]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
Update bcachefs sources to 31718a2: bcachefs: Don't spin in journal reclaim
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "error.h"
15 #include "extents.h"
16 #include "journal.h"
17 #include "journal_reclaim.h"
18 #include "keylist.h"
19 #include "recovery.h"
20 #include "replicas.h"
21 #include "super-io.h"
22
23 #include <linux/random.h>
24 #include <trace/events/bcachefs.h>
25
26 static void bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
27                                    struct btree_path *, struct btree *,
28                                    struct keylist *, unsigned);
29 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
30
31 /* Debug code: */
32
33 /*
34  * Verify that child nodes correctly span parent node's range:
35  */
36 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
37 {
38 #ifdef CONFIG_BCACHEFS_DEBUG
39         struct bpos next_node = b->data->min_key;
40         struct btree_node_iter iter;
41         struct bkey_s_c k;
42         struct bkey_s_c_btree_ptr_v2 bp;
43         struct bkey unpacked;
44         struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
45
46         BUG_ON(!b->c.level);
47
48         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
49                 return;
50
51         bch2_btree_node_iter_init_from_start(&iter, b);
52
53         while (1) {
54                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
55                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
56                         break;
57                 bp = bkey_s_c_to_btree_ptr_v2(k);
58
59                 if (bpos_cmp(next_node, bp.v->min_key)) {
60                         bch2_dump_btree_node(c, b);
61                         bch2_bpos_to_text(&buf1, next_node);
62                         bch2_bpos_to_text(&buf2, bp.v->min_key);
63                         panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
64                 }
65
66                 bch2_btree_node_iter_advance(&iter, b);
67
68                 if (bch2_btree_node_iter_end(&iter)) {
69                         if (bpos_cmp(k.k->p, b->key.k.p)) {
70                                 bch2_dump_btree_node(c, b);
71                                 bch2_bpos_to_text(&buf1, b->key.k.p);
72                                 bch2_bpos_to_text(&buf2, k.k->p);
73                                 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
74                         }
75                         break;
76                 }
77
78                 next_node = bpos_successor(k.k->p);
79         }
80 #endif
81 }
82
83 /* Calculate ideal packed bkey format for new btree nodes: */
84
85 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
86 {
87         struct bkey_packed *k;
88         struct bset_tree *t;
89         struct bkey uk;
90
91         for_each_bset(b, t)
92                 bset_tree_for_each_key(b, t, k)
93                         if (!bkey_deleted(k)) {
94                                 uk = bkey_unpack_key(b, k);
95                                 bch2_bkey_format_add_key(s, &uk);
96                         }
97 }
98
99 static struct bkey_format bch2_btree_calc_format(struct btree *b)
100 {
101         struct bkey_format_state s;
102
103         bch2_bkey_format_init(&s);
104         bch2_bkey_format_add_pos(&s, b->data->min_key);
105         bch2_bkey_format_add_pos(&s, b->data->max_key);
106         __bch2_btree_calc_format(&s, b);
107
108         return bch2_bkey_format_done(&s);
109 }
110
111 static size_t btree_node_u64s_with_format(struct btree *b,
112                                           struct bkey_format *new_f)
113 {
114         struct bkey_format *old_f = &b->format;
115
116         /* stupid integer promotion rules */
117         ssize_t delta =
118             (((int) new_f->key_u64s - old_f->key_u64s) *
119              (int) b->nr.packed_keys) +
120             (((int) new_f->key_u64s - BKEY_U64s) *
121              (int) b->nr.unpacked_keys);
122
123         BUG_ON(delta + b->nr.live_u64s < 0);
124
125         return b->nr.live_u64s + delta;
126 }
127
128 /**
129  * btree_node_format_fits - check if we could rewrite node with a new format
130  *
131  * This assumes all keys can pack with the new format -- it just checks if
132  * the re-packed keys would fit inside the node itself.
133  */
134 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
135                                  struct bkey_format *new_f)
136 {
137         size_t u64s = btree_node_u64s_with_format(b, new_f);
138
139         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
140 }
141
142 /* Btree node freeing/allocation: */
143
144 static void __btree_node_free(struct bch_fs *c, struct btree *b)
145 {
146         trace_btree_node_free(c, b);
147
148         BUG_ON(btree_node_dirty(b));
149         BUG_ON(btree_node_need_write(b));
150         BUG_ON(b == btree_node_root(c, b));
151         BUG_ON(b->ob.nr);
152         BUG_ON(!list_empty(&b->write_blocked));
153         BUG_ON(b->will_make_reachable);
154
155         clear_btree_node_noevict(b);
156
157         mutex_lock(&c->btree_cache.lock);
158         list_move(&b->list, &c->btree_cache.freeable);
159         mutex_unlock(&c->btree_cache.lock);
160 }
161
162 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
163                                        struct btree *b)
164 {
165         struct bch_fs *c = trans->c;
166         struct btree_path *path;
167
168         trans_for_each_path(trans, path)
169                 BUG_ON(path->l[b->c.level].b == b &&
170                        path->l[b->c.level].lock_seq == b->c.lock.state.seq);
171
172         six_lock_write(&b->c.lock, NULL, NULL);
173
174         bch2_btree_node_hash_remove(&c->btree_cache, b);
175         __btree_node_free(c, b);
176
177         six_unlock_write(&b->c.lock);
178         six_unlock_intent(&b->c.lock);
179 }
180
181 static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
182                                              struct disk_reservation *res,
183                                              struct closure *cl,
184                                              unsigned flags)
185 {
186         struct write_point *wp;
187         struct btree *b;
188         __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
189         struct open_buckets ob = { .nr = 0 };
190         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
191         unsigned nr_reserve;
192         enum alloc_reserve alloc_reserve;
193
194         if (flags & BTREE_INSERT_USE_RESERVE) {
195                 nr_reserve      = 0;
196                 alloc_reserve   = RESERVE_BTREE_MOVINGGC;
197         } else {
198                 nr_reserve      = BTREE_NODE_RESERVE;
199                 alloc_reserve   = RESERVE_BTREE;
200         }
201
202         mutex_lock(&c->btree_reserve_cache_lock);
203         if (c->btree_reserve_cache_nr > nr_reserve) {
204                 struct btree_alloc *a =
205                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
206
207                 ob = a->ob;
208                 bkey_copy(&tmp.k, &a->k);
209                 mutex_unlock(&c->btree_reserve_cache_lock);
210                 goto mem_alloc;
211         }
212         mutex_unlock(&c->btree_reserve_cache_lock);
213
214 retry:
215         wp = bch2_alloc_sectors_start(c,
216                                       c->opts.metadata_target ?:
217                                       c->opts.foreground_target,
218                                       0,
219                                       writepoint_ptr(&c->btree_write_point),
220                                       &devs_have,
221                                       res->nr_replicas,
222                                       c->opts.metadata_replicas_required,
223                                       alloc_reserve, 0, cl);
224         if (IS_ERR(wp))
225                 return ERR_CAST(wp);
226
227         if (wp->sectors_free < btree_sectors(c)) {
228                 struct open_bucket *ob;
229                 unsigned i;
230
231                 open_bucket_for_each(c, &wp->ptrs, ob, i)
232                         if (ob->sectors_free < btree_sectors(c))
233                                 ob->sectors_free = 0;
234
235                 bch2_alloc_sectors_done(c, wp);
236                 goto retry;
237         }
238
239         bkey_btree_ptr_v2_init(&tmp.k);
240         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
241
242         bch2_open_bucket_get(c, wp, &ob);
243         bch2_alloc_sectors_done(c, wp);
244 mem_alloc:
245         b = bch2_btree_node_mem_alloc(c);
246         six_unlock_write(&b->c.lock);
247         six_unlock_intent(&b->c.lock);
248
249         /* we hold cannibalize_lock: */
250         BUG_ON(IS_ERR(b));
251         BUG_ON(b->ob.nr);
252
253         bkey_copy(&b->key, &tmp.k);
254         b->ob = ob;
255
256         return b;
257 }
258
259 static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
260 {
261         struct bch_fs *c = as->c;
262         struct btree *b;
263         int ret;
264
265         BUG_ON(level >= BTREE_MAX_DEPTH);
266         BUG_ON(!as->nr_prealloc_nodes);
267
268         b = as->prealloc_nodes[--as->nr_prealloc_nodes];
269
270         six_lock_intent(&b->c.lock, NULL, NULL);
271         six_lock_write(&b->c.lock, NULL, NULL);
272
273         set_btree_node_accessed(b);
274         set_btree_node_dirty(c, b);
275         set_btree_node_need_write(b);
276
277         bch2_bset_init_first(b, &b->data->keys);
278         b->c.level      = level;
279         b->c.btree_id   = as->btree_id;
280         b->version_ondisk = c->sb.version;
281
282         memset(&b->nr, 0, sizeof(b->nr));
283         b->data->magic = cpu_to_le64(bset_magic(c));
284         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
285         b->data->flags = 0;
286         SET_BTREE_NODE_ID(b->data, as->btree_id);
287         SET_BTREE_NODE_LEVEL(b->data, level);
288
289         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
290                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
291
