]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
cd214599a03f194fc5212801a92659bffceb6b37
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "error.h"
15 #include "extents.h"
16 #include "journal.h"
17 #include "journal_reclaim.h"
18 #include "keylist.h"
19 #include "replicas.h"
20 #include "super-io.h"
21
22 #include <linux/random.h>
23 #include <trace/events/bcachefs.h>
24
25 /* Debug code: */
26
27 /*
28  * Verify that child nodes correctly span parent node's range:
29  */
30 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
31 {
32 #ifdef CONFIG_BCACHEFS_DEBUG
33         struct bpos next_node = b->data->min_key;
34         struct btree_node_iter iter;
35         struct bkey_s_c k;
36         struct bkey_s_c_btree_ptr_v2 bp;
37         struct bkey unpacked;
38         char buf1[100], buf2[100];
39
40         BUG_ON(!b->c.level);
41
42         if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags))
43                 return;
44
45         bch2_btree_node_iter_init_from_start(&iter, b);
46
47         while (1) {
48                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
49                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
50                         break;
51                 bp = bkey_s_c_to_btree_ptr_v2(k);
52
53                 if (bpos_cmp(next_node, bp.v->min_key)) {
54                         bch2_dump_btree_node(c, b);
55                         panic("expected next min_key %s got %s\n",
56                               (bch2_bpos_to_text(&PBUF(buf1), next_node), buf1),
57                               (bch2_bpos_to_text(&PBUF(buf2), bp.v->min_key), buf2));
58                 }
59
60                 bch2_btree_node_iter_advance(&iter, b);
61
62                 if (bch2_btree_node_iter_end(&iter)) {
63                         if (bpos_cmp(k.k->p, b->key.k.p)) {
64                                 bch2_dump_btree_node(c, b);
65                                 panic("expected end %s got %s\n",
66                                       (bch2_bpos_to_text(&PBUF(buf1), b->key.k.p), buf1),
67                                       (bch2_bpos_to_text(&PBUF(buf2), k.k->p), buf2));
68                         }
69                         break;
70                 }
71
72                 next_node = bpos_successor(k.k->p);
73         }
74 #endif
75 }
76
77 /* Calculate ideal packed bkey format for new btree nodes: */
78
79 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
80 {
81         struct bkey_packed *k;
82         struct bset_tree *t;
83         struct bkey uk;
84
85         for_each_bset(b, t)
86                 bset_tree_for_each_key(b, t, k)
87                         if (!bkey_deleted(k)) {
88                                 uk = bkey_unpack_key(b, k);
89                                 bch2_bkey_format_add_key(s, &uk);
90                         }
91 }
92
93 static struct bkey_format bch2_btree_calc_format(struct btree *b)
94 {
95         struct bkey_format_state s;
96
97         bch2_bkey_format_init(&s);
98         bch2_bkey_format_add_pos(&s, b->data->min_key);
99         bch2_bkey_format_add_pos(&s, b->data->max_key);
100         __bch2_btree_calc_format(&s, b);
101
102         return bch2_bkey_format_done(&s);
103 }
104
105 static size_t btree_node_u64s_with_format(struct btree *b,
106                                           struct bkey_format *new_f)
107 {
108         struct bkey_format *old_f = &b->format;
109
110         /* stupid integer promotion rules */
111         ssize_t delta =
112             (((int) new_f->key_u64s - old_f->key_u64s) *
113              (int) b->nr.packed_keys) +
114             (((int) new_f->key_u64s - BKEY_U64s) *
115              (int) b->nr.unpacked_keys);
116
117         BUG_ON(delta + b->nr.live_u64s < 0);
118
119         return b->nr.live_u64s + delta;
120 }
121
122 /**
123  * btree_node_format_fits - check if we could rewrite node with a new format
124  *
125  * This assumes all keys can pack with the new format -- it just checks if
126  * the re-packed keys would fit inside the node itself.
127  */
128 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
129                                  struct bkey_format *new_f)
130 {
131         size_t u64s = btree_node_u64s_with_format(b, new_f);
132
133         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
134 }
135
136 /* Btree node freeing/allocation: */
137
138 static void __btree_node_free(struct bch_fs *c, struct btree *b)
139 {
140         trace_btree_node_free(c, b);
141
142         BUG_ON(btree_node_dirty(b));
143         BUG_ON(btree_node_need_write(b));
144         BUG_ON(b == btree_node_root(c, b));
145         BUG_ON(b->ob.nr);
146         BUG_ON(!list_empty(&b->write_blocked));
147         BUG_ON(b->will_make_reachable);
148
149         clear_btree_node_noevict(b);
150
151         bch2_btree_node_hash_remove(&c->btree_cache, b);
152
153         mutex_lock(&c->btree_cache.lock);
154         list_move(&b->list, &c->btree_cache.freeable);
155         mutex_unlock(&c->btree_cache.lock);
156 }
157
158 void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b)
159 {
160         struct open_buckets ob = b->ob;
161
162         b->ob.nr = 0;
163
164         clear_btree_node_dirty(c, b);
165
166         btree_node_lock_type(c, b, SIX_LOCK_write);
167         __btree_node_free(c, b);
168         six_unlock_write(&b->c.lock);
169
170         bch2_open_buckets_put(c, &ob);
171 }
172
173 void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b,
174                                 struct btree_iter *iter)
175 {
176         struct btree_iter *linked;
177
178         trans_for_each_iter(iter->trans, linked)
179                 BUG_ON(linked->l[b->c.level].b == b);
180
181         six_lock_write(&b->c.lock, NULL, NULL);
182         __btree_node_free(c, b);
183         six_unlock_write(&b->c.lock);
184         six_unlock_intent(&b->c.lock);
185 }
186
187 static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
188                                              struct disk_reservation *res,
189                                              struct closure *cl,
190                                              unsigned flags)
191 {
192         struct write_point *wp;
193         struct btree *b;
194         __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
195         struct open_buckets ob = { .nr = 0 };
196         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
197         unsigned nr_reserve;
198         enum alloc_reserve alloc_reserve;
199
200         if (flags & BTREE_INSERT_USE_RESERVE) {
201                 nr_reserve      = 0;
202                 alloc_reserve   = RESERVE_BTREE_MOVINGGC;
203         } else {
204                 nr_reserve      = BTREE_NODE_RESERVE;
205                 alloc_reserve   = RESERVE_BTREE;
206         }
207
208         mutex_lock(&c->btree_reserve_cache_lock);
209         if (c->btree_reserve_cache_nr > nr_reserve) {
210                 struct btree_alloc *a =
211                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
212
213                 ob = a->ob;
214                 bkey_copy(&tmp.k, &a->k);
215                 mutex_unlock(&c->btree_reserve_cache_lock);
216                 goto mem_alloc;
217         }
218         mutex_unlock(&c->btree_reserve_cache_lock);
219
220 retry:
221         wp = bch2_alloc_sectors_start(c,
222                                       c->opts.metadata_target ?:
223                                       c->opts.foreground_target,
224                                       0,
225                                       writepoint_ptr(&c->btree_write_point),
226                                       &devs_have,
227                                       res->nr_replicas,
228                                       c->opts.metadata_replicas_required,
229                                       alloc_reserve, 0, cl);
230         if (IS_ERR(wp))
231                 return ERR_CAST(wp);
232
233         if (wp->sectors_free < c->opts.btree_node_size) {
234                 struct open_bucket *ob;
235                 unsigned i;
236
237                 open_bucket_for_each(c, &wp->ptrs, ob, i)
238                         if (ob->sectors_free < c->opts.btree_node_size)
239                                 ob->sectors_free = 0;
240
241                 bch2_alloc_sectors_done(c, wp);
242                 goto retry;
243         }
244
245         if (c->sb.features & (1ULL << BCH_FEATURE_btree_ptr_v2))
246                 bkey_btree_ptr_v2_init(&tmp.k);
247         else
248                 bkey_btree_ptr_init(&tmp.k);
249
250         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, c->opts.btree_node_size);
251
252         bch2_open_bucket_get(c, wp, &ob);
253         bch2_alloc_sectors_done(c, wp);
254 mem_alloc:
255         b = bch2_btree_node_mem_alloc(c);
256
257         /* we hold cannibalize_lock: */
258         BUG_ON(IS_ERR(b));
259         BUG_ON(b->ob.nr);
260
261         bkey_copy(&b->key, &tmp.k);
262         b->ob = ob;
263
264         return b;
265 }
266
267 static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
268 {
269         struct bch_fs *c = as->c;
270         struct btree *b;
271         int ret;
272
273         BUG_ON(level >= BTREE_MAX_DEPTH);
274         BUG_ON(!as->nr_prealloc_nodes);
275
276         b = as->prealloc_nodes[--as->nr_prealloc_nodes];
277
278         set_btree_node_accessed(b);
279         set_btree_node_dirty(c, b);
280         set_btree_node_need_write(b);
281
282         bch2_bset_init_first(b, &b->data->keys);
283         b->c.level      = level;
284         b->c.btree_id   = as->btree_id;
285         b->version_ondisk = c->sb.version;
286
287         memset(&b->nr, 0, sizeof(b->nr));
288         b->data->magic = cpu_to_le64(bset_magic(c));
289         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
290         b->data->flags = 0;
291         SET_BTREE_NODE_ID(b->data, as->btree_id);
292         SET_BTREE_NODE_LEVEL(b->data, level);
