]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
Update bcachefs sources to b964c6cba8 bcachefs: Change lockrestart_do() to always...
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "error.h"
15 #include "extents.h"
16 #include "journal.h"
17 #include "journal_reclaim.h"
18 #include "keylist.h"
19 #include "replicas.h"
20 #include "super-io.h"
21
22 #include <linux/random.h>
23 #include <trace/events/bcachefs.h>
24
25 static void bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
26                                    struct btree_iter *, struct btree *,
27                                    struct keylist *, unsigned);
28
29 /* Debug code: */
30
31 /*
32  * Verify that child nodes correctly span parent node's range:
33  */
34 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
35 {
36 #ifdef CONFIG_BCACHEFS_DEBUG
37         struct bpos next_node = b->data->min_key;
38         struct btree_node_iter iter;
39         struct bkey_s_c k;
40         struct bkey_s_c_btree_ptr_v2 bp;
41         struct bkey unpacked;
42         char buf1[100], buf2[100];
43
44         BUG_ON(!b->c.level);
45
46         if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags))
47                 return;
48
49         bch2_btree_node_iter_init_from_start(&iter, b);
50
51         while (1) {
52                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
53                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
54                         break;
55                 bp = bkey_s_c_to_btree_ptr_v2(k);
56
57                 if (bpos_cmp(next_node, bp.v->min_key)) {
58                         bch2_dump_btree_node(c, b);
59                         panic("expected next min_key %s got %s\n",
60                               (bch2_bpos_to_text(&PBUF(buf1), next_node), buf1),
61                               (bch2_bpos_to_text(&PBUF(buf2), bp.v->min_key), buf2));
62                 }
63
64                 bch2_btree_node_iter_advance(&iter, b);
65
66                 if (bch2_btree_node_iter_end(&iter)) {
67                         if (bpos_cmp(k.k->p, b->key.k.p)) {
68                                 bch2_dump_btree_node(c, b);
69                                 panic("expected end %s got %s\n",
70                                       (bch2_bpos_to_text(&PBUF(buf1), b->key.k.p), buf1),
71                                       (bch2_bpos_to_text(&PBUF(buf2), k.k->p), buf2));
72                         }
73                         break;
74                 }
75
76                 next_node = bpos_successor(k.k->p);
77         }
78 #endif
79 }
80
81 /* Calculate ideal packed bkey format for new btree nodes: */
82
83 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
84 {
85         struct bkey_packed *k;
86         struct bset_tree *t;
87         struct bkey uk;
88
89         for_each_bset(b, t)
90                 bset_tree_for_each_key(b, t, k)
91                         if (!bkey_deleted(k)) {
92                                 uk = bkey_unpack_key(b, k);
93                                 bch2_bkey_format_add_key(s, &uk);
94                         }
95 }
96
97 static struct bkey_format bch2_btree_calc_format(struct btree *b)
98 {
99         struct bkey_format_state s;
100
101         bch2_bkey_format_init(&s);
102         bch2_bkey_format_add_pos(&s, b->data->min_key);
103         bch2_bkey_format_add_pos(&s, b->data->max_key);
104         __bch2_btree_calc_format(&s, b);
105
106         return bch2_bkey_format_done(&s);
107 }
108
109 static size_t btree_node_u64s_with_format(struct btree *b,
110                                           struct bkey_format *new_f)
111 {
112         struct bkey_format *old_f = &b->format;
113
114         /* stupid integer promotion rules */
115         ssize_t delta =
116             (((int) new_f->key_u64s - old_f->key_u64s) *
117              (int) b->nr.packed_keys) +
118             (((int) new_f->key_u64s - BKEY_U64s) *
119              (int) b->nr.unpacked_keys);
120
121         BUG_ON(delta + b->nr.live_u64s < 0);
122
123         return b->nr.live_u64s + delta;
124 }
125
126 /**
127  * btree_node_format_fits - check if we could rewrite node with a new format
128  *
129  * This assumes all keys can pack with the new format -- it just checks if
130  * the re-packed keys would fit inside the node itself.
131  */
132 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
133                                  struct bkey_format *new_f)
134 {
135         size_t u64s = btree_node_u64s_with_format(b, new_f);
136
137         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
138 }
139
140 /* Btree node freeing/allocation: */
141
142 static void __btree_node_free(struct bch_fs *c, struct btree *b)
143 {
144         trace_btree_node_free(c, b);
145
146         BUG_ON(btree_node_dirty(b));
147         BUG_ON(btree_node_need_write(b));
148         BUG_ON(b == btree_node_root(c, b));
149         BUG_ON(b->ob.nr);
150         BUG_ON(!list_empty(&b->write_blocked));
151         BUG_ON(b->will_make_reachable);
152
153         clear_btree_node_noevict(b);
154
155         bch2_btree_node_hash_remove(&c->btree_cache, b);
156
157         mutex_lock(&c->btree_cache.lock);
158         list_move(&b->list, &c->btree_cache.freeable);
159         mutex_unlock(&c->btree_cache.lock);
160 }
161
162 void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b)
163 {
164         struct open_buckets ob = b->ob;
165
166         b->ob.nr = 0;
167
168         clear_btree_node_dirty(c, b);
169
170         btree_node_lock_type(c, b, SIX_LOCK_write);
171         __btree_node_free(c, b);
172         six_unlock_write(&b->c.lock);
173
174         bch2_open_buckets_put(c, &ob);
175 }
176
177 void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b,
178                                 struct btree_iter *iter)
179 {
180         struct btree_iter *linked;
181
182         trans_for_each_iter(iter->trans, linked)
183                 BUG_ON(linked->l[b->c.level].b == b);
184
185         six_lock_write(&b->c.lock, NULL, NULL);
186         __btree_node_free(c, b);
187         six_unlock_write(&b->c.lock);
188         six_unlock_intent(&b->c.lock);
189 }
190
191 static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
192                                              struct disk_reservation *res,
193                                              struct closure *cl,
194                                              unsigned flags)
195 {
196         struct write_point *wp;
197         struct btree *b;
198         __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
199         struct open_buckets ob = { .nr = 0 };
200         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
201         unsigned nr_reserve;
202         enum alloc_reserve alloc_reserve;
203
204         if (flags & BTREE_INSERT_USE_RESERVE) {
205                 nr_reserve      = 0;
206                 alloc_reserve   = RESERVE_BTREE_MOVINGGC;
207         } else {
208                 nr_reserve      = BTREE_NODE_RESERVE;
209                 alloc_reserve   = RESERVE_BTREE;
210         }
211
212         mutex_lock(&c->btree_reserve_cache_lock);
213         if (c->btree_reserve_cache_nr > nr_reserve) {
214                 struct btree_alloc *a =
215                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
216
217                 ob = a->ob;
218                 bkey_copy(&tmp.k, &a->k);
219                 mutex_unlock(&c->btree_reserve_cache_lock);
220                 goto mem_alloc;
221         }
222         mutex_unlock(&c->btree_reserve_cache_lock);
223
224 retry:
225         wp = bch2_alloc_sectors_start(c,
226                                       c->opts.metadata_target ?:
227                                       c->opts.foreground_target,
228                                       0,
229                                       writepoint_ptr(&c->btree_write_point),
230                                       &devs_have,
231                                       res->nr_replicas,
232                                       c->opts.metadata_replicas_required,
233                                       alloc_reserve, 0, cl);
234         if (IS_ERR(wp))
235                 return ERR_CAST(wp);
236
237         if (wp->sectors_free < c->opts.btree_node_size) {
238                 struct open_bucket *ob;
239                 unsigned i;
240
241                 open_bucket_for_each(c, &wp->ptrs, ob, i)
242                         if (ob->sectors_free < c->opts.btree_node_size)
243                                 ob->sectors_free = 0;
244
245                 bch2_alloc_sectors_done(c, wp);
246                 goto retry;
247         }
248
249         bkey_btree_ptr_v2_init(&tmp.k);
250         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, c->opts.btree_node_size);
251
252         bch2_open_bucket_get(c, wp, &ob);
253         bch2_alloc_sectors_done(c, wp);
254 mem_alloc:
255         b = bch2_btree_node_mem_alloc(c);
256
257         /* we hold cannibalize_lock: */
258         BUG_ON(IS_ERR(b));
259         BUG_ON(b->ob.nr);
260
261         bkey_copy(&b->key, &tmp.k);
262         b->ob = ob;
263
264         return b;
265 }
266
267 static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
268 {
269         struct bch_fs *c = as->c;
270         struct btree *b;
271         int ret;
272
273         BUG_ON(level >= BTREE_MAX_DEPTH);
274         BUG_ON(!as->nr_prealloc_nodes);
275
276         b = as->prealloc_nodes[--as->nr_prealloc_nodes];
277
278         set_btree_node_accessed(b);
279         set_btree_node_dirty(c, b);
280         set_btree_node_need_write(b);
281
282         bch2_bset_init_first(b, &b->data->keys);
283         b->c.level      = level;
284         b->c.btree_id   = as->btree_id;
285         b->version_ondisk = c->sb.version;
286
287         memset(&b->nr, 0, sizeof(b->nr));
288         b->data->magic = cpu_to_le64(bset_magic(c));
289         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
290         b->data->flags = 0;
291         SET_BTREE_NODE_ID(b->data, as->btree_id);
292         SET_BTREE_NODE_LEVEL(b->data, level);
293
294         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
295                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
296
297                 bp->v.mem_ptr           = 0;