292                 bp->v.mem_ptr           = 0;
293                 bp->v.seq               = b->data->keys.seq;
294                 bp->v.sectors_written   = 0;
295         }
296
297         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
298
299         bch2_btree_build_aux_trees(b);
300
301         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
302         BUG_ON(ret);
303
304         trace_btree_node_alloc(c, b);
305         return b;
306 }
307
308 static void btree_set_min(struct btree *b, struct bpos pos)
309 {
310         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
311                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
312         b->data->min_key = pos;
313 }
314
315 static void btree_set_max(struct btree *b, struct bpos pos)
316 {
317         b->key.k.p = pos;
318         b->data->max_key = pos;
319 }
320
321 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
322                                                   struct btree *b,
323                                                   struct bkey_format format)
324 {
325         struct btree *n;
326
327         n = bch2_btree_node_alloc(as, b->c.level);
328
329         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
330
331         btree_set_min(n, b->data->min_key);
332         btree_set_max(n, b->data->max_key);
333
334         n->data->format         = format;
335         btree_node_set_format(n, format);
336
337         bch2_btree_sort_into(as->c, n, b);
338
339         btree_node_reset_sib_u64s(n);
340
341         n->key.k.p = b->key.k.p;
342         return n;
343 }
344
345 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
346                                                        struct btree *b)
347 {
348         struct bkey_format new_f = bch2_btree_calc_format(b);
349
350         /*
351          * The keys might expand with the new format - if they wouldn't fit in
352          * the btree node anymore, use the old format for now:
353          */
354         if (!bch2_btree_node_format_fits(as->c, b, &new_f))
355                 new_f = b->format;
356
357         return __bch2_btree_node_alloc_replacement(as, b, new_f);
358 }
359
360 static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
361 {
362         struct btree *b = bch2_btree_node_alloc(as, level);
363
364         btree_set_min(b, POS_MIN);
365         btree_set_max(b, SPOS_MAX);
366         b->data->format = bch2_btree_calc_format(b);
367
368         btree_node_set_format(b, b->data->format);
369         bch2_btree_build_aux_trees(b);
370
371         bch2_btree_update_add_new_node(as, b);
372         six_unlock_write(&b->c.lock);
373
374         return b;
375 }
376
377 static void bch2_btree_reserve_put(struct btree_update *as)
378 {
379         struct bch_fs *c = as->c;
380
381         mutex_lock(&c->btree_reserve_cache_lock);
382
383         while (as->nr_prealloc_nodes) {
384                 struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes];
385
386                 six_lock_intent(&b->c.lock, NULL, NULL);
387                 six_lock_write(&b->c.lock, NULL, NULL);
388
389                 if (c->btree_reserve_cache_nr <
390                     ARRAY_SIZE(c->btree_reserve_cache)) {
391                         struct btree_alloc *a =
392                                 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
393
394                         a->ob = b->ob;
395                         b->ob.nr = 0;
396                         bkey_copy(&a->k, &b->key);
397                 } else {
398                         bch2_open_buckets_put(c, &b->ob);
399                 }
400
401                 __btree_node_free(c, b);
402                 six_unlock_write(&b->c.lock);
403                 six_unlock_intent(&b->c.lock);
404         }
405
406         mutex_unlock(&c->btree_reserve_cache_lock);
407 }
408
409 static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes,
410                                   unsigned flags)
411 {
412         struct bch_fs *c = as->c;
413         struct closure cl;
414         struct btree *b;
415         int ret;
416
417         closure_init_stack(&cl);
418 retry:
419
420         BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
421
422         /*
423          * Protects reaping from the btree node cache and using the btree node
424          * open bucket reserve:
425          *
426          * BTREE_INSERT_NOWAIT only applies to btree node allocation, not
427          * blocking on this lock:
428          */
429         ret = bch2_btree_cache_cannibalize_lock(c, &cl);
430         if (ret)
431                 goto err;
432
433         while (as->nr_prealloc_nodes < nr_nodes) {
434                 b = __bch2_btree_node_alloc(c, &as->disk_res,
435                                             flags & BTREE_INSERT_NOWAIT
436                                             ? NULL : &cl, flags);
437                 if (IS_ERR(b)) {
438                         ret = PTR_ERR(b);
439                         goto err;
440                 }
441
442                 as->prealloc_nodes[as->nr_prealloc_nodes++] = b;
443         }
444
445         bch2_btree_cache_cannibalize_unlock(c);
446         closure_sync(&cl);
447         return 0;
448 err:
449         bch2_btree_cache_cannibalize_unlock(c);
450         closure_sync(&cl);
451
452         if (ret == -EAGAIN)
453                 goto retry;
454
455         trace_btree_reserve_get_fail(c, nr_nodes, &cl);
456         return ret;
457 }
458
459 /* Asynchronous interior node update machinery */
460
461 static void bch2_btree_update_free(struct btree_update *as)
462 {
463         struct bch_fs *c = as->c;
464
465         if (as->took_gc_lock)
466                 up_read(&c->gc_lock);
467         as->took_gc_lock = false;
468
469         bch2_journal_preres_put(&c->journal, &as->journal_preres);
470
471         bch2_journal_pin_drop(&c->journal, &as->journal);
472         bch2_journal_pin_flush(&c->journal, &as->journal);
473         bch2_disk_reservation_put(c, &as->disk_res);
474         bch2_btree_reserve_put(as);
475
476         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
477                                as->start_time);
478
479         mutex_lock(&c->btree_interior_update_lock);
480         list_del(&as->unwritten_list);
481         list_del(&as->list);
482
483         closure_debug_destroy(&as->cl);
484         mempool_free(as, &c->btree_interior_update_pool);
485
486         /*
487          * Have to do the wakeup with btree_interior_update_lock still held,
488          * since being on btree_interior_update_list is our ref on @c:
489          */
490         closure_wake_up(&c->btree_interior_update_wait);
491
492         mutex_unlock(&c->btree_interior_update_lock);
493 }
494
495 static void btree_update_will_delete_key(struct btree_update *as,
496                                          struct bkey_i *k)
497 {
498         BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s >
499                ARRAY_SIZE(as->_old_keys));
500         bch2_keylist_add(&as->old_keys, k);
501 }
502
503 static void btree_update_will_add_key(struct btree_update *as,
504                                       struct bkey_i *k)
505 {
506         BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s >
507                ARRAY_SIZE(as->_new_keys));
508         bch2_keylist_add(&as->new_keys, k);
509 }
510
511 /*
512  * The transactional part of an interior btree node update, where we journal the
513  * update we did to the interior node and update alloc info:
514  */
515 static int btree_update_nodes_written_trans(struct btree_trans *trans,
516                                             struct btree_update *as)
517 {
518         struct bkey_i *k;
519         int ret;
520
521         trans->extra_journal_entries = (void *) &as->journal_entries[0];
522         trans->extra_journal_entry_u64s = as->journal_u64s;
523         trans->journal_pin = &as->journal;
524
525         for_each_keylist_key(&as->new_keys, k) {
526                 ret = bch2_trans_mark_new(trans, k, 0);
527                 if (ret)
528                         return ret;
529         }
530
531         for_each_keylist_key(&as->old_keys, k) {
532                 ret = bch2_trans_mark_old(trans, bkey_i_to_s_c(k), 0);
533                 if (ret)
534                         return ret;
535         }
536
537         return 0;
538 }
539
540 static void btree_update_nodes_written(struct btree_update *as)
541 {
542         struct bch_fs *c = as->c;
543         struct btree *b = as->b;
544         struct btree_trans trans;
545         u64 journal_seq = 0;
546         unsigned i;
547         int ret;
548
549         /*
550          * If we're already in an error state, it might be because a btree node
551          * was never written, and we might be trying to free that same btree
552          * node here, but it won't have been marked as allocated and we'll see
553          * spurious disk usage inconsistencies in the transactional part below
554          * if we don't skip it:
555          */
556         ret = bch2_journal_error(&c->journal);
557         if (ret)
558                 goto err;
559
560         BUG_ON(!journal_pin_active(&as->journal));
561
562         /*
563          * Wait for any in flight writes to finish before we free the old nodes
564          * on disk:
565          */
566         for (i = 0; i < as->nr_old_nodes; i++) {
567                 struct btree *old = as->old_nodes[i];
568                 __le64 seq;
569
570                 six_lock_read(&old->c.lock, NULL, NULL);
571                 seq = old->data ? old->data->keys.seq : 0;
572                 six_unlock_read(&old->c.lock);
573
574                 if (seq == as->old_nodes_seq[i])
575                         wait_on_bit_io(&old->flags, BTREE_NODE_write_in_flight_inner,
576                                        TASK_UNINTERRUPTIBLE);
577         }
578
579         /*
580          * We did an update to a parent node where the pointers we added pointed
581          * to child nodes that weren't written yet: now, the child nodes have
582          * been written so we can write out the update to the interior node.