293
294         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
295                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
296
297                 bp->v.mem_ptr           = 0;
298                 bp->v.seq               = b->data->keys.seq;
299                 bp->v.sectors_written   = 0;
300         }
301
302         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
303
304         bch2_btree_build_aux_trees(b);
305
306         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
307         BUG_ON(ret);
308
309         trace_btree_node_alloc(c, b);
310         return b;
311 }
312
313 static void btree_set_min(struct btree *b, struct bpos pos)
314 {
315         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
316                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
317         b->data->min_key = pos;
318 }
319
320 static void btree_set_max(struct btree *b, struct bpos pos)
321 {
322         b->key.k.p = pos;
323         b->data->max_key = pos;
324 }
325
326 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
327                                                   struct btree *b,
328                                                   struct bkey_format format)
329 {
330         struct btree *n;
331
332         n = bch2_btree_node_alloc(as, b->c.level);
333
334         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
335
336         btree_set_min(n, b->data->min_key);
337         btree_set_max(n, b->data->max_key);
338
339         n->data->format         = format;
340         btree_node_set_format(n, format);
341
342         bch2_btree_sort_into(as->c, n, b);
343
344         btree_node_reset_sib_u64s(n);
345
346         n->key.k.p = b->key.k.p;
347         return n;
348 }
349
350 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
351                                                        struct btree *b)
352 {
353         struct bkey_format new_f = bch2_btree_calc_format(b);
354
355         /*
356          * The keys might expand with the new format - if they wouldn't fit in
357          * the btree node anymore, use the old format for now:
358          */
359         if (!bch2_btree_node_format_fits(as->c, b, &new_f))
360                 new_f = b->format;
361
362         return __bch2_btree_node_alloc_replacement(as, b, new_f);
363 }
364
365 static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
366 {
367         struct btree *b = bch2_btree_node_alloc(as, level);
368
369         btree_set_min(b, POS_MIN);
370         btree_set_max(b, POS_MAX);
371         b->data->format = bch2_btree_calc_format(b);
372
373         btree_node_set_format(b, b->data->format);
374         bch2_btree_build_aux_trees(b);
375
376         bch2_btree_update_add_new_node(as, b);
377         six_unlock_write(&b->c.lock);
378
379         return b;
380 }
381
382 static void bch2_btree_reserve_put(struct btree_update *as)
383 {
384         struct bch_fs *c = as->c;
385
386         mutex_lock(&c->btree_reserve_cache_lock);
387
388         while (as->nr_prealloc_nodes) {
389                 struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes];
390
391                 six_unlock_write(&b->c.lock);
392
393                 if (c->btree_reserve_cache_nr <
394                     ARRAY_SIZE(c->btree_reserve_cache)) {
395                         struct btree_alloc *a =
396                                 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
397
398                         a->ob = b->ob;
399                         b->ob.nr = 0;
400                         bkey_copy(&a->k, &b->key);
401                 } else {
402                         bch2_open_buckets_put(c, &b->ob);
403                 }
404
405                 btree_node_lock_type(c, b, SIX_LOCK_write);
406                 __btree_node_free(c, b);
407                 six_unlock_write(&b->c.lock);
408
409                 six_unlock_intent(&b->c.lock);
410         }
411
412         mutex_unlock(&c->btree_reserve_cache_lock);
413 }
414
415 static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes,
416                                   unsigned flags, struct closure *cl)
417 {
418         struct bch_fs *c = as->c;
419         struct btree *b;
420         int ret;
421
422         BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
423
424         /*
425          * Protects reaping from the btree node cache and using the btree node
426          * open bucket reserve:
427          */
428         ret = bch2_btree_cache_cannibalize_lock(c, cl);
429         if (ret)
430                 return ret;
431
432         while (as->nr_prealloc_nodes < nr_nodes) {
433                 b = __bch2_btree_node_alloc(c, &as->disk_res,
434                                             flags & BTREE_INSERT_NOWAIT
435                                             ? NULL : cl, flags);
436                 if (IS_ERR(b)) {
437                         ret = PTR_ERR(b);
438                         goto err_free;
439                 }
440
441                 as->prealloc_nodes[as->nr_prealloc_nodes++] = b;
442         }
443
444         bch2_btree_cache_cannibalize_unlock(c);
445         return 0;
446 err_free:
447         bch2_btree_cache_cannibalize_unlock(c);
448         trace_btree_reserve_get_fail(c, nr_nodes, cl);
449         return ret;
450 }
451
452 /* Asynchronous interior node update machinery */
453
454 static void bch2_btree_update_free(struct btree_update *as)
455 {
456         struct bch_fs *c = as->c;
457
458         if (as->took_gc_lock)
459                 up_read(&c->gc_lock);
460         as->took_gc_lock = false;
461
462         bch2_journal_preres_put(&c->journal, &as->journal_preres);
463
464         bch2_journal_pin_drop(&c->journal, &as->journal);
465         bch2_journal_pin_flush(&c->journal, &as->journal);
466         bch2_disk_reservation_put(c, &as->disk_res);
467         bch2_btree_reserve_put(as);
468
469         mutex_lock(&c->btree_interior_update_lock);
470         list_del(&as->unwritten_list);
471         list_del(&as->list);
472         mutex_unlock(&c->btree_interior_update_lock);
473
474         closure_debug_destroy(&as->cl);
475         mempool_free(as, &c->btree_interior_update_pool);
476
477         closure_wake_up(&c->btree_interior_update_wait);
478 }
479
480 static void btree_update_will_delete_key(struct btree_update *as,
481                                          struct bkey_i *k)
482 {
483         BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s >
484                ARRAY_SIZE(as->_old_keys));
485         bch2_keylist_add(&as->old_keys, k);
486 }
487
488 static void btree_update_will_add_key(struct btree_update *as,
489                                       struct bkey_i *k)
490 {
491         BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s >
492                ARRAY_SIZE(as->_new_keys));
493         bch2_keylist_add(&as->new_keys, k);
494 }
495
496 /*
497  * The transactional part of an interior btree node update, where we journal the
498  * update we did to the interior node and update alloc info:
499  */
500 static int btree_update_nodes_written_trans(struct btree_trans *trans,
501                                             struct btree_update *as)
502 {
503         struct bkey_i *k;
504         int ret;
505
506         trans->extra_journal_entries = (void *) &as->journal_entries[0];
507         trans->extra_journal_entry_u64s = as->journal_u64s;
508         trans->journal_pin = &as->journal;
509
510         for_each_keylist_key(&as->new_keys, k) {
511                 ret = bch2_trans_mark_key(trans,
512                                           bkey_s_c_null,
513                                           bkey_i_to_s_c(k),
514                                           BTREE_TRIGGER_INSERT);
515                 if (ret)
516                         return ret;
517         }
518
519         for_each_keylist_key(&as->old_keys, k) {
520                 ret = bch2_trans_mark_key(trans,
521                                           bkey_i_to_s_c(k),
522                                           bkey_s_c_null,
523                                           BTREE_TRIGGER_OVERWRITE);
524                 if (ret)
525                         return ret;
526         }
527
528         return 0;
529 }
530
531 static void btree_update_nodes_written(struct btree_update *as)
532 {
533         struct bch_fs *c = as->c;
534         struct btree *b = as->b;
535         struct btree_trans trans;
536         u64 journal_seq = 0;
537         unsigned i;
538         int ret;
539
540         /*
541          * If we're already in an error state, it might be because a btree node
542          * was never written, and we might be trying to free that same btree
543          * node here, but it won't have been marked as allocated and we'll see
544          * spurious disk usage inconsistencies in the transactional part below
545          * if we don't skip it:
546          */
547         ret = bch2_journal_error(&c->journal);
548         if (ret)
549                 goto err;
550
551         BUG_ON(!journal_pin_active(&as->journal));
552
553         /*
554          * Wait for any in flight writes to finish before we free the old nodes
555          * on disk:
556          */
557         for (i = 0; i < as->nr_old_nodes; i++) {
558                 struct btree *old = as->old_nodes[i];
559                 __le64 seq;
560
561                 six_lock_read(&old->c.lock, NULL, NULL);
562                 seq = old->data ? old->data->keys.seq : 0;
563                 six_unlock_read(&old->c.lock);
564
565                 if (seq == as->old_nodes_seq[i])
566                         btree_node_wait_on_io(old);
567         }
568
569         /*
570          * We did an update to a parent node where the pointers we added pointed
571          * to child nodes that weren't written yet: now, the child nodes have
572          * been written so we can write out the update to the interior node.