298                 bp->v.seq               = b->data->keys.seq;
299                 bp->v.sectors_written   = 0;
300         }
301
302         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
303
304         bch2_btree_build_aux_trees(b);
305
306         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
307         BUG_ON(ret);
308
309         trace_btree_node_alloc(c, b);
310         return b;
311 }
312
313 static void btree_set_min(struct btree *b, struct bpos pos)
314 {
315         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
316                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
317         b->data->min_key = pos;
318 }
319
320 static void btree_set_max(struct btree *b, struct bpos pos)
321 {
322         b->key.k.p = pos;
323         b->data->max_key = pos;
324 }
325
326 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
327                                                   struct btree *b,
328                                                   struct bkey_format format)
329 {
330         struct btree *n;
331
332         n = bch2_btree_node_alloc(as, b->c.level);
333
334         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
335
336         btree_set_min(n, b->data->min_key);
337         btree_set_max(n, b->data->max_key);
338
339         n->data->format         = format;
340         btree_node_set_format(n, format);
341
342         bch2_btree_sort_into(as->c, n, b);
343
344         btree_node_reset_sib_u64s(n);
345
346         n->key.k.p = b->key.k.p;
347         return n;
348 }
349
350 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
351                                                        struct btree *b)
352 {
353         struct bkey_format new_f = bch2_btree_calc_format(b);
354
355         /*
356          * The keys might expand with the new format - if they wouldn't fit in
357          * the btree node anymore, use the old format for now:
358          */
359         if (!bch2_btree_node_format_fits(as->c, b, &new_f))
360                 new_f = b->format;
361
362         return __bch2_btree_node_alloc_replacement(as, b, new_f);
363 }
364
365 static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
366 {
367         struct btree *b = bch2_btree_node_alloc(as, level);
368
369         btree_set_min(b, POS_MIN);
370         btree_set_max(b, SPOS_MAX);
371         b->data->format = bch2_btree_calc_format(b);
372
373         btree_node_set_format(b, b->data->format);
374         bch2_btree_build_aux_trees(b);
375
376         bch2_btree_update_add_new_node(as, b);
377         six_unlock_write(&b->c.lock);
378
379         return b;
380 }
381
382 static void bch2_btree_reserve_put(struct btree_update *as)
383 {
384         struct bch_fs *c = as->c;
385
386         mutex_lock(&c->btree_reserve_cache_lock);
387
388         while (as->nr_prealloc_nodes) {
389                 struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes];
390
391                 six_unlock_write(&b->c.lock);
392
393                 if (c->btree_reserve_cache_nr <
394                     ARRAY_SIZE(c->btree_reserve_cache)) {
395                         struct btree_alloc *a =
396                                 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
397
398                         a->ob = b->ob;
399                         b->ob.nr = 0;
400                         bkey_copy(&a->k, &b->key);
401                 } else {
402                         bch2_open_buckets_put(c, &b->ob);
403                 }
404
405                 btree_node_lock_type(c, b, SIX_LOCK_write);
406                 __btree_node_free(c, b);
407                 six_unlock_write(&b->c.lock);
408
409                 six_unlock_intent(&b->c.lock);
410         }
411
412         mutex_unlock(&c->btree_reserve_cache_lock);
413 }
414
415 static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes,
416                                   unsigned flags, struct closure *cl)
417 {
418         struct bch_fs *c = as->c;
419         struct btree *b;
420         int ret;
421
422         BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
423
424         /*
425          * Protects reaping from the btree node cache and using the btree node
426          * open bucket reserve:
427          */
428         ret = bch2_btree_cache_cannibalize_lock(c, cl);
429         if (ret)
430                 return ret;
431
432         while (as->nr_prealloc_nodes < nr_nodes) {
433                 b = __bch2_btree_node_alloc(c, &as->disk_res,
434                                             flags & BTREE_INSERT_NOWAIT
435                                             ? NULL : cl, flags);
436                 if (IS_ERR(b)) {
437                         ret = PTR_ERR(b);
438                         goto err_free;
439                 }
440
441                 as->prealloc_nodes[as->nr_prealloc_nodes++] = b;
442         }
443
444         bch2_btree_cache_cannibalize_unlock(c);
445         return 0;
446 err_free:
447         bch2_btree_cache_cannibalize_unlock(c);
448         trace_btree_reserve_get_fail(c, nr_nodes, cl);
449         return ret;
450 }
451
452 /* Asynchronous interior node update machinery */
453
454 static void bch2_btree_update_free(struct btree_update *as)
455 {
456         struct bch_fs *c = as->c;
457
458         if (as->took_gc_lock)
459                 up_read(&c->gc_lock);
460         as->took_gc_lock = false;
461
462         bch2_journal_preres_put(&c->journal, &as->journal_preres);
463
464         bch2_journal_pin_drop(&c->journal, &as->journal);
465         bch2_journal_pin_flush(&c->journal, &as->journal);
466         bch2_disk_reservation_put(c, &as->disk_res);
467         bch2_btree_reserve_put(as);
468
469         mutex_lock(&c->btree_interior_update_lock);
470         list_del(&as->unwritten_list);
471         list_del(&as->list);
472         mutex_unlock(&c->btree_interior_update_lock);
473
474         closure_debug_destroy(&as->cl);
475         mempool_free(as, &c->btree_interior_update_pool);
476
477         closure_wake_up(&c->btree_interior_update_wait);
478 }
479
480 static void btree_update_will_delete_key(struct btree_update *as,
481                                          struct bkey_i *k)
482 {
483         BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s >
484                ARRAY_SIZE(as->_old_keys));
485         bch2_keylist_add(&as->old_keys, k);
486 }
487
488 static void btree_update_will_add_key(struct btree_update *as,
489                                       struct bkey_i *k)
490 {
491         BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s >
492                ARRAY_SIZE(as->_new_keys));
493         bch2_keylist_add(&as->new_keys, k);
494 }
495
496 /*
497  * The transactional part of an interior btree node update, where we journal the
498  * update we did to the interior node and update alloc info:
499  */
500 static int btree_update_nodes_written_trans(struct btree_trans *trans,
501                                             struct btree_update *as)
502 {
503         struct bkey_i *k;
504         int ret;
505
506         trans->extra_journal_entries = (void *) &as->journal_entries[0];
507         trans->extra_journal_entry_u64s = as->journal_u64s;
508         trans->journal_pin = &as->journal;
509
510         for_each_keylist_key(&as->new_keys, k) {
511                 ret = bch2_trans_mark_key(trans,
512                                           bkey_s_c_null,
513                                           bkey_i_to_s_c(k),
514                                           BTREE_TRIGGER_INSERT);
515                 if (ret)
516                         return ret;
517         }
518
519         for_each_keylist_key(&as->old_keys, k) {
520                 ret = bch2_trans_mark_key(trans,
521                                           bkey_i_to_s_c(k),
522                                           bkey_s_c_null,
523                                           BTREE_TRIGGER_OVERWRITE);
524                 if (ret)
525                         return ret;
526         }
527
528         return 0;
529 }
530
531 static void btree_update_nodes_written(struct btree_update *as)
532 {
533         struct bch_fs *c = as->c;
534         struct btree *b = as->b;
535         struct btree_trans trans;
536         u64 journal_seq = 0;
537         unsigned i;
538         int ret;
539
540         /*
541          * If we're already in an error state, it might be because a btree node
542          * was never written, and we might be trying to free that same btree
543          * node here, but it won't have been marked as allocated and we'll see
544          * spurious disk usage inconsistencies in the transactional part below
545          * if we don't skip it:
546          */
547         ret = bch2_journal_error(&c->journal);
548         if (ret)
549                 goto err;
550
551         BUG_ON(!journal_pin_active(&as->journal));
552
553         /*
554          * Wait for any in flight writes to finish before we free the old nodes
555          * on disk:
556          */
557         for (i = 0; i < as->nr_old_nodes; i++) {
558                 struct btree *old = as->old_nodes[i];
559                 __le64 seq;
560
561                 six_lock_read(&old->c.lock, NULL, NULL);
562                 seq = old->data ? old->data->keys.seq : 0;
563                 six_unlock_read(&old->c.lock);
564
565                 if (seq == as->old_nodes_seq[i])
566                         wait_on_bit_io(&old->flags, BTREE_NODE_write_in_flight_inner,
567                                        TASK_UNINTERRUPTIBLE);
568         }
569
570         /*
571          * We did an update to a parent node where the pointers we added pointed
572          * to child nodes that weren't written yet: now, the child nodes have
573          * been written so we can write out the update to the interior node.
574          */
575
576         /*
577          * We can't call into journal reclaim here: we'd block on the journal
578          * reclaim lock, but we may need to release the open buckets we have
579          * pinned in order for other btree updates to make forward progress, and
580          * journal reclaim does btree updates when flushing bkey_cached entries,
581          * which may require allocations as well.