583          */
584
585         /*
586          * We can't call into journal reclaim here: we'd block on the journal
587          * reclaim lock, but we may need to release the open buckets we have
588          * pinned in order for other btree updates to make forward progress, and
589          * journal reclaim does btree updates when flushing bkey_cached entries,
590          * which may require allocations as well.
591          */
592         bch2_trans_init(&trans, c, 0, 512);
593         ret = __bch2_trans_do(&trans, &as->disk_res, &journal_seq,
594                               BTREE_INSERT_NOFAIL|
595                               BTREE_INSERT_NOCHECK_RW|
596                               BTREE_INSERT_JOURNAL_RECLAIM|
597                               BTREE_INSERT_JOURNAL_RESERVED,
598                               btree_update_nodes_written_trans(&trans, as));
599         bch2_trans_exit(&trans);
600
601         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
602                              "error %i in btree_update_nodes_written()", ret);
603 err:
604         if (b) {
605                 /*
606                  * @b is the node we did the final insert into:
607                  *
608                  * On failure to get a journal reservation, we still have to
609                  * unblock the write and allow most of the write path to happen
610                  * so that shutdown works, but the i->journal_seq mechanism
611                  * won't work to prevent the btree write from being visible (we
612                  * didn't get a journal sequence number) - instead
613                  * __bch2_btree_node_write() doesn't do the actual write if
614                  * we're in journal error state:
615                  */
616
617                 six_lock_intent(&b->c.lock, NULL, NULL);
618                 six_lock_write(&b->c.lock, NULL, NULL);
619                 mutex_lock(&c->btree_interior_update_lock);
620
621                 list_del(&as->write_blocked_list);
622
623                 /*
624                  * Node might have been freed, recheck under
625                  * btree_interior_update_lock:
626                  */
627                 if (as->b == b) {
628                         struct bset *i = btree_bset_last(b);
629
630                         BUG_ON(!b->c.level);
631                         BUG_ON(!btree_node_dirty(b));
632
633                         if (!ret) {
634                                 i->journal_seq = cpu_to_le64(
635                                         max(journal_seq,
636                                             le64_to_cpu(i->journal_seq)));
637
638                                 bch2_btree_add_journal_pin(c, b, journal_seq);
639                         } else {
640                                 /*
641                                  * If we didn't get a journal sequence number we
642                                  * can't write this btree node, because recovery
643                                  * won't know to ignore this write:
644                                  */
645                                 set_btree_node_never_write(b);
646                         }
647                 }
648
649                 mutex_unlock(&c->btree_interior_update_lock);
650                 six_unlock_write(&b->c.lock);
651
652                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
653                 six_unlock_intent(&b->c.lock);
654         }
655
656         bch2_journal_pin_drop(&c->journal, &as->journal);
657
658         bch2_journal_preres_put(&c->journal, &as->journal_preres);
659
660         mutex_lock(&c->btree_interior_update_lock);
661         for (i = 0; i < as->nr_new_nodes; i++) {
662                 b = as->new_nodes[i];
663
664                 BUG_ON(b->will_make_reachable != (unsigned long) as);
665                 b->will_make_reachable = 0;
666         }
667         mutex_unlock(&c->btree_interior_update_lock);
668
669         for (i = 0; i < as->nr_new_nodes; i++) {
670                 b = as->new_nodes[i];
671
672                 six_lock_read(&b->c.lock, NULL, NULL);
673                 btree_node_write_if_need(c, b, SIX_LOCK_read);
674                 six_unlock_read(&b->c.lock);
675         }
676
677         for (i = 0; i < as->nr_open_buckets; i++)
678                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
679
680         bch2_btree_update_free(as);
681 }
682
683 static void btree_interior_update_work(struct work_struct *work)
684 {
685         struct bch_fs *c =
686                 container_of(work, struct bch_fs, btree_interior_update_work);
687         struct btree_update *as;
688
689         while (1) {
690                 mutex_lock(&c->btree_interior_update_lock);
691                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
692                                               struct btree_update, unwritten_list);
693                 if (as && !as->nodes_written)
694                         as = NULL;
695                 mutex_unlock(&c->btree_interior_update_lock);
696
697                 if (!as)
698                         break;
699
700                 btree_update_nodes_written(as);
701         }
702 }
703
704 static void btree_update_set_nodes_written(struct closure *cl)
705 {
706         struct btree_update *as = container_of(cl, struct btree_update, cl);
707         struct bch_fs *c = as->c;
708
709         mutex_lock(&c->btree_interior_update_lock);
710         as->nodes_written = true;
711         mutex_unlock(&c->btree_interior_update_lock);
712
713         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
714 }
715
716 /*
717  * We're updating @b with pointers to nodes that haven't finished writing yet:
718  * block @b from being written until @as completes
719  */
720 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
721 {
722         struct bch_fs *c = as->c;
723
724         mutex_lock(&c->btree_interior_update_lock);
725         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
726
727         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
728         BUG_ON(!btree_node_dirty(b));
729
730         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
731         as->b           = b;
732         list_add(&as->write_blocked_list, &b->write_blocked);
733
734         mutex_unlock(&c->btree_interior_update_lock);
735 }
736
737 static void btree_update_reparent(struct btree_update *as,
738                                   struct btree_update *child)
739 {
740         struct bch_fs *c = as->c;
741
742         lockdep_assert_held(&c->btree_interior_update_lock);
743
744         child->b = NULL;
745         child->mode = BTREE_INTERIOR_UPDATING_AS;
746
747         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
748 }
749
750 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
751 {
752         struct bkey_i *insert = &b->key;
753         struct bch_fs *c = as->c;
754
755         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
756
757         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
758                ARRAY_SIZE(as->journal_entries));
759
760         as->journal_u64s +=
761                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
762                                   BCH_JSET_ENTRY_btree_root,
763                                   b->c.btree_id, b->c.level,
764                                   insert, insert->k.u64s);
765
766         mutex_lock(&c->btree_interior_update_lock);
767         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
768
769         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
770         mutex_unlock(&c->btree_interior_update_lock);
771 }
772
773 /*
774  * bch2_btree_update_add_new_node:
775  *
776  * This causes @as to wait on @b to be written, before it gets to
777  * bch2_btree_update_nodes_written
778  *
779  * Additionally, it sets b->will_make_reachable to prevent any additional writes
780  * to @b from happening besides the first until @b is reachable on disk
781  *
782  * And it adds @b to the list of @as's new nodes, so that we can update sector
783  * counts in bch2_btree_update_nodes_written:
784  */
785 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
786 {
787         struct bch_fs *c = as->c;
788
789         closure_get(&as->cl);
790
791         mutex_lock(&c->btree_interior_update_lock);
792         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
793         BUG_ON(b->will_make_reachable);
794
795         as->new_nodes[as->nr_new_nodes++] = b;
796         b->will_make_reachable = 1UL|(unsigned long) as;
797
798         mutex_unlock(&c->btree_interior_update_lock);
799
800         btree_update_will_add_key(as, &b->key);
801 }
802
803 /*
804  * returns true if @b was a new node
805  */
806 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
807 {
808         struct btree_update *as;
809         unsigned long v;
810         unsigned i;
811
812         mutex_lock(&c->btree_interior_update_lock);
813         /*
814          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
815          * dropped when it gets written by bch2_btree_complete_write - the
816          * xchg() is for synchronization with bch2_btree_complete_write:
817          */
818         v = xchg(&b->will_make_reachable, 0);
819         as = (struct btree_update *) (v & ~1UL);
820
821         if (!as) {
822                 mutex_unlock(&c->btree_interior_update_lock);
823                 return;
824         }
825
826         for (i = 0; i < as->nr_new_nodes; i++)
827                 if (as->new_nodes[i] == b)
828                         goto found;
829
830         BUG();
831 found:
832         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
833         mutex_unlock(&c->btree_interior_update_lock);
834
835         if (v & 1)
836                 closure_put(&as->cl);
837 }
838
839 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
840 {
841         while (b->ob.nr)
842                 as->open_buckets[as->nr_open_buckets++] =
843                         b->ob.v[--b->ob.nr];
844 }
845
846 /*
847  * @b is being split/rewritten: it may have pointers to not-yet-written btree
848  * nodes and thus outstanding btree_updates - redirect @b's
849  * btree_updates to point to this btree_update:
850  */
851 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
852                                                struct btree *b)
853 {
854         struct bch_fs *c = as->c;
855         struct btree_update *p, *n;
856         struct btree_write *w;
857
858         set_btree_node_dying(b);
859
860         if (btree_node_fake(b))
861                 return;
862
863         mutex_lock(&c->btree_interior_update_lock);
864
865         /*
866          * Does this node have any btree_update operations preventing
867          * it from being written?
