]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
Update bcachefs sources to fd381c355c bcachefs: Fix a null ptr deref in fsck check_ex...
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "clock.h"
15 #include "error.h"
16 #include "extents.h"
17 #include "journal.h"
18 #include "journal_reclaim.h"
19 #include "keylist.h"
20 #include "recovery.h"
21 #include "replicas.h"
22 #include "super-io.h"
23
24 #include <linux/random.h>
25 #include <trace/events/bcachefs.h>
26
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28                                   struct btree_path *, struct btree *,
29                                   struct keylist *, unsigned);
30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
31
32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans,
33                                                 enum btree_id btree_id,
34                                                 unsigned level,
35                                                 struct bpos pos)
36 {
37         struct btree_path *path;
38
39         path = bch2_path_get(trans, btree_id, pos, level + 1, level,
40                              BTREE_ITER_NOPRESERVE|
41                              BTREE_ITER_INTENT, _RET_IP_);
42         path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_);
43         bch2_btree_path_downgrade(trans, path);
44         __bch2_btree_path_unlock(trans, path);
45         return path;
46 }
47
48 /* Debug code: */
49
50 /*
51  * Verify that child nodes correctly span parent node's range:
52  */
53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
54 {
55 #ifdef CONFIG_BCACHEFS_DEBUG
56         struct bpos next_node = b->data->min_key;
57         struct btree_node_iter iter;
58         struct bkey_s_c k;
59         struct bkey_s_c_btree_ptr_v2 bp;
60         struct bkey unpacked;
61         struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
62
63         BUG_ON(!b->c.level);
64
65         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
66                 return;
67
68         bch2_btree_node_iter_init_from_start(&iter, b);
69
70         while (1) {
71                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
72                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
73                         break;
74                 bp = bkey_s_c_to_btree_ptr_v2(k);
75
76                 if (!bpos_eq(next_node, bp.v->min_key)) {
77                         bch2_dump_btree_node(c, b);
78                         bch2_bpos_to_text(&buf1, next_node);
79                         bch2_bpos_to_text(&buf2, bp.v->min_key);
80                         panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
81                 }
82
83                 bch2_btree_node_iter_advance(&iter, b);
84
85                 if (bch2_btree_node_iter_end(&iter)) {
86                         if (!bpos_eq(k.k->p, b->key.k.p)) {
87                                 bch2_dump_btree_node(c, b);
88                                 bch2_bpos_to_text(&buf1, b->key.k.p);
89                                 bch2_bpos_to_text(&buf2, k.k->p);
90                                 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
91                         }
92                         break;
93                 }
94
95                 next_node = bpos_successor(k.k->p);
96         }
97 #endif
98 }
99
100 /* Calculate ideal packed bkey format for new btree nodes: */
101
102 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
103 {
104         struct bkey_packed *k;
105         struct bset_tree *t;
106         struct bkey uk;
107
108         for_each_bset(b, t)
109                 bset_tree_for_each_key(b, t, k)
110                         if (!bkey_deleted(k)) {
111                                 uk = bkey_unpack_key(b, k);
112                                 bch2_bkey_format_add_key(s, &uk);
113                         }
114 }
115
116 static struct bkey_format bch2_btree_calc_format(struct btree *b)
117 {
118         struct bkey_format_state s;
119
120         bch2_bkey_format_init(&s);
121         bch2_bkey_format_add_pos(&s, b->data->min_key);
122         bch2_bkey_format_add_pos(&s, b->data->max_key);
123         __bch2_btree_calc_format(&s, b);
124
125         return bch2_bkey_format_done(&s);
126 }
127
128 static size_t btree_node_u64s_with_format(struct btree *b,
129                                           struct bkey_format *new_f)
130 {
131         struct bkey_format *old_f = &b->format;
132
133         /* stupid integer promotion rules */
134         ssize_t delta =
135             (((int) new_f->key_u64s - old_f->key_u64s) *
136              (int) b->nr.packed_keys) +
137             (((int) new_f->key_u64s - BKEY_U64s) *
138              (int) b->nr.unpacked_keys);
139
140         BUG_ON(delta + b->nr.live_u64s < 0);
141
142         return b->nr.live_u64s + delta;
143 }
144
145 /**
146  * btree_node_format_fits - check if we could rewrite node with a new format
147  *
148  * This assumes all keys can pack with the new format -- it just checks if
149  * the re-packed keys would fit inside the node itself.