582          */
583         bch2_trans_init(&trans, c, 0, 512);
584         ret = __bch2_trans_do(&trans, &as->disk_res, &journal_seq,
585                               BTREE_INSERT_NOFAIL|
586                               BTREE_INSERT_NOCHECK_RW|
587                               BTREE_INSERT_JOURNAL_RECLAIM|
588                               BTREE_INSERT_JOURNAL_RESERVED,
589                               btree_update_nodes_written_trans(&trans, as));
590         bch2_trans_exit(&trans);
591
592         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
593                              "error %i in btree_update_nodes_written()", ret);
594 err:
595         if (b) {
596                 /*
597                  * @b is the node we did the final insert into:
598                  *
599                  * On failure to get a journal reservation, we still have to
600                  * unblock the write and allow most of the write path to happen
601                  * so that shutdown works, but the i->journal_seq mechanism
602                  * won't work to prevent the btree write from being visible (we
603                  * didn't get a journal sequence number) - instead
604                  * __bch2_btree_node_write() doesn't do the actual write if
605                  * we're in journal error state:
606                  */
607
608                 btree_node_lock_type(c, b, SIX_LOCK_intent);
609                 btree_node_lock_type(c, b, SIX_LOCK_write);
610                 mutex_lock(&c->btree_interior_update_lock);
611
612                 list_del(&as->write_blocked_list);
613
614                 /*
615                  * Node might have been freed, recheck under
616                  * btree_interior_update_lock:
617                  */
618                 if (as->b == b) {
619                         struct bset *i = btree_bset_last(b);
620
621                         BUG_ON(!b->c.level);
622                         BUG_ON(!btree_node_dirty(b));
623
624                         if (!ret) {
625                                 i->journal_seq = cpu_to_le64(
626                                         max(journal_seq,
627                                             le64_to_cpu(i->journal_seq)));
628
629                                 bch2_btree_add_journal_pin(c, b, journal_seq);
630                         } else {
631                                 /*
632                                  * If we didn't get a journal sequence number we
633                                  * can't write this btree node, because recovery
634                                  * won't know to ignore this write:
635                                  */
636                                 set_btree_node_never_write(b);
637                         }
638                 }
639
640                 mutex_unlock(&c->btree_interior_update_lock);
641                 six_unlock_write(&b->c.lock);
642
643                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
644                 six_unlock_intent(&b->c.lock);
645         }
646
647         bch2_journal_pin_drop(&c->journal, &as->journal);
648
649         bch2_journal_preres_put(&c->journal, &as->journal_preres);
650
651         mutex_lock(&c->btree_interior_update_lock);
652         for (i = 0; i < as->nr_new_nodes; i++) {
653                 b = as->new_nodes[i];
654
655                 BUG_ON(b->will_make_reachable != (unsigned long) as);
656                 b->will_make_reachable = 0;
657         }
658         mutex_unlock(&c->btree_interior_update_lock);
659
660         for (i = 0; i < as->nr_new_nodes; i++) {
661                 b = as->new_nodes[i];
662
663                 btree_node_lock_type(c, b, SIX_LOCK_read);
664                 btree_node_write_if_need(c, b, SIX_LOCK_read);
665                 six_unlock_read(&b->c.lock);
666         }
667
668         for (i = 0; i < as->nr_open_buckets; i++)
669                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
670
671         bch2_btree_update_free(as);
672 }
673
674 static void btree_interior_update_work(struct work_struct *work)
675 {
676         struct bch_fs *c =
677                 container_of(work, struct bch_fs, btree_interior_update_work);
678         struct btree_update *as;
679
680         while (1) {
681                 mutex_lock(&c->btree_interior_update_lock);
682                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
683                                               struct btree_update, unwritten_list);
684                 if (as && !as->nodes_written)
685                         as = NULL;
686                 mutex_unlock(&c->btree_interior_update_lock);
687
688                 if (!as)
689                         break;
690
691                 btree_update_nodes_written(as);
692         }
693 }
694
695 static void btree_update_set_nodes_written(struct closure *cl)
696 {
697         struct btree_update *as = container_of(cl, struct btree_update, cl);
698         struct bch_fs *c = as->c;
699
700         mutex_lock(&c->btree_interior_update_lock);
701         as->nodes_written = true;
702         mutex_unlock(&c->btree_interior_update_lock);
703
704         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
705 }
706
707 /*
708  * We're updating @b with pointers to nodes that haven't finished writing yet:
709  * block @b from being written until @as completes
710  */
711 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
712 {
713         struct bch_fs *c = as->c;
714
715         mutex_lock(&c->btree_interior_update_lock);
716         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
717
718         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
719         BUG_ON(!btree_node_dirty(b));
720
721         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
722         as->b           = b;
723         list_add(&as->write_blocked_list, &b->write_blocked);
724
725         mutex_unlock(&c->btree_interior_update_lock);
726 }
727
728 static void btree_update_reparent(struct btree_update *as,
729                                   struct btree_update *child)
730 {
731         struct bch_fs *c = as->c;
732
733         lockdep_assert_held(&c->btree_interior_update_lock);
734
735         child->b = NULL;
736         child->mode = BTREE_INTERIOR_UPDATING_AS;
737
738         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
739 }
740
741 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
742 {
743         struct bkey_i *insert = &b->key;
744         struct bch_fs *c = as->c;
745
746         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
747
748         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
749                ARRAY_SIZE(as->journal_entries));
750
751         as->journal_u64s +=
752                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
753                                   BCH_JSET_ENTRY_btree_root,
754                                   b->c.btree_id, b->c.level,
755                                   insert, insert->k.u64s);
756
757         mutex_lock(&c->btree_interior_update_lock);
758         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
759
760         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
761         mutex_unlock(&c->btree_interior_update_lock);
762 }
763
764 /*
765  * bch2_btree_update_add_new_node:
766  *
767  * This causes @as to wait on @b to be written, before it gets to
768  * bch2_btree_update_nodes_written
769  *
770  * Additionally, it sets b->will_make_reachable to prevent any additional writes
771  * to @b from happening besides the first until @b is reachable on disk
772  *
773  * And it adds @b to the list of @as's new nodes, so that we can update sector
774  * counts in bch2_btree_update_nodes_written:
775  */
776 void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
777 {
778         struct bch_fs *c = as->c;
779
780         closure_get(&as->cl);
781
782         mutex_lock(&c->btree_interior_update_lock);
783         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
784         BUG_ON(b->will_make_reachable);
785
786         as->new_nodes[as->nr_new_nodes++] = b;
787         b->will_make_reachable = 1UL|(unsigned long) as;
788
789         mutex_unlock(&c->btree_interior_update_lock);
790
791         btree_update_will_add_key(as, &b->key);
792 }
793
794 /*
795  * returns true if @b was a new node
796  */
797 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
798 {
799         struct btree_update *as;
800         unsigned long v;
801         unsigned i;
802
803         mutex_lock(&c->btree_interior_update_lock);
804         /*
805          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
806          * dropped when it gets written by bch2_btree_complete_write - the
807          * xchg() is for synchronization with bch2_btree_complete_write:
808          */
809         v = xchg(&b->will_make_reachable, 0);
810         as = (struct btree_update *) (v & ~1UL);
811
812         if (!as) {
813                 mutex_unlock(&c->btree_interior_update_lock);
814                 return;
815         }
816
817         for (i = 0; i < as->nr_new_nodes; i++)
818                 if (as->new_nodes[i] == b)
819                         goto found;
820
821         BUG();
822 found:
823         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
824         mutex_unlock(&c->btree_interior_update_lock);
825
826         if (v & 1)
827                 closure_put(&as->cl);
828 }
829
830 void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
831 {
832         while (b->ob.nr)
833                 as->open_buckets[as->nr_open_buckets++] =
834                         b->ob.v[--b->ob.nr];
835 }
836
837 /*
838  * @b is being split/rewritten: it may have pointers to not-yet-written btree
839  * nodes and thus outstanding btree_updates - redirect @b's
840  * btree_updates to point to this btree_update:
841  */
842 void bch2_btree_interior_update_will_free_node(struct btree_update *as,
843                                                struct btree *b)
844 {
845         struct bch_fs *c = as->c;
846         struct btree_update *p, *n;
847         struct btree_write *w;
848
849         set_btree_node_dying(b);
850
851         if (btree_node_fake(b))
852                 return;
853
854         mutex_lock(&c->btree_interior_update_lock);
855
856         /*
857          * Does this node have any btree_update operations preventing
858          * it from being written?
859          *
860          * If so, redirect them to point to this btree_update: we can
861          * write out our new nodes, but we won't make them visible until those
862          * operations complete
863          */
864         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
865                 list_del_init(&p->write_blocked_list);
866                 btree_update_reparent(as, p);
867
868                 /*
869                  * for flush_held_btree_writes() waiting on updates to flush or
870                  * nodes to be writeable:
871                  */
872                 closure_wake_up(&c->btree_interior_update_wait);
873         }
874
875         clear_btree_node_dirty(c, b);
876         clear_btree_node_need_write(b);
877
878         /*
879          * Does this node have unwritten data that has a pin on the journal?