573          */
574
575         /*
576          * We can't call into journal reclaim here: we'd block on the journal
577          * reclaim lock, but we may need to release the open buckets we have
578          * pinned in order for other btree updates to make forward progress, and
579          * journal reclaim does btree updates when flushing bkey_cached entries,
580          * which may require allocations as well.
581          */
582         bch2_trans_init(&trans, c, 0, 512);
583         ret = __bch2_trans_do(&trans, &as->disk_res, &journal_seq,
584                               BTREE_INSERT_NOFAIL|
585                               BTREE_INSERT_NOCHECK_RW|
586                               BTREE_INSERT_JOURNAL_RECLAIM|
587                               BTREE_INSERT_JOURNAL_RESERVED,
588                               btree_update_nodes_written_trans(&trans, as));
589         bch2_trans_exit(&trans);
590
591         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
592                              "error %i in btree_update_nodes_written()", ret);
593 err:
594         if (b) {
595                 /*
596                  * @b is the node we did the final insert into:
597                  *
598                  * On failure to get a journal reservation, we still have to
599                  * unblock the write and allow most of the write path to happen
600                  * so that shutdown works, but the i->journal_seq mechanism
601                  * won't work to prevent the btree write from being visible (we
602                  * didn't get a journal sequence number) - instead
603                  * __bch2_btree_node_write() doesn't do the actual write if
604                  * we're in journal error state:
605                  */
606
607                 btree_node_lock_type(c, b, SIX_LOCK_intent);
608                 btree_node_lock_type(c, b, SIX_LOCK_write);
609                 mutex_lock(&c->btree_interior_update_lock);
610
611                 list_del(&as->write_blocked_list);
612
613                 /*
614                  * Node might have been freed, recheck under
615                  * btree_interior_update_lock:
616                  */
617                 if (as->b == b) {
618                         struct bset *i = btree_bset_last(b);
619
620                         BUG_ON(!b->c.level);
621                         BUG_ON(!btree_node_dirty(b));
622
623                         if (!ret) {
624                                 i->journal_seq = cpu_to_le64(
625                                         max(journal_seq,
626                                             le64_to_cpu(i->journal_seq)));
627
628                                 bch2_btree_add_journal_pin(c, b, journal_seq);
629                         } else {
630                                 /*
631                                  * If we didn't get a journal sequence number we
632                                  * can't write this btree node, because recovery
633                                  * won't know to ignore this write:
634                                  */
635                                 set_btree_node_never_write(b);
636                         }
637                 }
638
639                 mutex_unlock(&c->btree_interior_update_lock);
640                 six_unlock_write(&b->c.lock);
641
642                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
643                 six_unlock_intent(&b->c.lock);
644         }
645
646         bch2_journal_pin_drop(&c->journal, &as->journal);
647
648         bch2_journal_preres_put(&c->journal, &as->journal_preres);
649
650         mutex_lock(&c->btree_interior_update_lock);
651         for (i = 0; i < as->nr_new_nodes; i++) {
652                 b = as->new_nodes[i];
653
654                 BUG_ON(b->will_make_reachable != (unsigned long) as);
655                 b->will_make_reachable = 0;
656         }
657         mutex_unlock(&c->btree_interior_update_lock);
658
659         for (i = 0; i < as->nr_new_nodes; i++) {
660                 b = as->new_nodes[i];
661
662                 btree_node_lock_type(c, b, SIX_LOCK_read);
663                 btree_node_write_if_need(c, b, SIX_LOCK_read);
664                 six_unlock_read(&b->c.lock);
665         }
666
667         for (i = 0; i < as->nr_open_buckets; i++)
668                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
669
670         bch2_btree_update_free(as);
671 }
672
673 static void btree_interior_update_work(struct work_struct *work)
674 {
675         struct bch_fs *c =
676                 container_of(work, struct bch_fs, btree_interior_update_work);
677         struct btree_update *as;
678
679         while (1) {
680                 mutex_lock(&c->btree_interior_update_lock);
681                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
682                                               struct btree_update, unwritten_list);
683                 if (as && !as->nodes_written)
684                         as = NULL;
685                 mutex_unlock(&c->btree_interior_update_lock);
686
687                 if (!as)
688                         break;
689
690                 btree_update_nodes_written(as);
691         }
692 }
693
694 static void btree_update_set_nodes_written(struct closure *cl)
695 {
696         struct btree_update *as = container_of(cl, struct btree_update, cl);
697         struct bch_fs *c = as->c;
698
699         mutex_lock(&c->btree_interior_update_lock);
700         as->nodes_written = true;
701         mutex_unlock(&c->btree_interior_update_lock);
702
703         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
704 }
705
706 /*
707  * We're updating @b with pointers to nodes that haven't finished writing yet:
708  * block @b from being written until @as completes
709  */
710 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
711 {
712         struct bch_fs *c = as->c;
713
714         mutex_lock(&c->btree_interior_update_lock);
715         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
716
717         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
718         BUG_ON(!btree_node_dirty(b));
719
720         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
721         as->b           = b;
722         list_add(&as->write_blocked_list, &b->write_blocked);
723
724         mutex_unlock(&c->btree_interior_update_lock);
725 }
726
727 static void btree_update_reparent(struct btree_update *as,
728                                   struct btree_update *child)
729 {
730         struct bch_fs *c = as->c;
731
732         lockdep_assert_held(&c->btree_interior_update_lock);
733
734         child->b = NULL;
735         child->mode = BTREE_INTERIOR_UPDATING_AS;
736
737         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
738 }
739
740 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
741 {
742         struct bkey_i *insert = &b->key;
743         struct bch_fs *c = as->c;
744
745         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
746
747         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
748                ARRAY_SIZE(as->journal_entries));
749
750         as->journal_u64s +=
751                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
752                                   BCH_JSET_ENTRY_btree_root,
753                                   b->c.btree_id, b->c.level,
754                                   insert, insert->k.u64s);
755
756         mutex_lock(&c->btree_interior_update_lock);
757         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
758
759         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
760         mutex_unlock(&c->btree_interior_update_lock);
761 }
762
763 /*
764  * bch2_btree_update_add_new_node:
765  *
766  * This causes @as to wait on @b to be written, before it gets to
767  * bch2_btree_update_nodes_written
768  *
769  * Additionally, it sets b->will_make_reachable to prevent any additional writes
770  * to @b from happening besides the first until @b is reachable on disk
771  *
772  * And it adds @b to the list of @as's new nodes, so that we can update sector
773  * counts in bch2_btree_update_nodes_written:
774  */
775 void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
776 {
777         struct bch_fs *c = as->c;
778
779         closure_get(&as->cl);
780
781         mutex_lock(&c->btree_interior_update_lock);
782         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
783         BUG_ON(b->will_make_reachable);
784
785         as->new_nodes[as->nr_new_nodes++] = b;
786         b->will_make_reachable = 1UL|(unsigned long) as;
787
788         mutex_unlock(&c->btree_interior_update_lock);
789
790         btree_update_will_add_key(as, &b->key);
791 }
792
793 /*
794  * returns true if @b was a new node
795  */
796 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
797 {
798         struct btree_update *as;
799         unsigned long v;
800         unsigned i;
801
802         mutex_lock(&c->btree_interior_update_lock);
803         /*
804          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
805          * dropped when it gets written by bch2_btree_complete_write - the
806          * xchg() is for synchronization with bch2_btree_complete_write:
807          */
808         v = xchg(&b->will_make_reachable, 0);
809         as = (struct btree_update *) (v & ~1UL);
810
811         if (!as) {
812                 mutex_unlock(&c->btree_interior_update_lock);
813                 return;
814         }
815
816         for (i = 0; i < as->nr_new_nodes; i++)
817                 if (as->new_nodes[i] == b)
818                         goto found;
819
820         BUG();
821 found:
822         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
823         mutex_unlock(&c->btree_interior_update_lock);
824
825         if (v & 1)
826                 closure_put(&as->cl);
827 }
828
829 void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
830 {
831         while (b->ob.nr)
832                 as->open_buckets[as->nr_open_buckets++] =
833                         b->ob.v[--b->ob.nr];
834 }
835
836 /*
837  * @b is being split/rewritten: it may have pointers to not-yet-written btree
838  * nodes and thus outstanding btree_updates - redirect @b's
839  * btree_updates to point to this btree_update:
840  */
841 void bch2_btree_interior_update_will_free_node(struct btree_update *as,
842                                                struct btree *b)
843 {
844         struct bch_fs *c = as->c;
845         struct btree_update *p, *n;
846         struct btree_write *w;
847
848         set_btree_node_dying(b);
849
850         if (btree_node_fake(b))
851                 return;
852
853         mutex_lock(&c->btree_interior_update_lock);
854
855         /*
856          * Does this node have any btree_update operations preventing
857          * it from being written?
