525         __bch2_btree_calc_format(&new_s, m);
1526         new_f = bch2_bkey_format_done(&new_s);
1527
1528         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1529                 btree_node_u64s_with_format(m, &new_f);
1530
1531         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1532                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1533                 sib_u64s /= 2;
1534                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1535         }
1536
1537         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1538         b->sib_u64s[sib] = sib_u64s;
1539
1540         if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) {
1541                 six_unlock_intent(&m->c.lock);
1542                 goto out;
1543         }
1544
1545         /* We're changing btree topology, doesn't mix with gc: */
1546         if (!(flags & BTREE_INSERT_GC_LOCK_HELD) &&
1547             !down_read_trylock(&c->gc_lock))
1548                 goto err_cycle_gc_lock;
1549
1550         if (!bch2_btree_iter_upgrade(iter, U8_MAX)) {
1551                 ret = -EINTR;
1552                 goto err_unlock;
1553         }
1554
1555         as = bch2_btree_update_start(trans, iter->btree_id,
1556                          btree_update_reserve_required(c, parent) + 1,
1557                          flags|
1558                          BTREE_INSERT_NOFAIL|
1559                          BTREE_INSERT_USE_RESERVE,
1560                          !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
1561         if (IS_ERR(as)) {
1562                 ret = PTR_ERR(as);
1563                 goto err_unlock;
1564         }
1565
1566         trace_btree_merge(c, b);
1567
1568         bch2_btree_interior_update_will_free_node(as, b);
1569         bch2_btree_interior_update_will_free_node(as, m);
1570
1571         n = bch2_btree_node_alloc(as, b->c.level);
1572         bch2_btree_update_add_new_node(as, n);
1573
1574         btree_set_min(n, prev->data->min_key);
1575         btree_set_max(n, next->data->max_key);
1576         n->data->format         = new_f;
1577
1578         btree_node_set_format(n, new_f);
1579
1580         bch2_btree_sort_into(c, n, prev);
1581         bch2_btree_sort_into(c, n, next);
1582
1583         bch2_btree_build_aux_trees(n);
1584         six_unlock_write(&n->c.lock);
1585
1586         bkey_init(&delete.k);
1587         delete.k.p = prev->key.k.p;
1588         bch2_keylist_add(&as->parent_keys, &delete);
1589         bch2_keylist_add(&as->parent_keys, &n->key);
1590
1591         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1592
1593         bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1594
1595         bch2_btree_update_get_open_buckets(as, n);
1596
1597         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1598         bch2_btree_iter_node_drop(iter, b);
1599         bch2_btree_iter_node_drop(iter, m);
1600
1601         bch2_btree_iter_node_replace(iter, n);
1602
1603         bch2_btree_trans_verify_iters(trans, n);
1604
1605         bch2_btree_node_free_inmem(c, b, iter);
1606         bch2_btree_node_free_inmem(c, m, iter);
1607
1608         six_unlock_intent(&n->c.lock);
1609
1610         bch2_btree_update_done(as);
1611
1612         if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
1613                 up_read(&c->gc_lock);
1614 out:
1615         bch2_btree_trans_verify_locks(trans);
1616
1617         /*
1618          * Don't downgrade locks here: we're called after successful insert,
1619          * and the caller will downgrade locks after a successful insert
1620          * anyways (in case e.g. a split was required first)
1621          *
1622          * And we're also called when inserting into interior nodes in the
1623          * split path, and downgrading to read locks in there is potentially
1624          * confusing:
1625          */
1626         closure_sync(&cl);
1627         return;
1628
1629 err_cycle_gc_lock:
1630         six_unlock_intent(&m->c.lock);
1631
1632         if (flags & BTREE_INSERT_NOUNLOCK)
1633                 goto out;
1634
1635         bch2_trans_unlock(trans);
1636
1637         down_read(&c->gc_lock);
1638         up_read(&c->gc_lock);
1639         ret = -EINTR;
1640         goto err;
1641
1642 err_unlock:
1643         six_unlock_intent(&m->c.lock);
1644         if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
1645                 up_read(&c->gc_lock);
1646 err:
1647         BUG_ON(ret == -EAGAIN && (flags & BTREE_INSERT_NOUNLOCK));
1648
1649         if ((ret == -EAGAIN || ret == -EINTR) &&
1650             !(flags & BTREE_INSERT_NOUNLOCK)) {
1651                 bch2_trans_unlock(trans);
1652                 closure_sync(&cl);
1653                 ret = bch2_btree_iter_traverse(iter);
1654                 if (ret)
1655                         goto out;
1656
1657                 goto retry;
1658         }
1659
1660         goto out;
1661 }
1662
1663 static int __btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