880          *
881          * If so, transfer that pin to the btree_update operation -
882          * note that if we're freeing multiple nodes, we only need to keep the
883          * oldest pin of any of the nodes we're freeing. We'll release the pin
884          * when the new nodes are persistent and reachable on disk:
885          */
886         w = btree_current_write(b);
887         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
888         bch2_journal_pin_drop(&c->journal, &w->journal);
889
890         w = btree_prev_write(b);
891         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
892         bch2_journal_pin_drop(&c->journal, &w->journal);
893
894         mutex_unlock(&c->btree_interior_update_lock);
895
896         /*
897          * Is this a node that isn't reachable on disk yet?
898          *
899          * Nodes that aren't reachable yet have writes blocked until they're
900          * reachable - now that we've cancelled any pending writes and moved
901          * things waiting on that write to wait on this update, we can drop this
902          * node from the list of nodes that the other update is making
903          * reachable, prior to freeing it:
904          */
905         btree_update_drop_new_node(c, b);
906
907         btree_update_will_delete_key(as, &b->key);
908
909         as->old_nodes[as->nr_old_nodes] = b;
910         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
911         as->nr_old_nodes++;
912 }
913
914 void bch2_btree_update_done(struct btree_update *as)
915 {
916         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
917
918         if (as->took_gc_lock)
919                 up_read(&as->c->gc_lock);
920         as->took_gc_lock = false;
921
922         bch2_btree_reserve_put(as);
923
924         continue_at(&as->cl, btree_update_set_nodes_written,
925                     as->c->btree_interior_update_worker);
926 }
927
928 struct btree_update *
929 bch2_btree_update_start(struct btree_iter *iter, unsigned level,
930                         unsigned nr_nodes, unsigned flags)
931 {
932         struct btree_trans *trans = iter->trans;
933         struct bch_fs *c = trans->c;
934         struct btree_update *as;
935         struct closure cl;
936         int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
937                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
938         int journal_flags = 0;
939         int ret = 0;
940
941         BUG_ON(!iter->should_be_locked);
942
943         if (flags & BTREE_INSERT_JOURNAL_RESERVED)
944                 journal_flags |= JOURNAL_RES_GET_RESERVED;
945
946         closure_init_stack(&cl);
947 retry:
948
949         /*
950          * XXX: figure out how far we might need to split,
951          * instead of locking/reserving all the way to the root:
952          */
953         if (!bch2_btree_iter_upgrade(iter, U8_MAX)) {
954                 trace_trans_restart_iter_upgrade(trans->ip, _RET_IP_,
955                                                  iter->btree_id,
956                                                  &iter->real_pos);
957                 return ERR_PTR(-EINTR);
958         }
959
960         if (flags & BTREE_INSERT_GC_LOCK_HELD)
961                 lockdep_assert_held(&c->gc_lock);
962         else if (!down_read_trylock(&c->gc_lock)) {
963                 bch2_trans_unlock(trans);
964                 down_read(&c->gc_lock);
965                 if (!bch2_trans_relock(trans)) {
966                         up_read(&c->gc_lock);
967                         return ERR_PTR(-EINTR);
968                 }
969         }
970
971         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
972         memset(as, 0, sizeof(*as));
973         closure_init(&as->cl, NULL);
974         as->c           = c;
975         as->mode        = BTREE_INTERIOR_NO_UPDATE;
976         as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
977         as->btree_id    = iter->btree_id;
978         INIT_LIST_HEAD(&as->list);
979         INIT_LIST_HEAD(&as->unwritten_list);
980         INIT_LIST_HEAD(&as->write_blocked_list);
981         bch2_keylist_init(&as->old_keys, as->_old_keys);
982         bch2_keylist_init(&as->new_keys, as->_new_keys);
983         bch2_keylist_init(&as->parent_keys, as->inline_keys);
984
985         mutex_lock(&c->btree_interior_update_lock);
986         list_add_tail(&as->list, &c->btree_interior_update_list);
987         mutex_unlock(&c->btree_interior_update_lock);
988
989         /*
990          * We don't want to allocate if we're in an error state, that can cause
991          * deadlock on emergency shutdown due to open buckets getting stuck in
992          * the btree_reserve_cache after allocator shutdown has cleared it out.
993          * This check needs to come after adding us to the btree_interior_update
994          * list but before calling bch2_btree_reserve_get, to synchronize with
995          * __bch2_fs_read_only().
996          */
997         ret = bch2_journal_error(&c->journal);
998         if (ret)
999                 goto err;
1000
1001         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1002                                       BTREE_UPDATE_JOURNAL_RES,
1003                                       journal_flags|JOURNAL_RES_GET_NONBLOCK);
1004         if (ret == -EAGAIN) {
1005                 bch2_trans_unlock(trans);
1006
1007                 if (flags & BTREE_INSERT_JOURNAL_RECLAIM) {
1008                         bch2_btree_update_free(as);
1009                         btree_trans_restart(trans);
1010                         return ERR_PTR(ret);
1011                 }
1012
1013                 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1014                                 BTREE_UPDATE_JOURNAL_RES,
1015                                 journal_flags);
1016                 if (ret) {
1017                         trace_trans_restart_journal_preres_get(trans->ip, _RET_IP_);
1018                         goto err;
1019                 }
1020
1021                 if (!bch2_trans_relock(trans)) {
1022                         ret = -EINTR;
1023                         goto err;
1024                 }
1025         }
1026
1027         ret = bch2_disk_reservation_get(c, &as->disk_res,
1028                         nr_nodes * c->opts.btree_node_size,
1029                         c->opts.metadata_replicas,
1030                         disk_res_flags);
1031         if (ret)
1032                 goto err;
1033
1034         ret = bch2_btree_reserve_get(as, nr_nodes, flags, &cl);
1035         if (ret)
1036                 goto err;
1037
1038         bch2_journal_pin_add(&c->journal,
1039                              atomic64_read(&c->journal.seq),
1040                              &as->journal, NULL);
1041
1042         return as;
1043 err:
1044         bch2_btree_update_free(as);
1045
1046         if (ret == -EAGAIN) {
1047                 bch2_trans_unlock(trans);
1048                 closure_sync(&cl);
1049                 ret = -EINTR;
1050         }
1051
1052         if (ret == -EINTR && bch2_trans_relock(trans))
1053                 goto retry;
1054
1055         return ERR_PTR(ret);
1056 }
1057
1058 /* Btree root updates: */
1059
1060 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1061 {
1062         /* Root nodes cannot be reaped */
1063         mutex_lock(&c->btree_cache.lock);
1064         list_del_init(&b->list);
1065         mutex_unlock(&c->btree_cache.lock);
1066
1067         if (b->c.level)
1068                 six_lock_pcpu_alloc(&b->c.lock);
1069         else
1070                 six_lock_pcpu_free(&b->c.lock);
1071
1072         mutex_lock(&c->btree_root_lock);
1073         BUG_ON(btree_node_root(c, b) &&
1074                (b->c.level < btree_node_root(c, b)->c.level ||
1075                 !btree_node_dying(btree_node_root(c, b))));
1076
1077         btree_node_root(c, b) = b;
1078         mutex_unlock(&c->btree_root_lock);
1079
1080         bch2_recalc_btree_reserve(c);
1081 }
1082
1083 /**
1084  * bch_btree_set_root - update the root in memory and on disk
1085  *
1086  * To ensure forward progress, the current task must not be holding any
1087  * btree node write locks. However, you must hold an intent lock on the
1088  * old root.
1089  *
1090  * Note: This allocates a journal entry but doesn't add any keys to
1091  * it.  All the btree roots are part of every journal write, so there
1092  * is nothing new to be done.  This just guarantees that there is a
1093  * journal write.
1094  */
1095 static void bch2_btree_set_root(struct btree_update *as, struct btree *b,
1096                                 struct btree_iter *iter)
1097 {
1098         struct bch_fs *c = as->c;
1099         struct btree *old;
1100
1101         trace_btree_set_root(c, b);
1102         BUG_ON(!b->written &&
1103                !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags));
1104
1105         old = btree_node_root(c, b);
1106
1107         /*
1108          * Ensure no one is using the old root while we switch to the
1109          * new root:
1110          */
1111         bch2_btree_node_lock_write(old, iter);
1112
1113         bch2_btree_set_root_inmem(c, b);
1114
1115         btree_update_updated_root(as, b);
1116
1117         /*
1118          * Unlock old root after new root is visible:
1119          *
1120          * The new root isn't persistent, but that's ok: we still have
1121          * an intent lock on the new root, and any updates that would
1122          * depend on the new root would have to update the new root.