868          *
869          * If so, redirect them to point to this btree_update: we can
870          * write out our new nodes, but we won't make them visible until those
871          * operations complete
872          */
873         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
874                 list_del_init(&p->write_blocked_list);
875                 btree_update_reparent(as, p);
876
877                 /*
878                  * for flush_held_btree_writes() waiting on updates to flush or
879                  * nodes to be writeable:
880                  */
881                 closure_wake_up(&c->btree_interior_update_wait);
882         }
883
884         clear_btree_node_dirty(c, b);
885         clear_btree_node_need_write(b);
886
887         /*
888          * Does this node have unwritten data that has a pin on the journal?
889          *
890          * If so, transfer that pin to the btree_update operation -
891          * note that if we're freeing multiple nodes, we only need to keep the
892          * oldest pin of any of the nodes we're freeing. We'll release the pin
893          * when the new nodes are persistent and reachable on disk:
894          */
895         w = btree_current_write(b);
896         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
897         bch2_journal_pin_drop(&c->journal, &w->journal);
898
899         w = btree_prev_write(b);
900         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
901         bch2_journal_pin_drop(&c->journal, &w->journal);
902
903         mutex_unlock(&c->btree_interior_update_lock);
904
905         /*
906          * Is this a node that isn't reachable on disk yet?
907          *
908          * Nodes that aren't reachable yet have writes blocked until they're
909          * reachable - now that we've cancelled any pending writes and moved
910          * things waiting on that write to wait on this update, we can drop this
911          * node from the list of nodes that the other update is making
912          * reachable, prior to freeing it:
913          */
914         btree_update_drop_new_node(c, b);
915
916         btree_update_will_delete_key(as, &b->key);
917
918         as->old_nodes[as->nr_old_nodes] = b;
919         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
920         as->nr_old_nodes++;
921 }
922
923 static void bch2_btree_update_done(struct btree_update *as)
924 {
925         struct bch_fs *c = as->c;
926         u64 start_time = as->start_time;
927
928         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
929
930         if (as->took_gc_lock)
931                 up_read(&as->c->gc_lock);
932         as->took_gc_lock = false;
933
934         bch2_btree_reserve_put(as);
935
936         continue_at(&as->cl, btree_update_set_nodes_written,
937                     as->c->btree_interior_update_worker);
938
939         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
940                                start_time);
941 }
942
943 static struct btree_update *
944 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
945                         unsigned level, unsigned nr_nodes, unsigned flags)
946 {
947         struct bch_fs *c = trans->c;
948         struct btree_update *as;
949         u64 start_time = local_clock();
950         int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
951                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
952         int journal_flags = 0;
953         int ret = 0;
954
955         BUG_ON(!path->should_be_locked);
956
957         if (flags & BTREE_INSERT_JOURNAL_RESERVED)
958                 journal_flags |= JOURNAL_RES_GET_RESERVED;
959         if (flags & BTREE_INSERT_JOURNAL_RECLAIM)
960                 journal_flags |= JOURNAL_RES_GET_NONBLOCK;
961
962         /*
963          * XXX: figure out how far we might need to split,
964          * instead of locking/reserving all the way to the root:
965          */
966         if (!bch2_btree_path_upgrade(trans, path, U8_MAX)) {
967                 trace_trans_restart_iter_upgrade(trans->fn, _RET_IP_,
968                                                  path->btree_id, &path->pos);
969                 ret = btree_trans_restart(trans);
970                 return ERR_PTR(ret);
971         }
972
973         if (flags & BTREE_INSERT_GC_LOCK_HELD)
974                 lockdep_assert_held(&c->gc_lock);
975         else if (!down_read_trylock(&c->gc_lock)) {
976                 bch2_trans_unlock(trans);
977                 down_read(&c->gc_lock);
978                 if (!bch2_trans_relock(trans)) {
979                         up_read(&c->gc_lock);
980                         return ERR_PTR(-EINTR);
981                 }
982         }
983
984         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
985         memset(as, 0, sizeof(*as));
986         closure_init(&as->cl, NULL);
987         as->c           = c;
988         as->start_time  = start_time;
989         as->mode        = BTREE_INTERIOR_NO_UPDATE;
990         as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
991         as->btree_id    = path->btree_id;
992         INIT_LIST_HEAD(&as->list);
993         INIT_LIST_HEAD(&as->unwritten_list);
994         INIT_LIST_HEAD(&as->write_blocked_list);
995         bch2_keylist_init(&as->old_keys, as->_old_keys);
996         bch2_keylist_init(&as->new_keys, as->_new_keys);
997         bch2_keylist_init(&as->parent_keys, as->inline_keys);
998
999         mutex_lock(&c->btree_interior_update_lock);
1000         list_add_tail(&as->list, &c->btree_interior_update_list);
1001         mutex_unlock(&c->btree_interior_update_lock);
1002
1003         /*
1004          * We don't want to allocate if we're in an error state, that can cause
1005          * deadlock on emergency shutdown due to open buckets getting stuck in
1006          * the btree_reserve_cache after allocator shutdown has cleared it out.
1007          * This check needs to come after adding us to the btree_interior_update
1008          * list but before calling bch2_btree_reserve_get, to synchronize with
1009          * __bch2_fs_read_only().
1010          */
1011         ret = bch2_journal_error(&c->journal);
1012         if (ret)
1013                 goto err;
1014
1015         bch2_trans_unlock(trans);
1016
1017         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1018                                       BTREE_UPDATE_JOURNAL_RES,
1019                                       journal_flags);
1020         if (ret) {
1021                 bch2_btree_update_free(as);
1022                 trace_trans_restart_journal_preres_get(trans->fn, _RET_IP_);
1023                 btree_trans_restart(trans);
1024                 return ERR_PTR(ret);
1025         }
1026
1027         ret = bch2_disk_reservation_get(c, &as->disk_res,
1028                         nr_nodes * btree_sectors(c),
1029                         c->opts.metadata_replicas,
1030                         disk_res_flags);
1031         if (ret)
1032                 goto err;
1033
1034         ret = bch2_btree_reserve_get(as, nr_nodes, flags);
1035         if (ret)
1036                 goto err;
1037
1038         if (!bch2_trans_relock(trans)) {
1039                 ret = -EINTR;
1040                 goto err;
1041         }
1042
1043         bch2_journal_pin_add(&c->journal,
1044                              atomic64_read(&c->journal.seq),
1045                              &as->journal, NULL);
1046
1047         return as;
1048 err:
1049         bch2_btree_update_free(as);
1050         return ERR_PTR(ret);
1051 }
1052
1053 /* Btree root updates: */
1054
1055 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1056 {
1057         /* Root nodes cannot be reaped */
1058         mutex_lock(&c->btree_cache.lock);
1059         list_del_init(&b->list);
1060         mutex_unlock(&c->btree_cache.lock);
1061
1062         if (b->c.level)
1063                 six_lock_pcpu_alloc(&b->c.lock);
1064         else
1065                 six_lock_pcpu_free(&b->c.lock);
1066
1067         mutex_lock(&c->btree_root_lock);
1068         BUG_ON(btree_node_root(c, b) &&
1069                (b->c.level < btree_node_root(c, b)->c.level ||
1070                 !btree_node_dying(btree_node_root(c, b))));
1071
1072         btree_node_root(c, b) = b;
1073         mutex_unlock(&c->btree_root_lock);
1074
1075         bch2_recalc_btree_reserve(c);
1076 }
1077
1078 /**
1079  * bch_btree_set_root - update the root in memory and on disk
1080  *
1081  * To ensure forward progress, the current task must not be holding any
1082  * btree node write locks. However, you must hold an intent lock on the
1083  * old root.
1084  *
1085  * Note: This allocates a journal entry but doesn't add any keys to
1086  * it.  All the btree roots are part of every journal write, so there
1087  * is nothing new to be done.  This just guarantees that there is a
1088  * journal write.
1089  */
1090 static void bch2_btree_set_root(struct btree_update *as,
1091                                 struct btree_trans *trans,
1092                                 struct btree_path *path,
1093                                 struct btree *b)
1094 {
1095         struct bch_fs *c = as->c;
1096         struct btree *old;
1097
1098         trace_btree_set_root(c, b);
1099         BUG_ON(!b->written &&
1100                !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags));
1101
1102         old = btree_node_root(c, b);
1103
1104         /*
1105          * Ensure no one is using the old root while we switch to the
1106          * new root:
1107          */
1108         bch2_btree_node_lock_write(trans, path, old);
1109
1110         bch2_btree_set_root_inmem(c, b);
1111
1112         btree_update_updated_root(as, b);
1113
1114         /*
1115          * Unlock old root after new root is visible:
1116          *
1117          * The new root isn't persistent, but that's ok: we still have
1118          * an intent lock on the new root, and any updates that would
1119          * depend on the new root would have to update the new root.