858          *
859          * If so, redirect them to point to this btree_update: we can
860          * write out our new nodes, but we won't make them visible until those
861          * operations complete
862          */
863         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
864                 list_del_init(&p->write_blocked_list);
865                 btree_update_reparent(as, p);
866
867                 /*
868                  * for flush_held_btree_writes() waiting on updates to flush or
869                  * nodes to be writeable:
870                  */
871                 closure_wake_up(&c->btree_interior_update_wait);
872         }
873
874         clear_btree_node_dirty(c, b);
875         clear_btree_node_need_write(b);
876
877         /*
878          * Does this node have unwritten data that has a pin on the journal?
879          *
880          * If so, transfer that pin to the btree_update operation -
881          * note that if we're freeing multiple nodes, we only need to keep the
882          * oldest pin of any of the nodes we're freeing. We'll release the pin
883          * when the new nodes are persistent and reachable on disk:
884          */
885         w = btree_current_write(b);
886         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
887         bch2_journal_pin_drop(&c->journal, &w->journal);
888
889         w = btree_prev_write(b);
890         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
891         bch2_journal_pin_drop(&c->journal, &w->journal);
892
893         mutex_unlock(&c->btree_interior_update_lock);
894
895         /*
896          * Is this a node that isn't reachable on disk yet?
897          *
898          * Nodes that aren't reachable yet have writes blocked until they're
899          * reachable - now that we've cancelled any pending writes and moved
900          * things waiting on that write to wait on this update, we can drop this
901          * node from the list of nodes that the other update is making
902          * reachable, prior to freeing it:
903          */
904         btree_update_drop_new_node(c, b);
905
906         btree_update_will_delete_key(as, &b->key);
907
908         as->old_nodes[as->nr_old_nodes] = b;
909         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
910         as->nr_old_nodes++;
911 }
912
913 void bch2_btree_update_done(struct btree_update *as)
914 {
915         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
916
917         if (as->took_gc_lock)
918                 up_read(&as->c->gc_lock);
919         as->took_gc_lock = false;
920
921         bch2_btree_reserve_put(as);
922
923         continue_at(&as->cl, btree_update_set_nodes_written,
924                     as->c->btree_interior_update_worker);
925 }
926
927 struct btree_update *
928 bch2_btree_update_start(struct btree_iter *iter, unsigned level,
929                         unsigned nr_nodes, unsigned flags)
930 {
931         struct btree_trans *trans = iter->trans;
932         struct bch_fs *c = trans->c;
933         struct btree_update *as;
934         struct closure cl;
935         int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
936                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
937         int journal_flags = 0;
938         int ret = 0;
939
940         BUG_ON(!iter->should_be_locked);
941
942         if (flags & BTREE_INSERT_JOURNAL_RESERVED)
943                 journal_flags |= JOURNAL_RES_GET_RESERVED;
944
945         closure_init_stack(&cl);
946 retry:
947         /*
948          * This check isn't necessary for correctness - it's just to potentially
949          * prevent us from doing a lot of work that'll end up being wasted:
950          */
951         ret = bch2_journal_error(&c->journal);
952         if (ret)
953                 return ERR_PTR(ret);
954
955         /*
956          * XXX: figure out how far we might need to split,
957          * instead of locking/reserving all the way to the root:
958          */
959         if (!bch2_btree_iter_upgrade(iter, U8_MAX)) {
960                 trace_trans_restart_iter_upgrade(trans->ip, _RET_IP_,
961                                                  iter->btree_id,
962                                                  &iter->real_pos);
963                 return ERR_PTR(-EINTR);
964         }
965
966         if (flags & BTREE_INSERT_GC_LOCK_HELD)
967                 lockdep_assert_held(&c->gc_lock);
968         else if (!down_read_trylock(&c->gc_lock)) {
969                 if (flags & BTREE_INSERT_NOUNLOCK)
970                         return ERR_PTR(-EINTR);
971
972                 bch2_trans_unlock(trans);
973                 down_read(&c->gc_lock);
974                 if (!bch2_trans_relock(trans)) {
975                         up_read(&c->gc_lock);
976                         return ERR_PTR(-EINTR);
977                 }
978         }
979
980         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
981         memset(as, 0, sizeof(*as));
982         closure_init(&as->cl, NULL);
983         as->c           = c;
984         as->mode        = BTREE_INTERIOR_NO_UPDATE;
985         as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
986         as->btree_id    = iter->btree_id;
987         INIT_LIST_HEAD(&as->list);
988         INIT_LIST_HEAD(&as->unwritten_list);
989         INIT_LIST_HEAD(&as->write_blocked_list);
990         bch2_keylist_init(&as->old_keys, as->_old_keys);
991         bch2_keylist_init(&as->new_keys, as->_new_keys);
992         bch2_keylist_init(&as->parent_keys, as->inline_keys);
993
994         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
995                                       BTREE_UPDATE_JOURNAL_RES,
996                                       journal_flags|JOURNAL_RES_GET_NONBLOCK);
997         if (ret == -EAGAIN) {
998                 /*
999                  * this would be cleaner if bch2_journal_preres_get() took a
1000                  * closure argument
1001                  */
1002                 if (flags & BTREE_INSERT_NOUNLOCK) {
1003                         trace_trans_restart_journal_preres_get(trans->ip, _RET_IP_);
1004                         ret = -EINTR;
1005                         goto err;
1006                 }
1007
1008                 bch2_trans_unlock(trans);
1009
1010                 if (flags & BTREE_INSERT_JOURNAL_RECLAIM) {
1011                         bch2_btree_update_free(as);
1012                         return ERR_PTR(ret);
1013                 }
1014
1015                 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1016                                 BTREE_UPDATE_JOURNAL_RES,
1017                                 journal_flags);
1018                 if (ret) {
1019                         trace_trans_restart_journal_preres_get(trans->ip, _RET_IP_);
1020                         goto err;
1021                 }
1022
1023                 if (!bch2_trans_relock(trans)) {
1024                         ret = -EINTR;
1025                         goto err;
1026                 }
1027         }
1028
1029         ret = bch2_disk_reservation_get(c, &as->disk_res,
1030                         nr_nodes * c->opts.btree_node_size,
1031                         c->opts.metadata_replicas,
1032                         disk_res_flags);
1033         if (ret)
1034                 goto err;
1035
1036         ret = bch2_btree_reserve_get(as, nr_nodes, flags,
1037                 !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
1038         if (ret)
1039                 goto err;
1040
1041         bch2_journal_pin_add(&c->journal,
1042                              atomic64_read(&c->journal.seq),
1043                              &as->journal, NULL);
1044
1045         mutex_lock(&c->btree_interior_update_lock);
1046         list_add_tail(&as->list, &c->btree_interior_update_list);
1047         mutex_unlock(&c->btree_interior_update_lock);
1048
1049         return as;
1050 err:
1051         bch2_btree_update_free(as);
1052
1053         if (ret == -EAGAIN) {
1054                 BUG_ON(flags & BTREE_INSERT_NOUNLOCK);
1055
1056                 bch2_trans_unlock(trans);
1057                 closure_sync(&cl);
1058                 ret = -EINTR;
1059         }
1060
1061         if (ret == -EINTR && bch2_trans_relock(trans))
1062                 goto retry;
1063
1064         return ERR_PTR(ret);
1065 }
1066
1067 /* Btree root updates: */
1068
1069 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1070 {
1071         /* Root nodes cannot be reaped */
1072         mutex_lock(&c->btree_cache.lock);
1073         list_del_init(&b->list);
1074         mutex_unlock(&c->btree_cache.lock);
1075
1076         if (b->c.level)
1077                 six_lock_pcpu_alloc(&b->c.lock);
1078         else
1079                 six_lock_pcpu_free(&b->c.lock);
1080
1081         mutex_lock(&c->btree_root_lock);
1082         BUG_ON(btree_node_root(c, b) &&
1083                (b->c.level < btree_node_root(c, b)->c.level ||
1084                 !btree_node_dying(btree_node_root(c, b))));
1085
1086         btree_node_root(c, b) = b;
1087         mutex_unlock(&c->btree_root_lock);
1088
1089         bch2_recalc_btree_reserve(c);
1090 }
1091
1092 /**
1093  * bch_btree_set_root - update the root in memory and on disk
1094  *
1095  * To ensure forward progress, the current task must not be holding any
1096  * btree node write locks. However, you must hold an intent lock on the
1097  * old root.