1123          */
1124         bch2_btree_node_unlock_write(old, iter);
1125 }
1126
1127 /* Interior node updates: */
1128
1129 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b,
1130                                         struct btree_iter *iter,
1131                                         struct bkey_i *insert,
1132                                         struct btree_node_iter *node_iter)
1133 {
1134         struct bch_fs *c = as->c;
1135         struct bkey_packed *k;
1136         const char *invalid;
1137
1138         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1139                !btree_ptr_sectors_written(insert));
1140
1141         invalid = bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b)) ?:
1142                 bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert));
1143         if (invalid) {
1144                 char buf[160];
1145
1146                 bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(insert));
1147                 bch2_fs_inconsistent(c, "inserting invalid bkey %s: %s", buf, invalid);
1148                 dump_stack();
1149         }
1150
1151         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1152                ARRAY_SIZE(as->journal_entries));
1153
1154         as->journal_u64s +=
1155                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1156                                   BCH_JSET_ENTRY_btree_keys,
1157                                   b->c.btree_id, b->c.level,
1158                                   insert, insert->k.u64s);
1159
1160         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1161                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1162                 bch2_btree_node_iter_advance(node_iter, b);
1163
1164         bch2_btree_bset_insert_key(iter, b, node_iter, insert);
1165         set_btree_node_dirty(c, b);
1166         set_btree_node_need_write(b);
1167 }
1168
1169 static void
1170 __bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
1171                                   struct btree_iter *iter, struct keylist *keys,
1172                                   struct btree_node_iter node_iter)
1173 {
1174         struct bkey_i *insert = bch2_keylist_front(keys);
1175         struct bkey_packed *k;
1176
1177         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1178
1179         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1180                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1181                 ;
1182
1183         while (!bch2_keylist_empty(keys)) {
1184                 bch2_insert_fixup_btree_ptr(as, b, iter,
1185                                 bch2_keylist_front(keys), &node_iter);
1186                 bch2_keylist_pop_front(keys);
1187         }
1188 }
1189
1190 /*
1191  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1192  * node)
1193  */
1194 static struct btree *__btree_split_node(struct btree_update *as,
1195                                         struct btree *n1,
1196                                         struct btree_iter *iter)
1197 {
1198         struct bkey_format_state s;
1199         size_t nr_packed = 0, nr_unpacked = 0;
1200         struct btree *n2;
1201         struct bset *set1, *set2;
1202         struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL;
1203         struct bpos n1_pos;
1204
1205         n2 = bch2_btree_node_alloc(as, n1->c.level);
1206         bch2_btree_update_add_new_node(as, n2);
1207
1208         n2->data->max_key       = n1->data->max_key;
1209         n2->data->format        = n1->format;
1210         SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
1211         n2->key.k.p = n1->key.k.p;
1212
1213         set1 = btree_bset_first(n1);
1214         set2 = btree_bset_first(n2);
1215
1216         /*
1217          * Has to be a linear search because we don't have an auxiliary
1218          * search tree yet
1219          */
1220         k = set1->start;
1221         while (1) {
1222                 struct bkey_packed *n = bkey_next(k);
1223
1224                 if (n == vstruct_last(set1))
1225                         break;
1226                 if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
1227                         break;
1228
1229                 if (bkey_packed(k))
1230                         nr_packed++;
1231                 else
1232                         nr_unpacked++;
1233
1234                 prev = k;
1235                 k = n;
1236         }
1237
1238         BUG_ON(!prev);
1239         set2_start      = k;
1240         set2_end        = vstruct_last(set1);
1241
1242         set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data);
1243         set_btree_bset_end(n1, n1->set);
1244
1245         n1->nr.live_u64s        = le16_to_cpu(set1->u64s);
1246         n1->nr.bset_u64s[0]     = le16_to_cpu(set1->u64s);
1247         n1->nr.packed_keys      = nr_packed;
1248         n1->nr.unpacked_keys    = nr_unpacked;
1249
1250         n1_pos = bkey_unpack_pos(n1, prev);
1251         if (as->c->sb.version < bcachefs_metadata_version_snapshot)
1252                 n1_pos.snapshot = U32_MAX;
1253
1254         btree_set_max(n1, n1_pos);
1255         btree_set_min(n2, bpos_successor(n1->key.k.p));
1256
1257         bch2_bkey_format_init(&s);
1258         bch2_bkey_format_add_pos(&s, n2->data->min_key);
1259         bch2_bkey_format_add_pos(&s, n2->data->max_key);
1260
1261         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1262                 struct bkey uk = bkey_unpack_key(n1, k);
1263                 bch2_bkey_format_add_key(&s, &uk);
1264         }
1265
1266         n2->data->format = bch2_bkey_format_done(&s);
1267         btree_node_set_format(n2, n2->data->format);
1268
1269         out = set2->start;
1270         memset(&n2->nr, 0, sizeof(n2->nr));
1271
1272         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1273                 BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k)
1274                                        ? &n1->format : &bch2_bkey_format_current, k));
1275                 out->format = KEY_FORMAT_LOCAL_BTREE;
1276                 btree_keys_account_key_add(&n2->nr, 0, out);
1277                 out = bkey_next(out);
1278         }
1279
1280         set2->u64s = cpu_to_le16((u64 *) out - set2->_data);
1281         set_btree_bset_end(n2, n2->set);
1282
1283         BUG_ON(!set1->u64s);
1284         BUG_ON(!set2->u64s);
1285
1286         btree_node_reset_sib_u64s(n1);
1287         btree_node_reset_sib_u64s(n2);
1288
1289         bch2_verify_btree_nr_keys(n1);
1290         bch2_verify_btree_nr_keys(n2);
1291
1292         if (n1->c.level) {
1293                 btree_node_interior_verify(as->c, n1);
1294                 btree_node_interior_verify(as->c, n2);
1295         }
1296
1297         return n2;
1298 }
1299
1300 /*
1301  * For updates to interior nodes, we've got to do the insert before we split
1302  * because the stuff we're inserting has to be inserted atomically. Post split,
1303  * the keys might have to go in different nodes and the split would no longer be
1304  * atomic.
1305  *
1306  * Worse, if the insert is from btree node coalescing, if we do the insert after
1307  * we do the split (and pick the pivot) - the pivot we pick might be between
1308  * nodes that were coalesced, and thus in the middle of a child node post
1309  * coalescing:
1310  */
1311 static void btree_split_insert_keys(struct btree_update *as, struct btree *b,
1312                                     struct btree_iter *iter,
1313                                     struct keylist *keys)
1314 {
1315         struct btree_node_iter node_iter;
1316         struct bkey_i *k = bch2_keylist_front(keys);
1317         struct bkey_packed *src, *dst, *n;
1318         struct bset *i;
1319
1320         bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
1321
1322         __bch2_btree_insert_keys_interior(as, b, iter, keys, node_iter);
1323
1324         /*
1325          * We can't tolerate whiteouts here - with whiteouts there can be
1326          * duplicate keys, and it would be rather bad if we picked a duplicate
1327          * for the pivot:
1328          */
1329         i = btree_bset_first(b);
1330         src = dst = i->start;
1331         while (src != vstruct_last(i)) {
1332                 n = bkey_next(src);
1333                 if (!bkey_deleted(src)) {
1334                         memmove_u64s_down(dst, src, src->u64s);
1335                         dst = bkey_next(dst);
1336                 }
1337                 src = n;
1338         }
1339
1340         /* Also clear out the unwritten whiteouts area: */
1341         b->whiteout_u64s = 0;
1342
1343         i->u64s = cpu_to_le16((u64 *) dst - i->_data);
1344         set_btree_bset_end(b, b->set);
1345
1346         BUG_ON(b->nsets != 1 ||
1347                b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
1348
1349         btree_node_interior_verify(as->c, b);
1350 }
1351
1352 static void btree_split(struct btree_update *as,
1353                         struct btree_trans *trans, struct btree_iter *iter,
1354                         struct btree *b, struct keylist *keys,
1355                         unsigned flags)
1356 {
1357         struct bch_fs *c = as->c;
1358         struct btree *parent = btree_node_parent(iter, b);
1359         struct btree *n1, *n2 = NULL, *n3 = NULL;
1360         u64 start_time = local_clock();
1361
1362         BUG_ON(!parent && (b != btree_node_root(c, b)));
1363         BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level));
1364
1365         bch2_btree_interior_update_will_free_node(as, b);
1366
1367         n1 = bch2_btree_node_alloc_replacement(as, b);
1368         bch2_btree_update_add_new_node(as, n1);
1369
1370         if (keys)
1371                 btree_split_insert_keys(as, n1, iter, keys);
1372
1373         if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
1374                 trace_btree_split(c, b);
1375
1376                 n2 = __btree_split_node(as, n1, iter);
1377
1378                 bch2_btree_build_aux_trees(n2);
1379                 bch2_btree_build_aux_trees(n1);
1380                 six_unlock_write(&n2->c.lock);
1381                 six_unlock_write(&n1->c.lock);
1382