1120          */
1121         bch2_btree_node_unlock_write(trans, path, old);
1122 }
1123
1124 /* Interior node updates: */
1125
1126 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1127                                         struct btree_trans *trans,
1128                                         struct btree_path *path,
1129                                         struct btree *b,
1130                                         struct btree_node_iter *node_iter,
1131                                         struct bkey_i *insert)
1132 {
1133         struct bch_fs *c = as->c;
1134         struct bkey_packed *k;
1135         const char *invalid;
1136
1137         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1138                !btree_ptr_sectors_written(insert));
1139
1140         if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1141                 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1142
1143         invalid = bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b)) ?:
1144                 bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert));
1145         if (invalid) {
1146                 struct printbuf buf = PRINTBUF;
1147
1148                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1149                 bch2_fs_inconsistent(c, "inserting invalid bkey %s: %s", buf.buf, invalid);
1150                 printbuf_exit(&buf);
1151                 dump_stack();
1152         }
1153
1154         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1155                ARRAY_SIZE(as->journal_entries));
1156
1157         as->journal_u64s +=
1158                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1159                                   BCH_JSET_ENTRY_btree_keys,
1160                                   b->c.btree_id, b->c.level,
1161                                   insert, insert->k.u64s);
1162
1163         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1164                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1165                 bch2_btree_node_iter_advance(node_iter, b);
1166
1167         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1168         set_btree_node_dirty(c, b);
1169         set_btree_node_need_write(b);
1170 }
1171
1172 static void
1173 __bch2_btree_insert_keys_interior(struct btree_update *as,
1174                                   struct btree_trans *trans,
1175                                   struct btree_path *path,
1176                                   struct btree *b,
1177                                   struct btree_node_iter node_iter,
1178                                   struct keylist *keys)
1179 {
1180         struct bkey_i *insert = bch2_keylist_front(keys);
1181         struct bkey_packed *k;
1182
1183         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1184
1185         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1186                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1187                 ;
1188
1189         while (!bch2_keylist_empty(keys)) {
1190                 bch2_insert_fixup_btree_ptr(as, trans, path, b,
1191                                 &node_iter, bch2_keylist_front(keys));
1192                 bch2_keylist_pop_front(keys);
1193         }
1194 }
1195
1196 /*
1197  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1198  * node)
1199  */
1200 static struct btree *__btree_split_node(struct btree_update *as,
1201                                         struct btree *n1)
1202 {
1203         struct bkey_format_state s;
1204         size_t nr_packed = 0, nr_unpacked = 0;
1205         struct btree *n2;
1206         struct bset *set1, *set2;
1207         struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL;
1208         struct bpos n1_pos;
1209
1210         n2 = bch2_btree_node_alloc(as, n1->c.level);
1211         bch2_btree_update_add_new_node(as, n2);
1212
1213         n2->data->max_key       = n1->data->max_key;
1214         n2->data->format        = n1->format;
1215         SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
1216         n2->key.k.p = n1->key.k.p;
1217
1218         set1 = btree_bset_first(n1);
1219         set2 = btree_bset_first(n2);
1220
1221         /*
1222          * Has to be a linear search because we don't have an auxiliary
1223          * search tree yet
1224          */
1225         k = set1->start;
1226         while (1) {
1227                 struct bkey_packed *n = bkey_next(k);
1228
1229                 if (n == vstruct_last(set1))
1230                         break;
1231                 if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
1232                         break;
1233
1234                 if (bkey_packed(k))
1235                         nr_packed++;
1236                 else
1237                         nr_unpacked++;
1238
1239                 prev = k;
1240                 k = n;
1241         }
1242
1243         BUG_ON(!prev);
1244         set2_start      = k;
1245         set2_end        = vstruct_last(set1);
1246
1247         set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data);
1248         set_btree_bset_end(n1, n1->set);
1249
1250         n1->nr.live_u64s        = le16_to_cpu(set1->u64s);
1251         n1->nr.bset_u64s[0]     = le16_to_cpu(set1->u64s);
1252         n1->nr.packed_keys      = nr_packed;
1253         n1->nr.unpacked_keys    = nr_unpacked;
1254
1255         n1_pos = bkey_unpack_pos(n1, prev);
1256         if (as->c->sb.version < bcachefs_metadata_version_snapshot)
1257                 n1_pos.snapshot = U32_MAX;
1258
1259         btree_set_max(n1, n1_pos);
1260         btree_set_min(n2, bpos_successor(n1->key.k.p));
1261
1262         bch2_bkey_format_init(&s);
1263         bch2_bkey_format_add_pos(&s, n2->data->min_key);
1264         bch2_bkey_format_add_pos(&s, n2->data->max_key);
1265
1266         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1267                 struct bkey uk = bkey_unpack_key(n1, k);
1268                 bch2_bkey_format_add_key(&s, &uk);
1269         }
1270
1271         n2->data->format = bch2_bkey_format_done(&s);
1272         btree_node_set_format(n2, n2->data->format);
1273
1274         out = set2->start;
1275         memset(&n2->nr, 0, sizeof(n2->nr));
1276
1277         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1278                 BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k)
1279                                        ? &n1->format : &bch2_bkey_format_current, k));
1280                 out->format = KEY_FORMAT_LOCAL_BTREE;
1281                 btree_keys_account_key_add(&n2->nr, 0, out);
1282                 out = bkey_next(out);
1283         }
1284
1285         set2->u64s = cpu_to_le16((u64 *) out - set2->_data);
1286         set_btree_bset_end(n2, n2->set);
1287
1288         BUG_ON(!set1->u64s);
1289         BUG_ON(!set2->u64s);
1290
1291         btree_node_reset_sib_u64s(n1);
1292         btree_node_reset_sib_u64s(n2);
1293
1294         bch2_verify_btree_nr_keys(n1);
1295         bch2_verify_btree_nr_keys(n2);
1296
1297         if (n1->c.level) {
1298                 btree_node_interior_verify(as->c, n1);
1299                 btree_node_interior_verify(as->c, n2);
1300         }
1301
1302         return n2;
1303 }
1304
1305 /*
1306  * For updates to interior nodes, we've got to do the insert before we split
1307  * because the stuff we're inserting has to be inserted atomically. Post split,
1308  * the keys might have to go in different nodes and the split would no longer be
1309  * atomic.
1310  *
1311  * Worse, if the insert is from btree node coalescing, if we do the insert after
1312  * we do the split (and pick the pivot) - the pivot we pick might be between
1313  * nodes that were coalesced, and thus in the middle of a child node post
1314  * coalescing:
1315  */
1316 static void btree_split_insert_keys(struct btree_update *as,
1317                                     struct btree_trans *trans,
1318                                     struct btree_path *path,
1319                                     struct btree *b,
1320                                     struct keylist *keys)
1321 {
1322         struct btree_node_iter node_iter;
1323         struct bkey_i *k = bch2_keylist_front(keys);
1324         struct bkey_packed *src, *dst, *n;
1325         struct bset *i;
1326
1327         bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
1328
1329         __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1330
1331         /*
1332          * We can't tolerate whiteouts here - with whiteouts there can be
1333          * duplicate keys, and it would be rather bad if we picked a duplicate
1334          * for the pivot:
1335          */
1336         i = btree_bset_first(b);
1337         src = dst = i->start;
1338         while (src != vstruct_last(i)) {
1339                 n = bkey_next(src);
1340                 if (!bkey_deleted(src)) {
1341                         memmove_u64s_down(dst, src, src->u64s);
1342                         dst = bkey_next(dst);
1343                 }
1344                 src = n;
1345         }
1346
1347         /* Also clear out the unwritten whiteouts area: */
1348         b->whiteout_u64s = 0;
1349
1350         i->u64s = cpu_to_le16((u64 *) dst - i->_data);
1351         set_btree_bset_end(b, b->set);
1352
1353         BUG_ON(b->nsets != 1 ||
1354                b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
1355
1356         btree_node_interior_verify(as->c, b);
1357 }
1358
1359 static void btree_split(struct btree_update *as, struct btree_trans *trans,
1360                         struct btree_path *path, struct btree *b,
1361                         struct keylist *keys, unsigned flags)
1362 {
1363         struct bch_fs *c = as->c;
1364         struct btree *parent = btree_node_parent(path, b);
1365         struct btree *n1, *n2 = NULL, *n3 = NULL;
1366         u64 start_time = local_clock();
1367
1368         BUG_ON(!parent && (b != btree_node_root(c, b)));
1369         BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level));
1370
1371         bch2_btree_interior_update_will_free_node(as, b);
1372
1373         n1 = bch2_btree_node_alloc_replacement(as, b);
1374         bch2_btree_update_add_new_node(as, n1);
1375
1376         if (keys)
1377                 btree_split_insert_keys(as, trans, path, n1, keys);
1378
1379         if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