1098  *
1099  * Note: This allocates a journal entry but doesn't add any keys to
1100  * it.  All the btree roots are part of every journal write, so there
1101  * is nothing new to be done.  This just guarantees that there is a
1102  * journal write.
1103  */
1104 static void bch2_btree_set_root(struct btree_update *as, struct btree *b,
1105                                 struct btree_iter *iter)
1106 {
1107         struct bch_fs *c = as->c;
1108         struct btree *old;
1109
1110         trace_btree_set_root(c, b);
1111         BUG_ON(!b->written &&
1112                !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags));
1113
1114         old = btree_node_root(c, b);
1115
1116         /*
1117          * Ensure no one is using the old root while we switch to the
1118          * new root:
1119          */
1120         bch2_btree_node_lock_write(old, iter);
1121
1122         bch2_btree_set_root_inmem(c, b);
1123
1124         btree_update_updated_root(as, b);
1125
1126         /*
1127          * Unlock old root after new root is visible:
1128          *
1129          * The new root isn't persistent, but that's ok: we still have
1130          * an intent lock on the new root, and any updates that would
1131          * depend on the new root would have to update the new root.
1132          */
1133         bch2_btree_node_unlock_write(old, iter);
1134 }
1135
1136 /* Interior node updates: */
1137
1138 static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b,
1139                                         struct btree_iter *iter,
1140                                         struct bkey_i *insert,
1141                                         struct btree_node_iter *node_iter)
1142 {
1143         struct bch_fs *c = as->c;
1144         struct bkey_packed *k;
1145         const char *invalid;
1146
1147         invalid = bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b)) ?:
1148                 bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert));
1149         if (invalid) {
1150                 char buf[160];
1151
1152                 bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(insert));
1153                 bch2_fs_inconsistent(c, "inserting invalid bkey %s: %s", buf, invalid);
1154                 dump_stack();
1155         }
1156
1157         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1158                ARRAY_SIZE(as->journal_entries));
1159
1160         as->journal_u64s +=
1161                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1162                                   BCH_JSET_ENTRY_btree_keys,
1163                                   b->c.btree_id, b->c.level,
1164                                   insert, insert->k.u64s);
1165
1166         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1167                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1168                 bch2_btree_node_iter_advance(node_iter, b);
1169
1170         bch2_btree_bset_insert_key(iter, b, node_iter, insert);
1171         set_btree_node_dirty(c, b);
1172         set_btree_node_need_write(b);
1173 }
1174
1175 static void
1176 __bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
1177                                   struct btree_iter *iter, struct keylist *keys,
1178                                   struct btree_node_iter node_iter)
1179 {
1180         struct bkey_i *insert = bch2_keylist_front(keys);
1181         struct bkey_packed *k;
1182
1183         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1184
1185         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1186                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1187                 ;
1188
1189         while (!bch2_keylist_empty(keys)) {
1190                 bch2_insert_fixup_btree_ptr(as, b, iter,
1191                                 bch2_keylist_front(keys), &node_iter);
1192                 bch2_keylist_pop_front(keys);
1193         }
1194 }
1195
1196 /*
1197  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1198  * node)
1199  */
1200 static struct btree *__btree_split_node(struct btree_update *as,
1201                                         struct btree *n1,
1202                                         struct btree_iter *iter)
1203 {
1204         struct bkey_format_state s;
1205         size_t nr_packed = 0, nr_unpacked = 0;
1206         struct btree *n2;
1207         struct bset *set1, *set2;
1208         struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL;
1209         struct bpos n1_pos;
1210
1211         n2 = bch2_btree_node_alloc(as, n1->c.level);
1212         bch2_btree_update_add_new_node(as, n2);
1213
1214         n2->data->max_key       = n1->data->max_key;
1215         n2->data->format        = n1->format;
1216         SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
1217         n2->key.k.p = n1->key.k.p;
1218
1219         set1 = btree_bset_first(n1);
1220         set2 = btree_bset_first(n2);
1221
1222         /*
1223          * Has to be a linear search because we don't have an auxiliary
1224          * search tree yet
1225          */
1226         k = set1->start;
1227         while (1) {
1228                 struct bkey_packed *n = bkey_next(k);
1229
1230                 if (n == vstruct_last(set1))
1231                         break;
1232                 if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
1233                         break;
1234
1235                 if (bkey_packed(k))
1236                         nr_packed++;
1237                 else
1238                         nr_unpacked++;
1239
1240                 prev = k;
1241                 k = n;
1242         }
1243
1244         BUG_ON(!prev);
1245         set2_start      = k;
1246         set2_end        = vstruct_last(set1);
1247
1248         set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data);
1249         set_btree_bset_end(n1, n1->set);
1250
1251         n1->nr.live_u64s        = le16_to_cpu(set1->u64s);
1252         n1->nr.bset_u64s[0]     = le16_to_cpu(set1->u64s);
1253         n1->nr.packed_keys      = nr_packed;
1254         n1->nr.unpacked_keys    = nr_unpacked;
1255
1256         n1_pos = bkey_unpack_pos(n1, prev);
1257         if (as->c->sb.version < bcachefs_metadata_version_snapshot)
1258                 n1_pos.snapshot = U32_MAX;
1259
1260         btree_set_max(n1, n1_pos);
1261         btree_set_min(n2, bpos_successor(n1->key.k.p));
1262
1263         bch2_bkey_format_init(&s);
1264         bch2_bkey_format_add_pos(&s, n2->data->min_key);
1265         bch2_bkey_format_add_pos(&s, n2->data->max_key);
1266
1267         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1268                 struct bkey uk = bkey_unpack_key(n1, k);
1269                 bch2_bkey_format_add_key(&s, &uk);
1270         }
1271
1272         n2->data->format = bch2_bkey_format_done(&s);
1273         btree_node_set_format(n2, n2->data->format);
1274
1275         out = set2->start;
1276         memset(&n2->nr, 0, sizeof(n2->nr));
1277
1278         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1279                 BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k)
1280                                        ? &n1->format : &bch2_bkey_format_current, k));
1281                 out->format = KEY_FORMAT_LOCAL_BTREE;
1282                 btree_keys_account_key_add(&n2->nr, 0, out);
1283                 out = bkey_next(out);
1284         }
1285
1286         set2->u64s = cpu_to_le16((u64 *) out - set2->_data);
1287         set_btree_bset_end(n2, n2->set);
1288
1289         BUG_ON(!set1->u64s);
1290         BUG_ON(!set2->u64s);
1291
1292         btree_node_reset_sib_u64s(n1);
1293         btree_node_reset_sib_u64s(n2);
1294
1295         bch2_verify_btree_nr_keys(n1);
1296         bch2_verify_btree_nr_keys(n2);
1297
1298         if (n1->c.level) {
1299                 btree_node_interior_verify(as->c, n1);
1300                 btree_node_interior_verify(as->c, n2);
1301         }
1302
1303         return n2;
1304 }
1305
1306 /*
1307  * For updates to interior nodes, we've got to do the insert before we split
1308  * because the stuff we're inserting has to be inserted atomically. Post split,
1309  * the keys might have to go in different nodes and the split would no longer be
1310  * atomic.