1383                 bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1384                 bch2_btree_node_write(c, n2, SIX_LOCK_intent);
1385
1386                 /*
1387                  * Note that on recursive parent_keys == keys, so we
1388                  * can't start adding new keys to parent_keys before emptying it
1389                  * out (which we did with btree_split_insert_keys() above)
1390                  */
1391                 bch2_keylist_add(&as->parent_keys, &n1->key);
1392                 bch2_keylist_add(&as->parent_keys, &n2->key);
1393
1394                 if (!parent) {
1395                         /* Depth increases, make a new root */
1396                         n3 = __btree_root_alloc(as, b->c.level + 1);
1397
1398                         n3->sib_u64s[0] = U16_MAX;
1399                         n3->sib_u64s[1] = U16_MAX;
1400
1401                         btree_split_insert_keys(as, n3, iter, &as->parent_keys);
1402
1403                         bch2_btree_node_write(c, n3, SIX_LOCK_intent);
1404                 }
1405         } else {
1406                 trace_btree_compact(c, b);
1407
1408                 bch2_btree_build_aux_trees(n1);
1409                 six_unlock_write(&n1->c.lock);
1410
1411                 bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1412
1413                 if (parent)
1414                         bch2_keylist_add(&as->parent_keys, &n1->key);
1415         }
1416
1417         /* New nodes all written, now make them visible: */
1418
1419         if (parent) {
1420                 /* Split a non root node */
1421                 bch2_btree_insert_node(as, trans, iter, parent, &as->parent_keys, flags);
1422         } else if (n3) {
1423                 bch2_btree_set_root(as, n3, iter);
1424         } else {
1425                 /* Root filled up but didn't need to be split */
1426                 bch2_btree_set_root(as, n1, iter);
1427         }
1428
1429         bch2_btree_update_get_open_buckets(as, n1);
1430         if (n2)
1431                 bch2_btree_update_get_open_buckets(as, n2);
1432         if (n3)
1433                 bch2_btree_update_get_open_buckets(as, n3);
1434
1435         /* Successful split, update the iterator to point to the new nodes: */
1436
1437         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1438         bch2_btree_iter_node_drop(iter, b);
1439         if (n3)
1440                 bch2_btree_iter_node_replace(iter, n3);
1441         if (n2)
1442                 bch2_btree_iter_node_replace(iter, n2);
1443         bch2_btree_iter_node_replace(iter, n1);
1444
1445         /*
1446          * The old node must be freed (in memory) _before_ unlocking the new
1447          * nodes - else another thread could re-acquire a read lock on the old
1448          * node after another thread has locked and updated the new node, thus
1449          * seeing stale data:
1450          */
1451         bch2_btree_node_free_inmem(c, b, iter);
1452
1453         if (n3)
1454                 six_unlock_intent(&n3->c.lock);
1455         if (n2)
1456                 six_unlock_intent(&n2->c.lock);
1457         six_unlock_intent(&n1->c.lock);
1458
1459         bch2_btree_trans_verify_locks(trans);
1460
1461         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_split],
1462                                start_time);
1463 }
1464
1465 static void
1466 bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
1467                                 struct btree_iter *iter, struct keylist *keys)
1468 {
1469         struct btree_iter *linked;
1470
1471         __bch2_btree_insert_keys_interior(as, b, iter, keys, iter->l[b->c.level].iter);
1472
1473         btree_update_updated_node(as, b);
1474
1475         trans_for_each_iter_with_node(iter->trans, b, linked)
1476                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1477
1478         bch2_btree_trans_verify_iters(iter->trans, b);
1479 }
1480
1481 /**
1482  * bch_btree_insert_node - insert bkeys into a given btree node
1483  *
1484  * @iter:               btree iterator
1485  * @keys:               list of keys to insert
1486  * @hook:               insert callback
1487  * @persistent:         if not null, @persistent will wait on journal write
1488  *
1489  * Inserts as many keys as it can into a given btree node, splitting it if full.
1490  * If a split occurred, this function will return early. This can only happen
1491  * for leaf nodes -- inserts into interior nodes have to be atomic.
1492  */
1493 static void bch2_btree_insert_node(struct btree_update *as,
1494                                    struct btree_trans *trans, struct btree_iter *iter,
1495                                    struct btree *b, struct keylist *keys,
1496                                    unsigned flags)
1497 {
1498         struct bch_fs *c = as->c;
1499         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1500         int old_live_u64s = b->nr.live_u64s;
1501         int live_u64s_added, u64s_added;
1502
1503         lockdep_assert_held(&c->gc_lock);
1504         BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level));
1505         BUG_ON(!b->c.level);
1506         BUG_ON(!as || as->b);
1507         bch2_verify_keylist_sorted(keys);
1508
1509         bch2_btree_node_lock_for_insert(trans, iter, b);
1510
1511         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1512                 bch2_btree_node_unlock_write(b, iter);
1513                 goto split;
1514         }
1515
1516         btree_node_interior_verify(c, b);
1517
1518         bch2_btree_insert_keys_interior(as, b, iter, keys);
1519
1520         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1521         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1522
1523         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1524                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1525         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1526                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1527
1528         if (u64s_added > live_u64s_added &&
1529             bch2_maybe_compact_whiteouts(c, b))
1530                 bch2_btree_iter_reinit_node(iter, b);
1531
1532         bch2_btree_node_unlock_write(b, iter);
1533
1534         btree_node_interior_verify(c, b);
1535         return;
1536 split:
1537         btree_split(as, trans, iter, b, keys, flags);
1538 }
1539
1540 int bch2_btree_split_leaf(struct btree_trans *trans,
1541                           struct btree_iter *iter,
1542                           unsigned flags)
1543 {
1544         struct bch_fs *c = trans->c;
1545         struct btree *b = iter_l(iter)->b;
1546         struct btree_update *as;
1547         unsigned l;
1548         int ret = 0;
1549
1550         as = bch2_btree_update_start(iter, iter->level,
1551                 btree_update_reserve_required(c, b), flags);
1552         if (IS_ERR(as))
1553                 return PTR_ERR(as);
1554
1555         btree_split(as, trans, iter, b, NULL, flags);
1556         bch2_btree_update_done(as);
1557
1558         for (l = iter->level + 1; btree_iter_node(iter, l) && !ret; l++)
1559                 ret = bch2_foreground_maybe_merge(trans, iter, l, flags);
1560
1561         return ret;
1562 }
1563
1564 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1565                                   struct btree_iter *iter,
1566                                   unsigned level,
1567                                   unsigned flags,
1568                                   enum btree_node_sibling sib)
1569 {
1570         struct bch_fs *c = trans->c;
1571         struct btree_iter *sib_iter = NULL;
1572         struct btree_update *as;
1573         struct bkey_format_state new_s;
1574         struct bkey_format new_f;
1575         struct bkey_i delete;
1576         struct btree *b, *m, *n, *prev, *next, *parent;
1577         struct bpos sib_pos;
1578         size_t sib_u64s;
1579         int ret = 0, ret2 = 0;
1580
1581 retry:
1582         ret = bch2_btree_iter_traverse(iter);
1583         if (ret)
1584                 return ret;
1585
1586         BUG_ON(!iter->should_be_locked);
1587         BUG_ON(!btree_node_locked(iter, level));
1588
1589         b = iter->l[level].b;
1590
1591         if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) ||
1592             (sib == btree_next_sib && !bpos_cmp(b->data->max_key, SPOS_MAX))) {
1593                 b->sib_u64s[sib] = U16_MAX;
1594                 goto out;
1595         }
1596
1597         sib_pos = sib == btree_prev_sib
1598                 ? bpos_predecessor(b->data->min_key)
1599                 : bpos_successor(b->data->max_key);
1600
1601         sib_iter = bch2_trans_get_node_iter(trans, iter->btree_id,
1602                                             sib_pos, U8_MAX, level,
1603                                             BTREE_ITER_INTENT);
1604         ret = bch2_btree_iter_traverse(sib_iter);
1605         if (ret)
1606                 goto err;
1607
1608         m = sib_iter->l[level].b;
1609
1610         if (btree_node_parent(iter, b) !=
1611             btree_node_parent(sib_iter, m)) {
1612                 b->sib_u64s[sib] = U16_MAX;
1613                 goto out;
1614         }
1615
1616         if (sib == btree_prev_sib) {
1617                 prev = m;
1618                 next = b;
1619         } else {
1620                 prev = b;
1621                 next = m;
1622         }
1623
1624         if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) {
1625                 char buf1[100], buf2[100];
1626
1627                 bch2_bpos_to_text(&PBUF(buf1), prev->data->max_key);
1628                 bch2_bpos_to_text(&PBUF(buf2), next->data->min_key);
1629                 bch_err(c,
1630                         "btree topology error in btree merge:\n"
1631                         "  prev ends at   %s\n"
1632                         "  next starts at %s",
1633                         buf1, buf2);
1634                 bch2_topology_error(c);
1635                 ret = -EIO;
1636                 goto err;
1637         }
1638
1639         bch2_bkey_format_init(&new_s);
1640         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1641         __bch2_btree_calc_format(&new_s, prev);
1642         __bch2_btree_calc_format(&new_s, next);