150  */
151 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
152                                  struct bkey_format *new_f)
153 {
154         size_t u64s = btree_node_u64s_with_format(b, new_f);
155
156         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
157 }
158
159 /* Btree node freeing/allocation: */
160
161 static void __btree_node_free(struct bch_fs *c, struct btree *b)
162 {
163         trace_and_count(c, btree_node_free, c, b);
164
165         BUG_ON(btree_node_write_blocked(b));
166         BUG_ON(btree_node_dirty(b));
167         BUG_ON(btree_node_need_write(b));
168         BUG_ON(b == btree_node_root(c, b));
169         BUG_ON(b->ob.nr);
170         BUG_ON(!list_empty(&b->write_blocked));
171         BUG_ON(b->will_make_reachable);
172
173         clear_btree_node_noevict(b);
174
175         mutex_lock(&c->btree_cache.lock);
176         list_move(&b->list, &c->btree_cache.freeable);
177         mutex_unlock(&c->btree_cache.lock);
178 }
179
180 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
181                                        struct btree_path *path,
182                                        struct btree *b)
183 {
184         struct bch_fs *c = trans->c;
185         unsigned level = b->c.level;
186
187         bch2_btree_node_lock_write_nofail(trans, path, &b->c);
188         bch2_btree_node_hash_remove(&c->btree_cache, b);
189         __btree_node_free(c, b);
190         six_unlock_write(&b->c.lock);
191         mark_btree_node_locked_noreset(path, level, SIX_LOCK_intent);
192
193         trans_for_each_path(trans, path)
194                 if (path->l[level].b == b) {
195                         btree_node_unlock(trans, path, level);
196                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
197                 }
198 }
199
200 static void bch2_btree_node_free_never_used(struct btree_update *as,
201                                             struct btree_trans *trans,
202                                             struct btree *b)
203 {
204         struct bch_fs *c = as->c;
205         struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
206         struct btree_path *path;
207         unsigned level = b->c.level;
208
209         BUG_ON(!list_empty(&b->write_blocked));
210         BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
211
212         b->will_make_reachable = 0;
213         closure_put(&as->cl);
214
215         clear_btree_node_will_make_reachable(b);
216         clear_btree_node_accessed(b);
217         clear_btree_node_dirty_acct(c, b);
218         clear_btree_node_need_write(b);
219
220         mutex_lock(&c->btree_cache.lock);
221         list_del_init(&b->list);
222         bch2_btree_node_hash_remove(&c->btree_cache, b);
223         mutex_unlock(&c->btree_cache.lock);
224
225         BUG_ON(p->nr >= ARRAY_SIZE(p->b));
226         p->b[p->nr++] = b;
227
228         six_unlock_intent(&b->c.lock);
229
230         trans_for_each_path(trans, path)
231                 if (path->l[level].b == b) {
232                         btree_node_unlock(trans, path, level);
233                         path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
234                 }
235 }
236
237 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
238                                              struct disk_reservation *res,
239                                              struct closure *cl,
240                                              bool interior_node,
241                                              unsigned flags)
242 {
243         struct bch_fs *c = trans->c;
244         struct write_point *wp;
245         struct btree *b;
246         BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
247         struct open_buckets ob = { .nr = 0 };
248         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
249         unsigned nr_reserve;
250         enum alloc_reserve alloc_reserve;
251         int ret;
252
253         if (flags & BTREE_INSERT_USE_RESERVE) {
254                 nr_reserve      = 0;
255                 alloc_reserve   = RESERVE_btree_movinggc;
256         } else {
257                 nr_reserve      = BTREE_NODE_RESERVE;
258                 alloc_reserve   = RESERVE_btree;
259         }
260
261         mutex_lock(&c->btree_reserve_cache_lock);
262         if (c->btree_reserve_cache_nr > nr_reserve) {
263                 struct btree_alloc *a =
264                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
265
266                 ob = a->ob;
267                 bkey_copy(&tmp.k, &a->k);
268                 mutex_unlock(&c->btree_reserve_cache_lock);
269                 goto mem_alloc;
270         }
271         mutex_unlock(&c->btree_reserve_cache_lock);
272
273 retry:
274         ret = bch2_alloc_sectors_start_trans(trans,
275                                       c->opts.metadata_target ?:
276                                       c->opts.foreground_target,
277                                       0,
278                                       writepoint_ptr(&c->btree_write_point),
279                                       &devs_have,
280                                       res->nr_replicas,
281                                       c->opts.metadata_replicas_required,
282                                       alloc_reserve, 0, cl, &wp);
283         if (unlikely(ret))
284                 return ERR_PTR(ret);
285
286         if (wp->sectors_free < btree_sectors(c)) {
287                 struct open_bucket *ob;
288                 unsigned i;
289
290                 open_bucket_for_each(c, &wp->ptrs, ob, i)
291                         if (ob->sectors_free < btree_sectors(c))
292                                 ob->sectors_free = 0;
293
294                 bch2_alloc_sectors_done(c, wp);
295                 goto retry;
296         }
297