1380                 trace_btree_split(c, b);
1381
1382                 n2 = __btree_split_node(as, n1);
1383
1384                 bch2_btree_build_aux_trees(n2);
1385                 bch2_btree_build_aux_trees(n1);
1386                 six_unlock_write(&n2->c.lock);
1387                 six_unlock_write(&n1->c.lock);
1388
1389                 bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1390                 bch2_btree_node_write(c, n2, SIX_LOCK_intent);
1391
1392                 /*
1393                  * Note that on recursive parent_keys == keys, so we
1394                  * can't start adding new keys to parent_keys before emptying it
1395                  * out (which we did with btree_split_insert_keys() above)
1396                  */
1397                 bch2_keylist_add(&as->parent_keys, &n1->key);
1398                 bch2_keylist_add(&as->parent_keys, &n2->key);
1399
1400                 if (!parent) {
1401                         /* Depth increases, make a new root */
1402                         n3 = __btree_root_alloc(as, b->c.level + 1);
1403
1404                         n3->sib_u64s[0] = U16_MAX;
1405                         n3->sib_u64s[1] = U16_MAX;
1406
1407                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1408
1409                         bch2_btree_node_write(c, n3, SIX_LOCK_intent);
1410                 }
1411         } else {
1412                 trace_btree_compact(c, b);
1413
1414                 bch2_btree_build_aux_trees(n1);
1415                 six_unlock_write(&n1->c.lock);
1416
1417                 bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1418
1419                 if (parent)
1420                         bch2_keylist_add(&as->parent_keys, &n1->key);
1421         }
1422
1423         /* New nodes all written, now make them visible: */
1424
1425         if (parent) {
1426                 /* Split a non root node */
1427                 bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1428         } else if (n3) {
1429                 bch2_btree_set_root(as, trans, path, n3);
1430         } else {
1431                 /* Root filled up but didn't need to be split */
1432                 bch2_btree_set_root(as, trans, path, n1);
1433         }
1434
1435         bch2_btree_update_get_open_buckets(as, n1);
1436         if (n2)
1437                 bch2_btree_update_get_open_buckets(as, n2);
1438         if (n3)
1439                 bch2_btree_update_get_open_buckets(as, n3);
1440
1441         /* Successful split, update the path to point to the new nodes: */
1442
1443         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1444         if (n3)
1445                 bch2_trans_node_add(trans, n3);
1446         if (n2)
1447                 bch2_trans_node_add(trans, n2);
1448         bch2_trans_node_add(trans, n1);
1449
1450         /*
1451          * The old node must be freed (in memory) _before_ unlocking the new
1452          * nodes - else another thread could re-acquire a read lock on the old
1453          * node after another thread has locked and updated the new node, thus
1454          * seeing stale data:
1455          */
1456         bch2_btree_node_free_inmem(trans, b);
1457
1458         if (n3)
1459                 six_unlock_intent(&n3->c.lock);
1460         if (n2)
1461                 six_unlock_intent(&n2->c.lock);
1462         six_unlock_intent(&n1->c.lock);
1463
1464         bch2_trans_verify_locks(trans);
1465
1466         bch2_time_stats_update(&c->times[n2
1467                                ? BCH_TIME_btree_node_split
1468                                : BCH_TIME_btree_node_compact],
1469                                start_time);
1470 }
1471
1472 static void
1473 bch2_btree_insert_keys_interior(struct btree_update *as,
1474                                 struct btree_trans *trans,
1475                                 struct btree_path *path,
1476                                 struct btree *b,
1477                                 struct keylist *keys)
1478 {
1479         struct btree_path *linked;
1480
1481         __bch2_btree_insert_keys_interior(as, trans, path, b,
1482                                           path->l[b->c.level].iter, keys);
1483
1484         btree_update_updated_node(as, b);
1485
1486         trans_for_each_path_with_node(trans, b, linked)
1487                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1488
1489         bch2_trans_verify_paths(trans);
1490 }
1491
1492 /**
1493  * bch_btree_insert_node - insert bkeys into a given btree node
1494  *
1495  * @iter:               btree iterator
1496  * @keys:               list of keys to insert
1497  * @hook:               insert callback
1498  * @persistent:         if not null, @persistent will wait on journal write
1499  *
1500  * Inserts as many keys as it can into a given btree node, splitting it if full.
1501  * If a split occurred, this function will return early. This can only happen
1502  * for leaf nodes -- inserts into interior nodes have to be atomic.
1503  */
1504 static void bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1505                                    struct btree_path *path, struct btree *b,
1506                                    struct keylist *keys, unsigned flags)
1507 {
1508         struct bch_fs *c = as->c;
1509         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1510         int old_live_u64s = b->nr.live_u64s;
1511         int live_u64s_added, u64s_added;
1512
1513         lockdep_assert_held(&c->gc_lock);
1514         BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level));
1515         BUG_ON(!b->c.level);
1516         BUG_ON(!as || as->b);
1517         bch2_verify_keylist_sorted(keys);
1518
1519         bch2_btree_node_lock_for_insert(trans, path, b);
1520
1521         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1522                 bch2_btree_node_unlock_write(trans, path, b);
1523                 goto split;
1524         }
1525
1526         btree_node_interior_verify(c, b);
1527
1528         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1529
1530         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1531         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1532
1533         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1534                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1535         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1536                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1537
1538         if (u64s_added > live_u64s_added &&
1539             bch2_maybe_compact_whiteouts(c, b))
1540                 bch2_trans_node_reinit_iter(trans, b);
1541
1542         bch2_btree_node_unlock_write(trans, path, b);
1543
1544         btree_node_interior_verify(c, b);
1545         return;
1546 split:
1547         btree_split(as, trans, path, b, keys, flags);
1548 }
1549
1550 int bch2_btree_split_leaf(struct btree_trans *trans,
1551                           struct btree_path *path,
1552                           unsigned flags)
1553 {
1554         struct bch_fs *c = trans->c;
1555         struct btree *b = path_l(path)->b;
1556         struct btree_update *as;
1557         unsigned l;
1558         int ret = 0;
1559
1560         as = bch2_btree_update_start(trans, path, path->level,
1561                 btree_update_reserve_required(c, b), flags);
1562         if (IS_ERR(as))
1563                 return PTR_ERR(as);
1564
1565         btree_split(as, trans, path, b, NULL, flags);
1566         bch2_btree_update_done(as);
1567
1568         for (l = path->level + 1; btree_path_node(path, l) && !ret; l++)
1569                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1570
1571         return ret;
1572 }
1573
1574 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1575                                   struct btree_path *path,
1576                                   unsigned level,
1577                                   unsigned flags,
1578                                   enum btree_node_sibling sib)
1579 {
1580         struct bch_fs *c = trans->c;
1581         struct btree_path *sib_path = NULL;
1582         struct btree_update *as;
1583         struct bkey_format_state new_s;
1584         struct bkey_format new_f;
1585         struct bkey_i delete;
1586         struct btree *b, *m, *n, *prev, *next, *parent;
1587         struct bpos sib_pos;
1588         size_t sib_u64s;
1589         u64 start_time = local_clock();
1590         int ret = 0;
1591
1592         BUG_ON(!path->should_be_locked);
1593         BUG_ON(!btree_node_locked(path, level));
1594
1595         b = path->l[level].b;
1596
1597         if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) ||
1598             (sib == btree_next_sib && !bpos_cmp(b->data->max_key, SPOS_MAX))) {
1599                 b->sib_u64s[sib] = U16_MAX;
1600                 return 0;
1601         }
1602
1603         sib_pos = sib == btree_prev_sib
1604                 ? bpos_predecessor(b->data->min_key)
1605                 : bpos_successor(b->data->max_key);
1606
1607         sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1608                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1609         ret = bch2_btree_path_traverse(trans, sib_path, false);
1610         if (ret)
1611                 goto err;
1612
1613         sib_path->should_be_locked = true;
1614
1615         m = sib_path->l[level].b;
1616
1617         if (btree_node_parent(path, b) !=
1618             btree_node_parent(sib_path, m)) {
1619                 b->sib_u64s[sib] = U16_MAX;
1620                 goto out;
1621         }
1622
1623         if (sib == btree_prev_sib) {
1624                 prev = m;
1625                 next = b;
1626         } else {
1627                 prev = b;
1628                 next = m;
1629         }
1630
1631         if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) {
1632                 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1633
1634                 bch2_bpos_to_text(&buf1, prev->data->max_key);
1635                 bch2_bpos_to_text(&buf2, next->data->min_key);
1636                 bch_err(c,
1637                         "btree topology error in btree merge:\n"
1638                         "  prev ends at   %s\n"
1639                         "  next starts at %s",
1640                         buf1.buf, buf2.buf);
1641                 printbuf_exit(&buf1);