1643         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1644         new_f = bch2_bkey_format_done(&new_s);
1645
1646         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1647                 btree_node_u64s_with_format(m, &new_f);
1648
1649         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1650                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1651                 sib_u64s /= 2;
1652                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1653         }
1654
1655         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1656         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1657         b->sib_u64s[sib] = sib_u64s;
1658
1659         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1660                 goto out;
1661
1662         parent = btree_node_parent(iter, b);
1663         as = bch2_btree_update_start(iter, level,
1664                          btree_update_reserve_required(c, parent) + 1,
1665                          flags|
1666                          BTREE_INSERT_NOFAIL|
1667                          BTREE_INSERT_USE_RESERVE);
1668         ret = PTR_ERR_OR_ZERO(as);
1669         if (ret)
1670                 goto err;
1671
1672         trace_btree_merge(c, b);
1673
1674         bch2_btree_interior_update_will_free_node(as, b);
1675         bch2_btree_interior_update_will_free_node(as, m);
1676
1677         n = bch2_btree_node_alloc(as, b->c.level);
1678         bch2_btree_update_add_new_node(as, n);
1679
1680         btree_set_min(n, prev->data->min_key);
1681         btree_set_max(n, next->data->max_key);
1682         n->data->format         = new_f;
1683
1684         btree_node_set_format(n, new_f);
1685
1686         bch2_btree_sort_into(c, n, prev);
1687         bch2_btree_sort_into(c, n, next);
1688
1689         bch2_btree_build_aux_trees(n);
1690         six_unlock_write(&n->c.lock);
1691
1692         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1693
1694         bkey_init(&delete.k);
1695         delete.k.p = prev->key.k.p;
1696         bch2_keylist_add(&as->parent_keys, &delete);
1697         bch2_keylist_add(&as->parent_keys, &n->key);
1698
1699         bch2_btree_insert_node(as, trans, iter, parent, &as->parent_keys, flags);
1700
1701         bch2_btree_update_get_open_buckets(as, n);
1702
1703         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1704         six_lock_increment(&m->c.lock, SIX_LOCK_intent);
1705         bch2_btree_iter_node_drop(iter, b);
1706         bch2_btree_iter_node_drop(iter, m);
1707
1708         bch2_btree_iter_node_replace(iter, n);
1709
1710         bch2_btree_trans_verify_iters(trans, n);
1711
1712         bch2_btree_node_free_inmem(c, b, iter);
1713         bch2_btree_node_free_inmem(c, m, iter);
1714
1715         six_unlock_intent(&n->c.lock);
1716
1717         bch2_btree_update_done(as);
1718 out:
1719         bch2_btree_trans_verify_locks(trans);
1720         bch2_trans_iter_free(trans, sib_iter);
1721
1722         /*
1723          * Don't downgrade locks here: we're called after successful insert,
1724          * and the caller will downgrade locks after a successful insert
1725          * anyways (in case e.g. a split was required first)
1726          *
1727          * And we're also called when inserting into interior nodes in the
1728          * split path, and downgrading to read locks in there is potentially
1729          * confusing:
1730          */
1731         return ret ?: ret2;
1732 err:
1733         bch2_trans_iter_put(trans, sib_iter);
1734         sib_iter = NULL;
1735
1736         if (ret == -EINTR && bch2_trans_relock(trans))
1737                 goto retry;
1738
1739         goto out;
1740 }
1741
1742 /**
1743  * bch_btree_node_rewrite - Rewrite/move a btree node
1744  */
1745 int bch2_btree_node_rewrite(struct btree_trans *trans,
1746                             struct btree_iter *iter,
1747                             __le64 seq, unsigned flags)
1748 {
1749         struct bch_fs *c = trans->c;
1750         struct btree *b, *n, *parent;
1751         struct btree_update *as;
1752         int ret;
1753
1754         flags |= BTREE_INSERT_NOFAIL;
1755 retry:
1756         ret = bch2_btree_iter_traverse(iter);
1757         if (ret)
1758                 goto out;
1759
1760         b = bch2_btree_iter_peek_node(iter);
1761         if (!b || b->data->keys.seq != seq)
1762                 goto out;
1763
1764         parent = btree_node_parent(iter, b);
1765         as = bch2_btree_update_start(iter, b->c.level,
1766                 (parent
1767                  ? btree_update_reserve_required(c, parent)
1768                  : 0) + 1,
1769                 flags);
1770         ret = PTR_ERR_OR_ZERO(as);
1771         if (ret == -EINTR)
1772                 goto retry;
1773         if (ret) {
1774                 trace_btree_gc_rewrite_node_fail(c, b);
1775                 goto out;
1776         }
1777
1778         bch2_btree_interior_update_will_free_node(as, b);
1779
1780         n = bch2_btree_node_alloc_replacement(as, b);
1781         bch2_btree_update_add_new_node(as, n);
1782
1783         bch2_btree_build_aux_trees(n);
1784         six_unlock_write(&n->c.lock);
1785
1786         trace_btree_gc_rewrite_node(c, b);
1787
1788         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1789
1790         if (parent) {
1791                 bch2_keylist_add(&as->parent_keys, &n->key);
1792                 bch2_btree_insert_node(as, trans, iter, parent,
1793                                        &as->parent_keys, flags);
1794         } else {
1795                 bch2_btree_set_root(as, n, iter);
1796         }
1797
1798         bch2_btree_update_get_open_buckets(as, n);
1799
1800         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1801         bch2_btree_iter_node_drop(iter, b);
1802         bch2_btree_iter_node_replace(iter, n);
1803         bch2_btree_node_free_inmem(c, b, iter);
1804         six_unlock_intent(&n->c.lock);
1805
1806         bch2_btree_update_done(as);
1807 out:
1808         bch2_btree_iter_downgrade(iter);
1809         return ret;
1810 }
1811
1812 struct async_btree_rewrite {
1813         struct bch_fs           *c;
1814         struct work_struct      work;
1815         enum btree_id           btree_id;
1816         unsigned                level;
1817         struct bpos             pos;
1818         __le64                  seq;
1819 };
1820
1821 void async_btree_node_rewrite_work(struct work_struct *work)
1822 {
1823         struct async_btree_rewrite *a =
1824                 container_of(work, struct async_btree_rewrite, work);
1825         struct bch_fs *c = a->c;
1826         struct btree_trans trans;
1827         struct btree_iter *iter;
1828
1829         bch2_trans_init(&trans, c, 0, 0);
1830         iter = bch2_trans_get_node_iter(&trans, a->btree_id, a->pos,
1831                                         BTREE_MAX_DEPTH, a->level, 0);
1832         bch2_btree_node_rewrite(&trans, iter, a->seq, 0);
1833         bch2_trans_iter_put(&trans, iter);
1834         bch2_trans_exit(&trans);
1835         percpu_ref_put(&c->writes);
1836         kfree(a);
1837 }
1838
1839 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
1840 {
1841         struct async_btree_rewrite *a;
1842
1843         if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags))
1844                 return;
1845
1846         if (!percpu_ref_tryget(&c->writes))
1847                 return;
1848
1849         a = kmalloc(sizeof(*a), GFP_NOFS);
1850         if (!a) {
1851                 percpu_ref_put(&c->writes);
1852                 return;
1853         }
1854
1855         a->c            = c;
1856         a->btree_id     = b->c.btree_id;
1857         a->level        = b->c.level;
1858         a->pos          = b->key.k.p;
1859         a->seq          = b->data->keys.seq;
1860
1861         INIT_WORK(&a->work, async_btree_node_rewrite_work);
1862         queue_work(c->btree_interior_update_worker, &a->work);
1863 }
1864
1865 static int __bch2_btree_node_update_key(struct btree_trans *trans,
1866                                         struct btree_iter *iter,
1867                                         struct btree *b, struct btree *new_hash,
1868                                         struct bkey_i *new_key,
1869                                         bool skip_triggers)
1870 {
1871         struct bch_fs *c = trans->c;
1872         struct btree_iter *iter2 = NULL;
1873         struct btree *parent;
1874         u64 journal_entries[BKEY_BTREE_PTR_U64s_MAX];
1875         int ret;
1876
1877         if (!skip_triggers) {
1878                 ret = bch2_trans_mark_key(trans,
1879                                           bkey_s_c_null,
1880                                           bkey_i_to_s_c(new_key),
1881                                           BTREE_TRIGGER_INSERT);
1882                 if (ret)
1883                         return ret;
1884
1885                 ret = bch2_trans_mark_key(trans,
1886                                           bkey_i_to_s_c(&b->key),
1887                                           bkey_s_c_null,
1888                                           BTREE_TRIGGER_OVERWRITE);
1889                 if (ret)
1890                         return ret;
1891         }
1892
1893         if (new_hash) {
1894                 bkey_copy(&new_hash->key, new_key);
1895                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
1896                                 new_hash, b->c.level, b->c.btree_id);
1897                 BUG_ON(ret);
1898         }
1899
1900         parent = btree_node_parent(iter, b);
1901         if (parent) {
1902                 iter2 = bch2_trans_copy_iter(trans, iter);
1903
1904                 BUG_ON(iter2->level != b->c.level);
1905                 BUG_ON(bpos_cmp(iter2->pos, new_key->k.p));
1906
1907                 btree_node_unlock(iter2, iter2->level);
1908                 iter2->l[iter2->level].b = BTREE_ITER_NO_NODE_UP;
1909                 iter2->level++;
1910
1911                 ret   = bch2_btree_iter_traverse(iter2) ?:
1912                         bch2_trans_update(trans, iter2, new_key, BTREE_TRIGGER_NORUN);
1913                 if (ret)
1914                         goto err;