1311  *
1312  * Worse, if the insert is from btree node coalescing, if we do the insert after
1313  * we do the split (and pick the pivot) - the pivot we pick might be between
1314  * nodes that were coalesced, and thus in the middle of a child node post
1315  * coalescing:
1316  */
1317 static void btree_split_insert_keys(struct btree_update *as, struct btree *b,
1318                                     struct btree_iter *iter,
1319                                     struct keylist *keys)
1320 {
1321         struct btree_node_iter node_iter;
1322         struct bkey_i *k = bch2_keylist_front(keys);
1323         struct bkey_packed *src, *dst, *n;
1324         struct bset *i;
1325
1326         bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
1327
1328         __bch2_btree_insert_keys_interior(as, b, iter, keys, node_iter);
1329
1330         /*
1331          * We can't tolerate whiteouts here - with whiteouts there can be
1332          * duplicate keys, and it would be rather bad if we picked a duplicate
1333          * for the pivot:
1334          */
1335         i = btree_bset_first(b);
1336         src = dst = i->start;
1337         while (src != vstruct_last(i)) {
1338                 n = bkey_next(src);
1339                 if (!bkey_deleted(src)) {
1340                         memmove_u64s_down(dst, src, src->u64s);
1341                         dst = bkey_next(dst);
1342                 }
1343                 src = n;
1344         }
1345
1346         /* Also clear out the unwritten whiteouts area: */
1347         b->whiteout_u64s = 0;
1348
1349         i->u64s = cpu_to_le16((u64 *) dst - i->_data);
1350         set_btree_bset_end(b, b->set);
1351
1352         BUG_ON(b->nsets != 1 ||
1353                b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
1354
1355         btree_node_interior_verify(as->c, b);
1356 }
1357
1358 static void btree_split(struct btree_update *as, struct btree *b,
1359                         struct btree_iter *iter, struct keylist *keys,
1360                         unsigned flags)
1361 {
1362         struct bch_fs *c = as->c;
1363         struct btree *parent = btree_node_parent(iter, b);
1364         struct btree *n1, *n2 = NULL, *n3 = NULL;
1365         u64 start_time = local_clock();
1366
1367         BUG_ON(!parent && (b != btree_node_root(c, b)));
1368         BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level));
1369
1370         bch2_btree_interior_update_will_free_node(as, b);
1371
1372         n1 = bch2_btree_node_alloc_replacement(as, b);
1373         bch2_btree_update_add_new_node(as, n1);
1374
1375         if (keys)
1376                 btree_split_insert_keys(as, n1, iter, keys);
1377
1378         if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
1379                 trace_btree_split(c, b);
1380
1381                 n2 = __btree_split_node(as, n1, iter);
1382
1383                 bch2_btree_build_aux_trees(n2);
1384                 bch2_btree_build_aux_trees(n1);
1385                 six_unlock_write(&n2->c.lock);
1386                 six_unlock_write(&n1->c.lock);
1387
1388                 bch2_btree_node_write(c, n2, SIX_LOCK_intent);
1389
1390                 /*
1391                  * Note that on recursive parent_keys == keys, so we
1392                  * can't start adding new keys to parent_keys before emptying it
1393                  * out (which we did with btree_split_insert_keys() above)
1394                  */
1395                 bch2_keylist_add(&as->parent_keys, &n1->key);
1396                 bch2_keylist_add(&as->parent_keys, &n2->key);
1397
1398                 if (!parent) {
1399                         /* Depth increases, make a new root */
1400                         n3 = __btree_root_alloc(as, b->c.level + 1);
1401
1402                         n3->sib_u64s[0] = U16_MAX;
1403                         n3->sib_u64s[1] = U16_MAX;
1404
1405                         btree_split_insert_keys(as, n3, iter, &as->parent_keys);
1406
1407                         bch2_btree_node_write(c, n3, SIX_LOCK_intent);
1408                 }
1409         } else {
1410                 trace_btree_compact(c, b);
1411
1412                 bch2_btree_build_aux_trees(n1);
1413                 six_unlock_write(&n1->c.lock);
1414
1415                 if (parent)
1416                         bch2_keylist_add(&as->parent_keys, &n1->key);
1417         }
1418
1419         bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1420
1421         /* New nodes all written, now make them visible: */
1422
1423         if (parent) {
1424                 /* Split a non root node */
1425                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1426         } else if (n3) {
1427                 bch2_btree_set_root(as, n3, iter);
1428         } else {
1429                 /* Root filled up but didn't need to be split */
1430                 bch2_btree_set_root(as, n1, iter);
1431         }
1432
1433         bch2_btree_update_get_open_buckets(as, n1);
1434         if (n2)
1435                 bch2_btree_update_get_open_buckets(as, n2);
1436         if (n3)
1437                 bch2_btree_update_get_open_buckets(as, n3);
1438
1439         /* Successful split, update the iterator to point to the new nodes: */
1440
1441         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1442         bch2_btree_iter_node_drop(iter, b);
1443         if (n3)
1444                 bch2_btree_iter_node_replace(iter, n3);
1445         if (n2)
1446                 bch2_btree_iter_node_replace(iter, n2);
1447         bch2_btree_iter_node_replace(iter, n1);
1448
1449         /*
1450          * The old node must be freed (in memory) _before_ unlocking the new
1451          * nodes - else another thread could re-acquire a read lock on the old
1452          * node after another thread has locked and updated the new node, thus
1453          * seeing stale data:
1454          */
1455         bch2_btree_node_free_inmem(c, b, iter);
1456
1457         if (n3)
1458                 six_unlock_intent(&n3->c.lock);
1459         if (n2)
1460                 six_unlock_intent(&n2->c.lock);
1461         six_unlock_intent(&n1->c.lock);
1462
1463         bch2_btree_trans_verify_locks(iter->trans);
1464
1465         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_split],
1466                                start_time);
1467 }
1468
1469 static void
1470 bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
1471                                 struct btree_iter *iter, struct keylist *keys)
1472 {
1473         struct btree_iter *linked;
1474
1475         __bch2_btree_insert_keys_interior(as, b, iter, keys, iter->l[b->c.level].iter);
1476
1477         btree_update_updated_node(as, b);
1478
1479         trans_for_each_iter_with_node(iter->trans, b, linked)
1480                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1481
1482         bch2_btree_trans_verify_iters(iter->trans, b);
1483 }
1484
1485 /**
1486  * bch_btree_insert_node - insert bkeys into a given btree node
1487  *
1488  * @iter:               btree iterator
1489  * @keys:               list of keys to insert
1490  * @hook:               insert callback
1491  * @persistent:         if not null, @persistent will wait on journal write
1492  *
1493  * Inserts as many keys as it can into a given btree node, splitting it if full.
1494  * If a split occurred, this function will return early. This can only happen
1495  * for leaf nodes -- inserts into interior nodes have to be atomic.
1496  */
1497 void bch2_btree_insert_node(struct btree_update *as, struct btree *b,
1498                             struct btree_iter *iter, struct keylist *keys,
1499                             unsigned flags)
1500 {
1501         struct bch_fs *c = as->c;
1502         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1503         int old_live_u64s = b->nr.live_u64s;
1504         int live_u64s_added, u64s_added;
1505
1506         lockdep_assert_held(&c->gc_lock);
1507         BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->c.level));
1508         BUG_ON(!b->c.level);
1509         BUG_ON(!as || as->b);
1510         bch2_verify_keylist_sorted(keys);
1511
1512         bch2_btree_node_lock_for_insert(c, b, iter);
1513
1514         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1515                 bch2_btree_node_unlock_write(b, iter);
1516                 goto split;
1517         }
1518
1519         btree_node_interior_verify(c, b);
1520
1521         bch2_btree_insert_keys_interior(as, b, iter, keys);
1522
1523         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1524         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1525
1526         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1527                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1528         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1529                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1530
1531         if (u64s_added > live_u64s_added &&
1532             bch2_maybe_compact_whiteouts(c, b))
1533                 bch2_btree_iter_reinit_node(iter, b);
1534
1535         bch2_btree_node_unlock_write(b, iter);
1536
1537         btree_node_interior_verify(c, b);
1538         return;
1539 split:
1540         btree_split(as, b, iter, keys, flags);
1541 }
1542
1543 int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter,
1544                           unsigned flags)
1545 {
1546         struct btree *b = iter_l(iter)->b;
1547         struct btree_update *as;
1548         unsigned l;
1549         int ret = 0;
1550
1551         as = bch2_btree_update_start(iter, iter->level,
1552                 btree_update_reserve_required(c, b), flags);
1553         if (IS_ERR(as))
1554                 return PTR_ERR(as);
1555
1556         btree_split(as, b, iter, NULL, flags);
1557         bch2_btree_update_done(as);
1558
1559         for (l = iter->level + 1; btree_iter_node(iter, l) && !ret; l++)
1560                 ret = bch2_foreground_maybe_merge(c, iter, l, flags);
1561
1562         return ret;
1563 }
1564
1565 int __bch2_foreground_maybe_merge(struct bch_fs *c,
1566                                   struct btree_iter *iter,
1567                                   unsigned level,
1568                                   unsigned flags,
1569                                   enum btree_node_sibling sib)
1570 {
1571         struct btree_trans *trans = iter->trans;
1572         struct btree_iter *sib_iter = NULL;