1664                                 struct btree *b, unsigned flags,
1665                                 struct closure *cl)
1666 {
1667         struct btree *n, *parent = btree_node_parent(iter, b);
1668         struct btree_update *as;
1669
1670         as = bch2_btree_update_start(iter->trans, iter->btree_id,
1671                 (parent
1672                  ? btree_update_reserve_required(c, parent)
1673                  : 0) + 1,
1674                 flags, cl);
1675         if (IS_ERR(as)) {
1676                 trace_btree_gc_rewrite_node_fail(c, b);
1677                 return PTR_ERR(as);
1678         }
1679
1680         bch2_btree_interior_update_will_free_node(as, b);
1681
1682         n = bch2_btree_node_alloc_replacement(as, b);
1683         bch2_btree_update_add_new_node(as, n);
1684
1685         bch2_btree_build_aux_trees(n);
1686         six_unlock_write(&n->c.lock);
1687
1688         trace_btree_gc_rewrite_node(c, b);
1689
1690         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1691
1692         if (parent) {
1693                 bch2_keylist_add(&as->parent_keys, &n->key);
1694                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1695         } else {
1696                 bch2_btree_set_root(as, n, iter);
1697         }
1698
1699         bch2_btree_update_get_open_buckets(as, n);
1700
1701         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1702         bch2_btree_iter_node_drop(iter, b);
1703         bch2_btree_iter_node_replace(iter, n);
1704         bch2_btree_node_free_inmem(c, b, iter);
1705         six_unlock_intent(&n->c.lock);
1706
1707         bch2_btree_update_done(as);
1708         return 0;
1709 }
1710
1711 /**
1712  * bch_btree_node_rewrite - Rewrite/move a btree node
1713  *
1714  * Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
1715  * btree_check_reserve() has to wait)
1716  */
1717 int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
1718                             __le64 seq, unsigned flags)
1719 {
1720         struct btree_trans *trans = iter->trans;
1721         struct closure cl;
1722         struct btree *b;
1723         int ret;
1724
1725         flags |= BTREE_INSERT_NOFAIL;
1726
1727         closure_init_stack(&cl);
1728
1729         bch2_btree_iter_upgrade(iter, U8_MAX);
1730
1731         if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) {
1732                 if (!down_read_trylock(&c->gc_lock)) {
1733                         bch2_trans_unlock(trans);
1734                         down_read(&c->gc_lock);
1735                 }
1736         }
1737
1738         while (1) {
1739                 ret = bch2_btree_iter_traverse(iter);
1740                 if (ret)
1741                         break;
1742
1743                 b = bch2_btree_iter_peek_node(iter);
1744                 if (!b || b->data->keys.seq != seq)
1745                         break;
1746
1747                 ret = __btree_node_rewrite(c, iter, b, flags, &cl);
1748                 if (ret != -EAGAIN &&
1749                     ret != -EINTR)
1750                         break;
1751
1752                 bch2_trans_unlock(trans);
1753                 closure_sync(&cl);
1754         }
1755
1756         bch2_btree_iter_downgrade(iter);
1757
1758         if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
1759                 up_read(&c->gc_lock);
1760
1761         closure_sync(&cl);
1762         return ret;
1763 }
1764
1765 static void __bch2_btree_node_update_key(struct bch_fs *c,
1766                                          struct btree_update *as,
1767                                          struct btree_iter *iter,
1768                                          struct btree *b, struct btree *new_hash,
1769                                          struct bkey_i *new_key)
1770 {
1771         struct btree *parent;
1772         int ret;
1773
1774         btree_update_will_delete_key(as, &b->key);
1775         btree_update_will_add_key(as, new_key);
1776
1777         parent = btree_node_parent(iter, b);
1778         if (parent) {
1779                 if (new_hash) {
1780                         bkey_copy(&new_hash->key, new_key);
1781                         ret = bch2_btree_node_hash_insert(&c->btree_cache,
1782                                         new_hash, b->c.level, b->c.btree_id);
1783                         BUG_ON(ret);
1784                 }
1785
1786                 bch2_keylist_add(&as->parent_keys, new_key);
1787                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0);
1788
1789                 if (new_hash) {
1790                         mutex_lock(&c->btree_cache.lock);
1791                         bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
1792
1793                         bch2_btree_node_hash_remove(&c->btree_cache, b);
1794
1795                         bkey_copy(&b->key, new_key);
1796                         ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1797                         BUG_ON(ret);
1798                         mutex_unlock(&c->btree_cache.lock);
1799                 } else {