1915         } else {
1916                 BUG_ON(btree_node_root(c, b) != b);
1917
1918                 trans->extra_journal_entries = (void *) &journal_entries[0];
1919                 trans->extra_journal_entry_u64s =
1920                         journal_entry_set((void *) &journal_entries[0],
1921                                           BCH_JSET_ENTRY_btree_root,
1922                                           b->c.btree_id, b->c.level,
1923                                           new_key, new_key->k.u64s);
1924         }
1925
1926         ret = bch2_trans_commit(trans, NULL, NULL,
1927                                 BTREE_INSERT_NOFAIL|
1928                                 BTREE_INSERT_NOCHECK_RW|
1929                                 BTREE_INSERT_JOURNAL_RECLAIM|
1930                                 BTREE_INSERT_JOURNAL_RESERVED);
1931         if (ret)
1932                 goto err;
1933
1934         bch2_btree_node_lock_write(b, iter);
1935
1936         if (new_hash) {
1937                 mutex_lock(&c->btree_cache.lock);
1938                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
1939                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1940
1941                 bkey_copy(&b->key, new_key);
1942                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1943                 BUG_ON(ret);
1944                 mutex_unlock(&c->btree_cache.lock);
1945         } else {
1946                 bkey_copy(&b->key, new_key);
1947         }
1948
1949         bch2_btree_node_unlock_write(b, iter);
1950 out:
1951         bch2_trans_iter_put(trans, iter2);
1952         return ret;
1953 err:
1954         if (new_hash) {
1955                 mutex_lock(&c->btree_cache.lock);
1956                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1957                 mutex_unlock(&c->btree_cache.lock);
1958         }
1959         goto out;
1960 }
1961
1962 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
1963                                struct btree *b, struct bkey_i *new_key,
1964                                bool skip_triggers)
1965 {
1966         struct bch_fs *c = trans->c;
1967         struct btree *new_hash = NULL;
1968         struct closure cl;
1969         int ret = 0;
1970
1971         closure_init_stack(&cl);
1972
1973         /*
1974          * check btree_ptr_hash_val() after @b is locked by
1975          * btree_iter_traverse():
1976          */
1977         if (btree_ptr_hash_val(new_key) != b->hash_val) {
1978                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1979                 if (ret) {
1980                         bch2_trans_unlock(trans);
1981                         closure_sync(&cl);
1982                         if (!bch2_trans_relock(trans))
1983                                 return -EINTR;
1984                 }
1985
1986                 new_hash = bch2_btree_node_mem_alloc(c);
1987         }
1988
1989         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash,
1990                                            new_key, skip_triggers);
1991
1992         if (new_hash) {
1993                 mutex_lock(&c->btree_cache.lock);
1994                 list_move(&new_hash->list, &c->btree_cache.freeable);
1995                 mutex_unlock(&c->btree_cache.lock);
1996
1997                 six_unlock_write(&new_hash->c.lock);
1998                 six_unlock_intent(&new_hash->c.lock);
1999         }
2000         closure_sync(&cl);
2001         bch2_btree_cache_cannibalize_unlock(c);
2002         return ret;
2003 }
2004
2005 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2006                                         struct btree *b, struct bkey_i *new_key,
2007                                         bool skip_triggers)
2008 {
2009         struct btree_iter *iter;
2010         int ret;
2011
2012         iter = bch2_trans_get_node_iter(trans, b->c.btree_id, b->key.k.p,
2013                                         BTREE_MAX_DEPTH, b->c.level,
2014                                         BTREE_ITER_INTENT);
2015         ret = bch2_btree_iter_traverse(iter);
2016         if (ret)
2017                 goto out;
2018
2019         /* has node been freed? */
2020         if (iter->l[b->c.level].b != b) {
2021                 /* node has been freed: */
2022                 BUG_ON(!btree_node_dying(b));
2023                 goto out;
2024         }
2025
2026         BUG_ON(!btree_node_hashed(b));
2027
2028         ret = bch2_btree_node_update_key(trans, iter, b, new_key, skip_triggers);
2029 out:
2030         bch2_trans_iter_put(trans, iter);
2031         return ret;
2032 }
2033
2034 /* Init code: */
2035
2036 /*
2037  * Only for filesystem bringup, when first reading the btree roots or allocating
2038  * btree roots when initializing a new filesystem:
2039  */
2040 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2041 {
2042         BUG_ON(btree_node_root(c, b));
2043
2044         bch2_btree_set_root_inmem(c, b);
2045 }
2046
2047 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2048 {
2049         struct closure cl;
2050         struct btree *b;
2051         int ret;
2052
2053         closure_init_stack(&cl);
2054
2055         do {
2056                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2057                 closure_sync(&cl);
2058         } while (ret);
2059
2060         b = bch2_btree_node_mem_alloc(c);
2061         bch2_btree_cache_cannibalize_unlock(c);
2062
2063         set_btree_node_fake(b);
2064         set_btree_node_need_rewrite(b);
2065         b->c.level      = 0;
2066         b->c.btree_id   = id;
2067
2068         bkey_btree_ptr_init(&b->key);
2069         b->key.k.p = SPOS_MAX;
2070         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2071
2072         bch2_bset_init_first(b, &b->data->keys);
2073         bch2_btree_build_aux_trees(b);
2074
2075         b->data->flags = 0;
2076         btree_set_min(b, POS_MIN);
2077         btree_set_max(b, SPOS_MAX);
2078         b->data->format = bch2_btree_calc_format(b);
2079         btree_node_set_format(b, b->data->format);
2080
2081         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2082                                           b->c.level, b->c.btree_id);
2083         BUG_ON(ret);
2084
2085         bch2_btree_set_root_inmem(c, b);
2086
2087         six_unlock_write(&b->c.lock);
2088         six_unlock_intent(&b->c.lock);
2089 }
2090
2091 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2092 {
2093         struct btree_update *as;
2094
2095         mutex_lock(&c->btree_interior_update_lock);
2096         list_for_each_entry(as, &c->btree_interior_update_list, list)
2097                 pr_buf(out, "%p m %u w %u r %u j %llu\n",
2098                        as,
2099                        as->mode,
2100                        as->nodes_written,
2101                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
2102                        as->journal.seq);
2103         mutex_unlock(&c->btree_interior_update_lock);
2104 }
2105
2106 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
2107 {
2108         size_t ret = 0;
2109         struct list_head *i;
2110
2111         mutex_lock(&c->btree_interior_update_lock);
2112         list_for_each(i, &c->btree_interior_update_list)
2113                 ret++;
2114         mutex_unlock(&c->btree_interior_update_lock);
2115
2116         return ret;
2117 }
2118
2119 void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
2120 {
2121         struct btree_root *r;
2122         struct jset_entry *entry;
2123
2124         mutex_lock(&c->btree_root_lock);
2125
2126         vstruct_for_each(jset, entry)
2127                 if (entry->type == BCH_JSET_ENTRY_btree_root) {
2128                         r = &c->btree_roots[entry->btree_id];
2129                         r->level = entry->level;
2130                         r->alive = true;
2131                         bkey_copy(&r->key, &entry->start[0]);
2132                 }
2133
2134         mutex_unlock(&c->btree_root_lock);
2135 }
2136
2137 struct jset_entry *
2138 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2139                                     struct jset_entry *start,
2140                                     struct jset_entry *end)
2141 {
2142         struct jset_entry *entry;
2143         unsigned long have = 0;
2144         unsigned i;
2145
2146         for (entry = start; entry < end; entry = vstruct_next(entry))
2147                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2148                         __set_bit(entry->btree_id, &have);
2149
2150         mutex_lock(&c->btree_root_lock);
2151
2152         for (i = 0; i < BTREE_ID_NR; i++)
2153                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2154                         journal_entry_set(end,
2155                                           BCH_JSET_ENTRY_btree_root,
2156                                           i, c->btree_roots[i].level,
2157                                           &c->btree_roots[i].key,
2158                                           c->btree_roots[i].key.u64s);
2159                         end = vstruct_next(end);
2160                 }
2161
2162         mutex_unlock(&c->btree_root_lock);
2163
2164         return end;
2165 }
2166
2167 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2168 {
2169         if (c->btree_interior_update_worker)
2170                 destroy_workqueue(c->btree_interior_update_worker);
2171         mempool_exit(&c->btree_interior_update_pool);
2172 }
2173
2174 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2175 {
2176         mutex_init(&c->btree_reserve_cache_lock);
2177         INIT_LIST_HEAD(&c->btree_interior_update_list);
2178         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2179         mutex_init(&c->btree_interior_update_lock);
2180         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2181
2182         c->btree_interior_update_worker =
2183                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2184         if (!c->btree_interior_update_worker)
2185                 return -ENOMEM;
2186
2187         return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2188                                          sizeof(struct btree_update));
2189 }