1573         struct btree_update *as;
1574         struct bkey_format_state new_s;
1575         struct bkey_format new_f;
1576         struct bkey_i delete;
1577         struct btree *b, *m, *n, *prev, *next, *parent;
1578         struct bpos sib_pos;
1579         size_t sib_u64s;
1580         int ret = 0, ret2 = 0;
1581
1582         BUG_ON(!btree_node_locked(iter, level));
1583 retry:
1584         ret = bch2_btree_iter_traverse(iter);
1585         if (ret)
1586                 goto err;
1587
1588         BUG_ON(!btree_node_locked(iter, level));
1589
1590         b = iter->l[level].b;
1591
1592         if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) ||
1593             (sib == btree_next_sib && !bpos_cmp(b->data->max_key, POS_MAX))) {
1594                 b->sib_u64s[sib] = U16_MAX;
1595                 goto out;
1596         }
1597
1598         sib_pos = sib == btree_prev_sib
1599                 ? bpos_predecessor(b->data->min_key)
1600                 : bpos_successor(b->data->max_key);
1601
1602         sib_iter = bch2_trans_get_node_iter(trans, iter->btree_id,
1603                                             sib_pos, U8_MAX, level,
1604                                             BTREE_ITER_INTENT);
1605         ret = bch2_btree_iter_traverse(sib_iter);
1606         if (ret)
1607                 goto err;
1608
1609         m = sib_iter->l[level].b;
1610
1611         if (btree_node_parent(iter, b) !=
1612             btree_node_parent(sib_iter, m)) {
1613                 b->sib_u64s[sib] = U16_MAX;
1614                 goto out;
1615         }
1616
1617         if (sib == btree_prev_sib) {
1618                 prev = m;
1619                 next = b;
1620         } else {
1621                 prev = b;
1622                 next = m;
1623         }
1624
1625         if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) {
1626                 char buf1[100], buf2[100];
1627
1628                 bch2_bpos_to_text(&PBUF(buf1), prev->data->max_key);
1629                 bch2_bpos_to_text(&PBUF(buf2), next->data->min_key);
1630                 bch_err(c,
1631                         "btree topology error in btree merge:\n"
1632                         "  prev ends at   %s\n"
1633                         "  next starts at %s",
1634                         buf1, buf2);
1635                 bch2_topology_error(c);
1636                 ret = -EIO;
1637                 goto err;
1638         }
1639
1640         bch2_bkey_format_init(&new_s);
1641         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1642         __bch2_btree_calc_format(&new_s, prev);
1643         __bch2_btree_calc_format(&new_s, next);
1644         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1645         new_f = bch2_bkey_format_done(&new_s);
1646
1647         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1648                 btree_node_u64s_with_format(m, &new_f);
1649
1650         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1651                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1652                 sib_u64s /= 2;
1653                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1654         }
1655
1656         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1657         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1658         b->sib_u64s[sib] = sib_u64s;
1659
1660         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1661                 goto out;
1662
1663         parent = btree_node_parent(iter, b);
1664         as = bch2_btree_update_start(iter, level,
1665                          btree_update_reserve_required(c, parent) + 1,
1666                          flags|
1667                          BTREE_INSERT_NOFAIL|
1668                          BTREE_INSERT_USE_RESERVE);
1669         ret = PTR_ERR_OR_ZERO(as);
1670         if (ret)
1671                 goto err;
1672
1673         trace_btree_merge(c, b);
1674
1675         bch2_btree_interior_update_will_free_node(as, b);
1676         bch2_btree_interior_update_will_free_node(as, m);
1677
1678         n = bch2_btree_node_alloc(as, b->c.level);
1679         bch2_btree_update_add_new_node(as, n);
1680
1681         btree_set_min(n, prev->data->min_key);
1682         btree_set_max(n, next->data->max_key);
1683         n->data->format         = new_f;
1684
1685         btree_node_set_format(n, new_f);
1686
1687         bch2_btree_sort_into(c, n, prev);
1688         bch2_btree_sort_into(c, n, next);
1689
1690         bch2_btree_build_aux_trees(n);
1691         six_unlock_write(&n->c.lock);
1692
1693         bkey_init(&delete.k);
1694         delete.k.p = prev->key.k.p;
1695         bch2_keylist_add(&as->parent_keys, &delete);
1696         bch2_keylist_add(&as->parent_keys, &n->key);
1697
1698         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1699
1700         bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1701
1702         bch2_btree_update_get_open_buckets(as, n);
1703
1704         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1705         six_lock_increment(&m->c.lock, SIX_LOCK_intent);
1706         bch2_btree_iter_node_drop(iter, b);
1707         bch2_btree_iter_node_drop(iter, m);
1708
1709         bch2_btree_iter_node_replace(iter, n);
1710
1711         bch2_btree_trans_verify_iters(trans, n);
1712
1713         bch2_btree_node_free_inmem(c, b, iter);
1714         bch2_btree_node_free_inmem(c, m, iter);
1715
1716         six_unlock_intent(&n->c.lock);
1717
1718         bch2_btree_update_done(as);
1719 out:
1720         bch2_btree_trans_verify_locks(trans);
1721         bch2_trans_iter_free(trans, sib_iter);
1722
1723         /*
1724          * Don't downgrade locks here: we're called after successful insert,
1725          * and the caller will downgrade locks after a successful insert
1726          * anyways (in case e.g. a split was required first)
1727          *
1728          * And we're also called when inserting into interior nodes in the
1729          * split path, and downgrading to read locks in there is potentially
1730          * confusing:
1731          */
1732         return ret ?: ret2;
1733 err:
1734         bch2_trans_iter_put(trans, sib_iter);
1735         sib_iter = NULL;
1736
1737         if (ret == -EINTR && bch2_trans_relock(trans))
1738                 goto retry;
1739
1740         if (ret == -EINTR && !(flags & BTREE_INSERT_NOUNLOCK)) {
1741                 ret2 = ret;
1742                 ret = bch2_btree_iter_traverse_all(trans);
1743                 if (!ret)
1744                         goto retry;
1745         }
1746
1747         goto out;
1748 }
1749
1750 /**
1751  * bch_btree_node_rewrite - Rewrite/move a btree node
1752  */
1753 int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
1754                             __le64 seq, unsigned flags)
1755 {
1756         struct btree *b, *n, *parent;
1757         struct btree_update *as;
1758         int ret;
1759
1760         flags |= BTREE_INSERT_NOFAIL;
1761 retry:
1762         ret = bch2_btree_iter_traverse(iter);
1763         if (ret)
1764                 goto out;
1765
1766         b = bch2_btree_iter_peek_node(iter);
1767         if (!b || b->data->keys.seq != seq)
1768                 goto out;
1769
1770         parent = btree_node_parent(iter, b);
1771         as = bch2_btree_update_start(iter, b->c.level,
1772                 (parent
1773                  ? btree_update_reserve_required(c, parent)
1774                  : 0) + 1,
1775                 flags);
1776         ret = PTR_ERR_OR_ZERO(as);
1777         if (ret == -EINTR)
1778                 goto retry;
1779         if (ret) {
1780                 trace_btree_gc_rewrite_node_fail(c, b);
1781                 goto out;
1782         }
1783
1784         bch2_btree_interior_update_will_free_node(as, b);
1785
1786         n = bch2_btree_node_alloc_replacement(as, b);
1787         bch2_btree_update_add_new_node(as, n);
1788
1789         bch2_btree_build_aux_trees(n);
1790         six_unlock_write(&n->c.lock);
1791
1792         trace_btree_gc_rewrite_node(c, b);
1793
1794         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1795
1796         if (parent) {
1797                 bch2_keylist_add(&as->parent_keys, &n->key);
1798                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
1799         } else {
1800                 bch2_btree_set_root(as, n, iter);
1801         }
1802
1803         bch2_btree_update_get_open_buckets(as, n);
1804
1805         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1806         bch2_btree_iter_node_drop(iter, b);
1807         bch2_btree_iter_node_replace(iter, n);
1808         bch2_btree_node_free_inmem(c, b, iter);
1809         six_unlock_intent(&n->c.lock);
1810
1811         bch2_btree_update_done(as);
1812 out:
1813         bch2_btree_iter_downgrade(iter);
1814         return ret;
1815 }
1816
1817 struct async_btree_rewrite {
1818         struct bch_fs           *c;
1819         struct work_struct      work;
1820         enum btree_id           btree_id;
1821         unsigned                level;
1822         struct bpos             pos;
1823         __le64                  seq;
1824 };
1825
1826 void async_btree_node_rewrite_work(struct work_struct *work)
1827 {
1828         struct async_btree_rewrite *a =
1829                 container_of(work, struct async_btree_rewrite, work);
1830         struct bch_fs *c = a->c;
1831         struct btree_trans trans;
1832         struct btree_iter *iter;
1833
1834         bch2_trans_init(&trans, c, 0, 0);
1835         iter = bch2_trans_get_node_iter(&trans, a->btree_id, a->pos,
1836                                         BTREE_MAX_DEPTH, a->level, 0);
1837         bch2_btree_node_rewrite(c, iter, a->seq, 0);
1838         bch2_trans_iter_put(&trans, iter);
1839         bch2_trans_exit(&trans);
1840         percpu_ref_put(&c->writes);
1841         kfree(a);
1842 }
1843
1844 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
1845 {
1846         struct async_btree_rewrite *a;
1847
1848         if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags))
1849                 return;
1850
1851         if (!percpu_ref_tryget(&c->writes))
1852                 return;
1853
1854         a = kmalloc(sizeof(*a), GFP_NOFS);
1855         if (!a) {
1856                 percpu_ref_put(&c->writes);
1857                 return;
1858         }
1859
1860         a->c            = c;
1861         a->btree_id     = b->c.btree_id;