1642                 printbuf_exit(&buf2);
1643                 bch2_topology_error(c);
1644                 ret = -EIO;
1645                 goto err;
1646         }
1647
1648         bch2_bkey_format_init(&new_s);
1649         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1650         __bch2_btree_calc_format(&new_s, prev);
1651         __bch2_btree_calc_format(&new_s, next);
1652         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1653         new_f = bch2_bkey_format_done(&new_s);
1654
1655         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1656                 btree_node_u64s_with_format(m, &new_f);
1657
1658         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1659                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1660                 sib_u64s /= 2;
1661                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1662         }
1663
1664         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1665         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1666         b->sib_u64s[sib] = sib_u64s;
1667
1668         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1669                 goto out;
1670
1671         parent = btree_node_parent(path, b);
1672         as = bch2_btree_update_start(trans, path, level,
1673                          btree_update_reserve_required(c, parent) + 1,
1674                          flags|
1675                          BTREE_INSERT_NOFAIL|
1676                          BTREE_INSERT_USE_RESERVE);
1677         ret = PTR_ERR_OR_ZERO(as);
1678         if (ret)
1679                 goto err;
1680
1681         trace_btree_merge(c, b);
1682
1683         bch2_btree_interior_update_will_free_node(as, b);
1684         bch2_btree_interior_update_will_free_node(as, m);
1685
1686         n = bch2_btree_node_alloc(as, b->c.level);
1687         bch2_btree_update_add_new_node(as, n);
1688
1689         SET_BTREE_NODE_SEQ(n->data,
1690                            max(BTREE_NODE_SEQ(b->data),
1691                                BTREE_NODE_SEQ(m->data)) + 1);
1692
1693         btree_set_min(n, prev->data->min_key);
1694         btree_set_max(n, next->data->max_key);
1695         n->data->format         = new_f;
1696
1697         btree_node_set_format(n, new_f);
1698
1699         bch2_btree_sort_into(c, n, prev);
1700         bch2_btree_sort_into(c, n, next);
1701
1702         bch2_btree_build_aux_trees(n);
1703         six_unlock_write(&n->c.lock);
1704
1705         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1706
1707         bkey_init(&delete.k);
1708         delete.k.p = prev->key.k.p;
1709         bch2_keylist_add(&as->parent_keys, &delete);
1710         bch2_keylist_add(&as->parent_keys, &n->key);
1711
1712         bch2_trans_verify_paths(trans);
1713
1714         bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1715
1716         bch2_trans_verify_paths(trans);
1717
1718         bch2_btree_update_get_open_buckets(as, n);
1719
1720         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1721         six_lock_increment(&m->c.lock, SIX_LOCK_intent);
1722
1723         bch2_trans_node_add(trans, n);
1724
1725         bch2_trans_verify_paths(trans);
1726
1727         bch2_btree_node_free_inmem(trans, b);
1728         bch2_btree_node_free_inmem(trans, m);
1729
1730         six_unlock_intent(&n->c.lock);
1731
1732         bch2_btree_update_done(as);
1733
1734         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1735 out:
1736 err:
1737         bch2_path_put(trans, sib_path, true);
1738         bch2_trans_verify_locks(trans);
1739         return ret;
1740 }
1741
1742 /**
1743  * bch_btree_node_rewrite - Rewrite/move a btree node
1744  */
1745 int bch2_btree_node_rewrite(struct btree_trans *trans,
1746                             struct btree_iter *iter,
1747                             struct btree *b,
1748                             unsigned flags)
1749 {
1750         struct bch_fs *c = trans->c;
1751         struct btree *n, *parent;
1752         struct btree_update *as;
1753         int ret;
1754
1755         flags |= BTREE_INSERT_NOFAIL;
1756
1757         parent = btree_node_parent(iter->path, b);
1758         as = bch2_btree_update_start(trans, iter->path, b->c.level,
1759                 (parent
1760                  ? btree_update_reserve_required(c, parent)
1761                  : 0) + 1,
1762                 flags);
1763         ret = PTR_ERR_OR_ZERO(as);
1764         if (ret) {
1765                 trace_btree_gc_rewrite_node_fail(c, b);
1766                 goto out;
1767         }
1768
1769         bch2_btree_interior_update_will_free_node(as, b);
1770
1771         n = bch2_btree_node_alloc_replacement(as, b);
1772         bch2_btree_update_add_new_node(as, n);
1773
1774         bch2_btree_build_aux_trees(n);
1775         six_unlock_write(&n->c.lock);
1776
1777         trace_btree_gc_rewrite_node(c, b);
1778
1779         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1780
1781         if (parent) {
1782                 bch2_keylist_add(&as->parent_keys, &n->key);
1783                 bch2_btree_insert_node(as, trans, iter->path, parent,
1784                                        &as->parent_keys, flags);
1785         } else {
1786                 bch2_btree_set_root(as, trans, iter->path, n);
1787         }
1788
1789         bch2_btree_update_get_open_buckets(as, n);
1790
1791         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1792         bch2_trans_node_add(trans, n);
1793         bch2_btree_node_free_inmem(trans, b);
1794         six_unlock_intent(&n->c.lock);
1795
1796         bch2_btree_update_done(as);
1797 out:
1798         bch2_btree_path_downgrade(iter->path);
1799         return ret;
1800 }
1801
1802 struct async_btree_rewrite {
1803         struct bch_fs           *c;
1804         struct work_struct      work;
1805         enum btree_id           btree_id;
1806         unsigned                level;
1807         struct bpos             pos;
1808         __le64                  seq;
1809 };
1810
1811 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
1812                                           struct async_btree_rewrite *a)
1813 {
1814         struct btree_iter iter;
1815         struct btree *b;
1816         int ret;
1817
1818         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
1819                                   BTREE_MAX_DEPTH, a->level, 0);
1820         b = bch2_btree_iter_peek_node(&iter);
1821         ret = PTR_ERR_OR_ZERO(b);
1822         if (ret)
1823                 goto out;
1824
1825         if (!b || b->data->keys.seq != a->seq)
1826                 goto out;
1827
1828         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
1829 out :
1830         bch2_trans_iter_exit(trans, &iter);
1831
1832         return ret;
1833 }
1834
1835 void async_btree_node_rewrite_work(struct work_struct *work)
1836 {
1837         struct async_btree_rewrite *a =
1838                 container_of(work, struct async_btree_rewrite, work);
1839         struct bch_fs *c = a->c;
1840
1841         bch2_trans_do(c, NULL, NULL, 0,
1842                       async_btree_node_rewrite_trans(&trans, a));
1843         percpu_ref_put(&c->writes);
1844         kfree(a);
1845 }
1846
1847 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
1848 {
1849         struct async_btree_rewrite *a;
1850
1851         if (!percpu_ref_tryget(&c->writes))
1852                 return;
1853
1854         a = kmalloc(sizeof(*a), GFP_NOFS);
1855         if (!a) {
1856                 percpu_ref_put(&c->writes);
1857                 return;
1858         }
1859
1860         a->c            = c;
1861         a->btree_id     = b->c.btree_id;
1862         a->level        = b->c.level;
1863         a->pos          = b->key.k.p;
1864         a->seq          = b->data->keys.seq;
1865
1866         INIT_WORK(&a->work, async_btree_node_rewrite_work);
1867         queue_work(c->btree_interior_update_worker, &a->work);
1868 }
1869
1870 static int __bch2_btree_node_update_key(struct btree_trans *trans,
1871                                         struct btree_iter *iter,
1872                                         struct btree *b, struct btree *new_hash,
1873                                         struct bkey_i *new_key,
1874                                         bool skip_triggers)
1875 {
1876         struct bch_fs *c = trans->c;
1877         struct btree_iter iter2 = { NULL };
1878         struct btree *parent;
1879         u64 journal_entries[BKEY_BTREE_PTR_U64s_MAX];
1880         int ret;
1881
1882         if (!skip_triggers) {
1883                 ret = bch2_trans_mark_new(trans, new_key, 0);
1884                 if (ret)
1885                         return ret;
1886
1887                 ret = bch2_trans_mark_old(trans, bkey_i_to_s_c(&b->key), 0);
1888                 if (ret)
1889                         return ret;
1890         }
1891
1892         if (new_hash) {
1893                 bkey_copy(&new_hash->key, new_key);
1894                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
1895                                 new_hash, b->c.level, b->c.btree_id);
1896                 BUG_ON(ret);
1897         }
1898
1899         parent = btree_node_parent(iter->path, b);
1900         if (parent) {
1901                 bch2_trans_copy_iter(&iter2, iter);
1902
1903                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
1904                                 iter2.flags & BTREE_ITER_INTENT,
1905                                 _THIS_IP_);
1906
1907                 BUG_ON(iter2.path->level != b->c.level);
1908                 BUG_ON(bpos_cmp(iter2.path->pos, new_key->k.p));
1909
1910                 btree_node_unlock(iter2.path, iter2.path->level);
1911                 path_l(iter2.path)->b = BTREE_ITER_NO_NODE_UP;
1912                 iter2.path->level++;
1913
1914                 bch2_btree_path_check_sort(trans, iter2.path, 0);
1915
1916                 ret   = bch2_btree_iter_traverse(&iter2) ?:
1917                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
1918                 if (ret)
1919                         goto err;
1920         } else {
1921                 BUG_ON(btree_node_root(c, b) != b);
1922
1923                 trans->extra_journal_entries = (void *) &journal_entries[0];
1924                 trans->extra_journal_entry_u64s =
1925                         journal_entry_set((void *) &journal_entries[0],