1800                         bkey_copy(&b->key, new_key);
1801                 }
1802         } else {
1803                 BUG_ON(btree_node_root(c, b) != b);
1804
1805                 bch2_btree_node_lock_write(b, iter);
1806                 bkey_copy(&b->key, new_key);
1807
1808                 if (btree_ptr_hash_val(&b->key) != b->hash_val) {
1809                         mutex_lock(&c->btree_cache.lock);
1810                         bch2_btree_node_hash_remove(&c->btree_cache, b);
1811
1812                         ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1813                         BUG_ON(ret);
1814                         mutex_unlock(&c->btree_cache.lock);
1815                 }
1816
1817                 btree_update_updated_root(as, b);
1818                 bch2_btree_node_unlock_write(b, iter);
1819         }
1820
1821         bch2_btree_update_done(as);
1822 }
1823
1824 int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter,
1825                                struct btree *b,
1826                                struct bkey_i *new_key)
1827 {
1828         struct btree *parent = btree_node_parent(iter, b);
1829         struct btree_update *as = NULL;
1830         struct btree *new_hash = NULL;
1831         struct closure cl;
1832         int ret;
1833
1834         closure_init_stack(&cl);
1835
1836         if (!bch2_btree_iter_upgrade(iter, U8_MAX))
1837                 return -EINTR;
1838
1839         if (!down_read_trylock(&c->gc_lock)) {
1840                 bch2_trans_unlock(iter->trans);
1841                 down_read(&c->gc_lock);
1842
1843                 if (!bch2_trans_relock(iter->trans)) {
1844                         ret = -EINTR;
1845                         goto err;
1846                 }
1847         }
1848
1849         /*
1850          * check btree_ptr_hash_val() after @b is locked by
1851          * btree_iter_traverse():
1852          */
1853         if (btree_ptr_hash_val(new_key) != b->hash_val) {
1854                 /* bch2_btree_reserve_get will unlock */
1855                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1856                 if (ret) {
1857                         bch2_trans_unlock(iter->trans);
1858                         up_read(&c->gc_lock);
1859                         closure_sync(&cl);
1860                         down_read(&c->gc_lock);
1861
1862                         if (!bch2_trans_relock(iter->trans)) {
1863                                 ret = -EINTR;
1864                                 goto err;
1865                         }
1866                 }
1867
1868                 new_hash = bch2_btree_node_mem_alloc(c);
1869         }
1870 retry:
1871         as = bch2_btree_update_start(iter->trans, iter->btree_id,
1872                 parent ? btree_update_reserve_required(c, parent) : 0,
1873                 BTREE_INSERT_NOFAIL|
1874                 BTREE_INSERT_USE_RESERVE|
1875                 BTREE_INSERT_USE_ALLOC_RESERVE,
1876                 &cl);
1877
1878         if (IS_ERR(as)) {
1879                 ret = PTR_ERR(as);
1880                 if (ret == -EAGAIN)
1881                         ret = -EINTR;
1882
1883                 if (ret == -EINTR) {
1884                         bch2_trans_unlock(iter->trans);
1885                         up_read(&c->gc_lock);
1886                         closure_sync(&cl);
1887                         down_read(&c->gc_lock);
1888
1889                         if (bch2_trans_relock(iter->trans))
1890                                 goto retry;
1891                 }
1892
1893                 goto err;
1894         }
1895
1896         ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(new_key));
1897         if (ret)
1898                 goto err_free_update;
1899
1900         __bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key);
1901
1902         bch2_btree_iter_downgrade(iter);
1903 err:
1904         if (new_hash) {
1905                 mutex_lock(&c->btree_cache.lock);
1906                 list_move(&new_hash->list, &c->btree_cache.freeable);
1907                 mutex_unlock(&c->btree_cache.lock);
1908
1909                 six_unlock_write(&new_hash->c.lock);
1910                 six_unlock_intent(&new_hash->c.lock);
1911         }
1912         up_read(&c->gc_lock);
1913         closure_sync(&cl);
1914         return ret;
1915 err_free_update:
1916         bch2_btree_update_free(as);
1917         goto err;
1918 }
1919
1920 /* Init code: */
1921
1922 /*
1923  * Only for filesystem bringup, when first reading the btree roots or allocating
1924  * btree roots when initializing a new filesystem:
1925  */
1926 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
1927 {
1928         BUG_ON(btree_node_root(c, b));
1929
1930         bch2_btree_set_root_inmem(c, b);
1931 }
1932
1933 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
1934 {
1935         struct closure cl;
1936         struct btree *b;
1937         int ret;
1938
1939         closure_init_stack(&cl);
1940
1941         do {