1862         a->level        = b->c.level;
1863         a->pos          = b->key.k.p;
1864         a->seq          = b->data->keys.seq;
1865
1866         INIT_WORK(&a->work, async_btree_node_rewrite_work);
1867         queue_work(c->btree_interior_update_worker, &a->work);
1868 }
1869
1870 static void __bch2_btree_node_update_key(struct bch_fs *c,
1871                                          struct btree_update *as,
1872                                          struct btree_iter *iter,
1873                                          struct btree *b, struct btree *new_hash,
1874                                          struct bkey_i *new_key)
1875 {
1876         struct btree *parent;
1877         int ret;
1878
1879         btree_update_will_delete_key(as, &b->key);
1880         btree_update_will_add_key(as, new_key);
1881
1882         parent = btree_node_parent(iter, b);
1883         if (parent) {
1884                 if (new_hash) {
1885                         bkey_copy(&new_hash->key, new_key);
1886                         ret = bch2_btree_node_hash_insert(&c->btree_cache,
1887                                         new_hash, b->c.level, b->c.btree_id);
1888                         BUG_ON(ret);
1889                 }
1890
1891                 bch2_keylist_add(&as->parent_keys, new_key);
1892                 bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0);
1893
1894                 if (new_hash) {
1895                         mutex_lock(&c->btree_cache.lock);
1896                         bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
1897
1898                         bch2_btree_node_hash_remove(&c->btree_cache, b);
1899
1900                         bkey_copy(&b->key, new_key);
1901                         ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1902                         BUG_ON(ret);
1903                         mutex_unlock(&c->btree_cache.lock);
1904                 } else {
1905                         bkey_copy(&b->key, new_key);
1906                 }
1907         } else {
1908                 BUG_ON(btree_node_root(c, b) != b);
1909
1910                 bch2_btree_node_lock_write(b, iter);
1911                 bkey_copy(&b->key, new_key);
1912
1913                 if (btree_ptr_hash_val(&b->key) != b->hash_val) {
1914                         mutex_lock(&c->btree_cache.lock);
1915                         bch2_btree_node_hash_remove(&c->btree_cache, b);
1916
1917                         ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1918                         BUG_ON(ret);
1919                         mutex_unlock(&c->btree_cache.lock);
1920                 }
1921
1922                 btree_update_updated_root(as, b);
1923                 bch2_btree_node_unlock_write(b, iter);
1924         }
1925
1926         bch2_btree_update_done(as);
1927 }
1928
1929 int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter,
1930                                struct btree *b,
1931                                struct bkey_i *new_key)
1932 {
1933         struct btree *parent = btree_node_parent(iter, b);
1934         struct btree_update *as = NULL;
1935         struct btree *new_hash = NULL;
1936         struct closure cl;
1937         int ret = 0;
1938
1939         closure_init_stack(&cl);
1940
1941         /*
1942          * check btree_ptr_hash_val() after @b is locked by
1943          * btree_iter_traverse():
1944          */
1945         if (btree_ptr_hash_val(new_key) != b->hash_val) {
1946                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1947                 if (ret) {
1948                         bch2_trans_unlock(iter->trans);
1949                         closure_sync(&cl);
1950                         if (!bch2_trans_relock(iter->trans))
1951                                 return -EINTR;
1952                 }
1953
1954                 new_hash = bch2_btree_node_mem_alloc(c);
1955         }
1956
1957         as = bch2_btree_update_start(iter, b->c.level,
1958                 parent ? btree_update_reserve_required(c, parent) : 0,
1959                 BTREE_INSERT_NOFAIL);
1960         if (IS_ERR(as)) {
1961                 ret = PTR_ERR(as);
1962                 goto err;
1963         }
1964
1965         __bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key);
1966
1967         bch2_btree_iter_downgrade(iter);
1968 err:
1969         if (new_hash) {
1970                 mutex_lock(&c->btree_cache.lock);
1971                 list_move(&new_hash->list, &c->btree_cache.freeable);
1972                 mutex_unlock(&c->btree_cache.lock);
1973
1974                 six_unlock_write(&new_hash->c.lock);
1975                 six_unlock_intent(&new_hash->c.lock);
1976         }
1977         closure_sync(&cl);
1978         bch2_btree_cache_cannibalize_unlock(c);
1979         return ret;
1980 }
1981
1982 /* Init code: */
1983
1984 /*
1985  * Only for filesystem bringup, when first reading the btree roots or allocating
1986  * btree roots when initializing a new filesystem:
1987  */
1988 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
1989 {
1990         BUG_ON(btree_node_root(c, b));
1991
1992         bch2_btree_set_root_inmem(c, b);
1993 }
1994
1995 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
1996 {
1997         struct closure cl;
1998         struct btree *b;
1999         int ret;
2000
2001         closure_init_stack(&cl);
2002
2003         do {
2004                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2005                 closure_sync(&cl);
2006         } while (ret);
2007
2008         b = bch2_btree_node_mem_alloc(c);
2009         bch2_btree_cache_cannibalize_unlock(c);
2010
2011         set_btree_node_fake(b);
2012         set_btree_node_need_rewrite(b);
2013         b->c.level      = 0;
2014         b->c.btree_id   = id;
2015
2016         bkey_btree_ptr_init(&b->key);
2017         b->key.k.p = POS_MAX;
2018         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2019
2020         bch2_bset_init_first(b, &b->data->keys);
2021         bch2_btree_build_aux_trees(b);
2022
2023         b->data->flags = 0;
2024         btree_set_min(b, POS_MIN);
2025         btree_set_max(b, POS_MAX);
2026         b->data->format = bch2_btree_calc_format(b);
2027         btree_node_set_format(b, b->data->format);
2028
2029         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2030                                           b->c.level, b->c.btree_id);
2031         BUG_ON(ret);
2032
2033         bch2_btree_set_root_inmem(c, b);
2034
2035         six_unlock_write(&b->c.lock);
2036         six_unlock_intent(&b->c.lock);
2037 }
2038
2039 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2040 {
2041         struct btree_update *as;
2042
2043         mutex_lock(&c->btree_interior_update_lock);
2044         list_for_each_entry(as, &c->btree_interior_update_list, list)
2045                 pr_buf(out, "%p m %u w %u r %u j %llu\n",
2046                        as,
2047                        as->mode,
2048                        as->nodes_written,
2049                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
2050                        as->journal.seq);
2051         mutex_unlock(&c->btree_interior_update_lock);
2052 }
2053
2054 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
2055 {
2056         size_t ret = 0;
2057         struct list_head *i;
2058
2059         mutex_lock(&c->btree_interior_update_lock);
2060         list_for_each(i, &c->btree_interior_update_list)
2061                 ret++;
2062         mutex_unlock(&c->btree_interior_update_lock);
2063
2064         return ret;
2065 }
2066
2067 void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
2068 {
2069         struct btree_root *r;
2070         struct jset_entry *entry;
2071
2072         mutex_lock(&c->btree_root_lock);
2073
2074         vstruct_for_each(jset, entry)
2075                 if (entry->type == BCH_JSET_ENTRY_btree_root) {
2076                         r = &c->btree_roots[entry->btree_id];
2077                         r->level = entry->level;
2078                         r->alive = true;
2079                         bkey_copy(&r->key, &entry->start[0]);
2080                 }
2081
2082         mutex_unlock(&c->btree_root_lock);
2083 }
2084
2085 struct jset_entry *
2086 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2087                                     struct jset_entry *start,
2088                                     struct jset_entry *end)
2089 {
2090         struct jset_entry *entry;
2091         unsigned long have = 0;
2092         unsigned i;
2093
2094         for (entry = start; entry < end; entry = vstruct_next(entry))
2095                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2096                         __set_bit(entry->btree_id, &have);
2097
2098         mutex_lock(&c->btree_root_lock);
2099
2100         for (i = 0; i < BTREE_ID_NR; i++)
2101                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2102                         journal_entry_set(end,
2103                                           BCH_JSET_ENTRY_btree_root,
2104                                           i, c->btree_roots[i].level,
2105                                           &c->btree_roots[i].key,
2106                                           c->btree_roots[i].key.u64s);
2107                         end = vstruct_next(end);
2108                 }
2109
2110         mutex_unlock(&c->btree_root_lock);
2111
2112         return end;
2113 }
2114
2115 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2116 {
2117         if (c->btree_interior_update_worker)
2118                 destroy_workqueue(c->btree_interior_update_worker);
2119         mempool_exit(&c->btree_interior_update_pool);
2120 }
2121
2122 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2123 {
2124         mutex_init(&c->btree_reserve_cache_lock);
2125         INIT_LIST_HEAD(&c->btree_interior_update_list);
2126         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2127         mutex_init(&c->btree_interior_update_lock);
2128         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2129
2130         c->btree_interior_update_worker =
2131                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2132         if (!c->btree_interior_update_worker)
2133                 return -ENOMEM;
2134
2135         return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2136                                          sizeof(struct btree_update));
2137 }