1926                                           BCH_JSET_ENTRY_btree_root,
1927                                           b->c.btree_id, b->c.level,
1928                                           new_key, new_key->k.u64s);
1929         }
1930
1931         ret = bch2_trans_commit(trans, NULL, NULL,
1932                                 BTREE_INSERT_NOFAIL|
1933                                 BTREE_INSERT_NOCHECK_RW|
1934                                 BTREE_INSERT_USE_RESERVE|
1935                                 BTREE_INSERT_JOURNAL_RECLAIM|
1936                                 BTREE_INSERT_JOURNAL_RESERVED);
1937         if (ret)
1938                 goto err;
1939
1940         bch2_btree_node_lock_write(trans, iter->path, b);
1941
1942         if (new_hash) {
1943                 mutex_lock(&c->btree_cache.lock);
1944                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
1945                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1946
1947                 bkey_copy(&b->key, new_key);
1948                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1949                 BUG_ON(ret);
1950                 mutex_unlock(&c->btree_cache.lock);
1951         } else {
1952                 bkey_copy(&b->key, new_key);
1953         }
1954
1955         bch2_btree_node_unlock_write(trans, iter->path, b);
1956 out:
1957         bch2_trans_iter_exit(trans, &iter2);
1958         return ret;
1959 err:
1960         if (new_hash) {
1961                 mutex_lock(&c->btree_cache.lock);
1962                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1963                 mutex_unlock(&c->btree_cache.lock);
1964         }
1965         goto out;
1966 }
1967
1968 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
1969                                struct btree *b, struct bkey_i *new_key,
1970                                bool skip_triggers)
1971 {
1972         struct bch_fs *c = trans->c;
1973         struct btree *new_hash = NULL;
1974         struct btree_path *path = iter->path;
1975         struct closure cl;
1976         int ret = 0;
1977
1978         if (!btree_node_intent_locked(path, b->c.level) &&
1979             !bch2_btree_path_upgrade(trans, path, b->c.level + 1)) {
1980                 btree_trans_restart(trans);
1981                 return -EINTR;
1982         }
1983
1984         closure_init_stack(&cl);
1985
1986         /*
1987          * check btree_ptr_hash_val() after @b is locked by
1988          * btree_iter_traverse():
1989          */
1990         if (btree_ptr_hash_val(new_key) != b->hash_val) {
1991                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1992                 if (ret) {
1993                         bch2_trans_unlock(trans);
1994                         closure_sync(&cl);
1995                         if (!bch2_trans_relock(trans))
1996                                 return -EINTR;
1997                 }
1998
1999                 new_hash = bch2_btree_node_mem_alloc(c);
2000         }
2001
2002         path->intent_ref++;
2003         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash,
2004                                            new_key, skip_triggers);
2005         --path->intent_ref;
2006
2007         if (new_hash) {
2008                 mutex_lock(&c->btree_cache.lock);
2009                 list_move(&new_hash->list, &c->btree_cache.freeable);
2010                 mutex_unlock(&c->btree_cache.lock);
2011
2012                 six_unlock_write(&new_hash->c.lock);
2013                 six_unlock_intent(&new_hash->c.lock);
2014         }
2015         closure_sync(&cl);
2016         bch2_btree_cache_cannibalize_unlock(c);
2017         return ret;
2018 }
2019
2020 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2021                                         struct btree *b, struct bkey_i *new_key,
2022                                         bool skip_triggers)
2023 {
2024         struct btree_iter iter;
2025         int ret;
2026
2027         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2028                                   BTREE_MAX_DEPTH, b->c.level,
2029                                   BTREE_ITER_INTENT);
2030         ret = bch2_btree_iter_traverse(&iter);
2031         if (ret)
2032                 goto out;
2033
2034         /* has node been freed? */
2035         if (iter.path->l[b->c.level].b != b) {
2036                 /* node has been freed: */
2037                 BUG_ON(!btree_node_dying(b));
2038                 goto out;
2039         }
2040
2041         BUG_ON(!btree_node_hashed(b));
2042
2043         ret = bch2_btree_node_update_key(trans, &iter, b, new_key, skip_triggers);
2044 out:
2045         bch2_trans_iter_exit(trans, &iter);
2046         return ret;
2047 }
2048
2049 /* Init code: */
2050
2051 /*
2052  * Only for filesystem bringup, when first reading the btree roots or allocating
2053  * btree roots when initializing a new filesystem:
2054  */
2055 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2056 {
2057         BUG_ON(btree_node_root(c, b));
2058
2059         bch2_btree_set_root_inmem(c, b);
2060 }
2061
2062 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2063 {
2064         struct closure cl;
2065         struct btree *b;
2066         int ret;
2067
2068         closure_init_stack(&cl);
2069
2070         do {
2071                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2072                 closure_sync(&cl);
2073         } while (ret);
2074
2075         b = bch2_btree_node_mem_alloc(c);
2076         bch2_btree_cache_cannibalize_unlock(c);
2077
2078         set_btree_node_fake(b);
2079         set_btree_node_need_rewrite(b);
2080         b->c.level      = 0;
2081         b->c.btree_id   = id;
2082
2083         bkey_btree_ptr_init(&b->key);
2084         b->key.k.p = SPOS_MAX;
2085         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2086
2087         bch2_bset_init_first(b, &b->data->keys);
2088         bch2_btree_build_aux_trees(b);
2089
2090         b->data->flags = 0;
2091         btree_set_min(b, POS_MIN);
2092         btree_set_max(b, SPOS_MAX);
2093         b->data->format = bch2_btree_calc_format(b);
2094         btree_node_set_format(b, b->data->format);
2095
2096         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2097                                           b->c.level, b->c.btree_id);
2098         BUG_ON(ret);
2099
2100         bch2_btree_set_root_inmem(c, b);
2101
2102         six_unlock_write(&b->c.lock);
2103         six_unlock_intent(&b->c.lock);
2104 }
2105
2106 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2107 {
2108         struct btree_update *as;
2109
2110         mutex_lock(&c->btree_interior_update_lock);
2111         list_for_each_entry(as, &c->btree_interior_update_list, list)
2112                 pr_buf(out, "%p m %u w %u r %u j %llu\n",
2113                        as,
2114                        as->mode,
2115                        as->nodes_written,
2116                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
2117                        as->journal.seq);
2118         mutex_unlock(&c->btree_interior_update_lock);
2119 }
2120
2121 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
2122 {
2123         size_t ret = 0;
2124         struct list_head *i;
2125
2126         mutex_lock(&c->btree_interior_update_lock);
2127         list_for_each(i, &c->btree_interior_update_list)
2128                 ret++;
2129         mutex_unlock(&c->btree_interior_update_lock);
2130
2131         return ret;
2132 }
2133
2134 void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
2135 {
2136         struct btree_root *r;
2137         struct jset_entry *entry;
2138
2139         mutex_lock(&c->btree_root_lock);
2140
2141         vstruct_for_each(jset, entry)
2142                 if (entry->type == BCH_JSET_ENTRY_btree_root) {
2143                         r = &c->btree_roots[entry->btree_id];
2144                         r->level = entry->level;
2145                         r->alive = true;
2146                         bkey_copy(&r->key, &entry->start[0]);
2147                 }
2148
2149         mutex_unlock(&c->btree_root_lock);
2150 }
2151
2152 struct jset_entry *
2153 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2154                                     struct jset_entry *start,
2155                                     struct jset_entry *end)
2156 {
2157         struct jset_entry *entry;
2158         unsigned long have = 0;
2159         unsigned i;
2160
2161         for (entry = start; entry < end; entry = vstruct_next(entry))
2162                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2163                         __set_bit(entry->btree_id, &have);
2164
2165         mutex_lock(&c->btree_root_lock);
2166
2167         for (i = 0; i < BTREE_ID_NR; i++)
2168                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2169                         journal_entry_set(end,
2170                                           BCH_JSET_ENTRY_btree_root,
2171                                           i, c->btree_roots[i].level,
2172                                           &c->btree_roots[i].key,
2173                                           c->btree_roots[i].key.u64s);
2174                         end = vstruct_next(end);
2175                 }
2176
2177         mutex_unlock(&c->btree_root_lock);
2178
2179         return end;
2180 }
2181
2182 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2183 {
2184         if (c->btree_interior_update_worker)
2185                 destroy_workqueue(c->btree_interior_update_worker);
2186         mempool_exit(&c->btree_interior_update_pool);
2187 }
2188
2189 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2190 {
2191         mutex_init(&c->btree_reserve_cache_lock);
2192         INIT_LIST_HEAD(&c->btree_interior_update_list);
2193         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2194         mutex_init(&c->btree_interior_update_lock);
2195         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2196
2197         c->btree_interior_update_worker =
2198                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2199         if (!c->btree_interior_update_worker)
2200                 return -ENOMEM;
2201
2202         return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2203                                          sizeof(struct btree_update));
2204 }