1942                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1943                 closure_sync(&cl);
1944         } while (ret);
1945
1946         b = bch2_btree_node_mem_alloc(c);
1947         bch2_btree_cache_cannibalize_unlock(c);
1948
1949         set_btree_node_fake(b);
1950         set_btree_node_need_rewrite(b);
1951         b->c.level      = 0;
1952         b->c.btree_id   = id;
1953
1954         bkey_btree_ptr_init(&b->key);
1955         b->key.k.p = POS_MAX;
1956         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
1957
1958         bch2_bset_init_first(b, &b->data->keys);
1959         bch2_btree_build_aux_trees(b);
1960
1961         b->data->flags = 0;
1962         btree_set_min(b, POS_MIN);
1963         btree_set_max(b, POS_MAX);
1964         b->data->format = bch2_btree_calc_format(b);
1965         btree_node_set_format(b, b->data->format);
1966
1967         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
1968                                           b->c.level, b->c.btree_id);
1969         BUG_ON(ret);
1970
1971         bch2_btree_set_root_inmem(c, b);
1972
1973         six_unlock_write(&b->c.lock);
1974         six_unlock_intent(&b->c.lock);
1975 }
1976
1977 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
1978 {
1979         struct btree_update *as;
1980
1981         mutex_lock(&c->btree_interior_update_lock);
1982         list_for_each_entry(as, &c->btree_interior_update_list, list)
1983                 pr_buf(out, "%p m %u w %u r %u j %llu\n",
1984                        as,
1985                        as->mode,
1986                        as->nodes_written,
1987                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
1988                        as->journal.seq);
1989         mutex_unlock(&c->btree_interior_update_lock);
1990 }
1991
1992 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
1993 {
1994         size_t ret = 0;
1995         struct list_head *i;
1996
1997         mutex_lock(&c->btree_interior_update_lock);
1998         list_for_each(i, &c->btree_interior_update_list)
1999                 ret++;
2000         mutex_unlock(&c->btree_interior_update_lock);
2001
2002         return ret;
2003 }
2004
2005 void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
2006 {
2007         struct btree_root *r;
2008         struct jset_entry *entry;
2009
2010         mutex_lock(&c->btree_root_lock);
2011
2012         vstruct_for_each(jset, entry)
2013                 if (entry->type == BCH_JSET_ENTRY_btree_root) {
2014                         r = &c->btree_roots[entry->btree_id];
2015                         r->level = entry->level;
2016                         r->alive = true;
2017                         bkey_copy(&r->key, &entry->start[0]);
2018                 }
2019
2020         mutex_unlock(&c->btree_root_lock);
2021 }
2022
2023 struct jset_entry *
2024 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2025                                     struct jset_entry *start,
2026                                     struct jset_entry *end)
2027 {
2028         struct jset_entry *entry;
2029         unsigned long have = 0;
2030         unsigned i;
2031
2032         for (entry = start; entry < end; entry = vstruct_next(entry))
2033                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2034                         __set_bit(entry->btree_id, &have);
2035
2036         mutex_lock(&c->btree_root_lock);
2037
2038         for (i = 0; i < BTREE_ID_NR; i++)
2039                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2040                         journal_entry_set(end,
2041                                           BCH_JSET_ENTRY_btree_root,
2042                                           i, c->btree_roots[i].level,
2043                                           &c->btree_roots[i].key,
2044                                           c->btree_roots[i].key.u64s);
2045                         end = vstruct_next(end);
2046                 }
2047
2048         mutex_unlock(&c->btree_root_lock);
2049
2050         return end;
2051 }
2052
2053 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2054 {
2055         if (c->btree_interior_update_worker)
2056                 destroy_workqueue(c->btree_interior_update_worker);
2057         mempool_exit(&c->btree_interior_update_pool);
2058 }
2059
2060 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2061 {
2062         mutex_init(&c->btree_reserve_cache_lock);
2063         INIT_LIST_HEAD(&c->btree_interior_update_list);
2064         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2065         mutex_init(&c->btree_interior_update_lock);
2066         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2067
2068         c->btree_interior_update_worker =
2069                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2070         if (!c->btree_interior_update_worker)
2071                 return -ENOMEM;
2072
2073         return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2074                                          sizeof(struct btree_update));
2075 }