298         bkey_btree_ptr_v2_init(&tmp.k);
299         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
300
301         bch2_open_bucket_get(c, wp, &ob);
302         bch2_alloc_sectors_done(c, wp);
303 mem_alloc:
304         b = bch2_btree_node_mem_alloc(trans, interior_node);
305         six_unlock_write(&b->c.lock);
306         six_unlock_intent(&b->c.lock);
307
308         /* we hold cannibalize_lock: */
309         BUG_ON(IS_ERR(b));
310         BUG_ON(b->ob.nr);
311
312         bkey_copy(&b->key, &tmp.k);
313         b->ob = ob;
314
315         return b;
316 }
317
318 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
319                                            struct btree_trans *trans,
320                                            unsigned level)
321 {
322         struct bch_fs *c = as->c;
323         struct btree *b;
324         struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
325         int ret;
326
327         BUG_ON(level >= BTREE_MAX_DEPTH);
328         BUG_ON(!p->nr);
329
330         b = p->b[--p->nr];
331
332         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
333         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
334
335         set_btree_node_accessed(b);
336         set_btree_node_dirty_acct(c, b);
337         set_btree_node_need_write(b);
338
339         bch2_bset_init_first(b, &b->data->keys);
340         b->c.level      = level;
341         b->c.btree_id   = as->btree_id;
342         b->version_ondisk = c->sb.version;
343
344         memset(&b->nr, 0, sizeof(b->nr));
345         b->data->magic = cpu_to_le64(bset_magic(c));
346         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
347         b->data->flags = 0;
348         SET_BTREE_NODE_ID(b->data, as->btree_id);
349         SET_BTREE_NODE_LEVEL(b->data, level);
350
351         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
352                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
353
354                 bp->v.mem_ptr           = 0;
355                 bp->v.seq               = b->data->keys.seq;
356                 bp->v.sectors_written   = 0;
357         }
358
359         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
360
361         bch2_btree_build_aux_trees(b);
362
363         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
364         BUG_ON(ret);
365
366         trace_and_count(c, btree_node_alloc, c, b);
367         bch2_increment_clock(c, btree_sectors(c), WRITE);
368         return b;
369 }
370
371 static void btree_set_min(struct btree *b, struct bpos pos)
372 {
373         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
374                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
375         b->data->min_key = pos;
376 }
377
378 static void btree_set_max(struct btree *b, struct bpos pos)
379 {
380         b->key.k.p = pos;
381         b->data->max_key = pos;
382 }
383
384 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
385                                                        struct btree_trans *trans,
386                                                        struct btree *b)
387 {
388         struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
389         struct bkey_format format = bch2_btree_calc_format(b);
390
391         /*
392          * The keys might expand with the new format - if they wouldn't fit in
393          * the btree node anymore, use the old format for now:
394          */
395         if (!bch2_btree_node_format_fits(as->c, b, &format))
396                 format = b->format;
397
398         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
399
400         btree_set_min(n, b->data->min_key);
401         btree_set_max(n, b->data->max_key);
402
403         n->data->format         = format;
404         btree_node_set_format(n, format);
405
406         bch2_btree_sort_into(as->c, n, b);
407
408         btree_node_reset_sib_u64s(n);
409         return n;
410 }
411
412 static struct btree *__btree_root_alloc(struct btree_update *as,
413                                 struct btree_trans *trans, unsigned level)
414 {
415         struct btree *b = bch2_btree_node_alloc(as, trans, level);
416
417         btree_set_min(b, POS_MIN);
418         btree_set_max(b, SPOS_MAX);
419         b->data->format = bch2_btree_calc_format(b);
420
421         btree_node_set_format(b, b->data->format);
422         bch2_btree_build_aux_trees(b);
423
424         return b;
425 }
426
427 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
428 {
429         struct bch_fs *c = as->c;
430         struct prealloc_nodes *p;
431
432         for (p = as->prealloc_nodes;
433              p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
434              p++) {
435                 while (p->nr) {
436                         struct btree *b = p->b[--p->nr];
437
438                         mutex_lock(&c->btree_reserve_cache_lock);
439
440                         if (c->btree_reserve_cache_nr <
441                             ARRAY_SIZE(c->btree_reserve_cache)) {
442                                 struct btree_alloc *a =
443                                         &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
444
445                                 a->ob = b->ob;
446                                 b->ob.nr = 0;
447                                 bkey_copy(&a->k, &b->key);
448                         } else {
449                                 bch2_open_buckets_put(c, &b->ob);
450                         }
451
452                         mutex_unlock(&c->btree_reserve_cache_lock);
453
454                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
455                         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
456                         __btree_node_free(c, b);
457                         six_unlock_write(&b->c.lock);
458                         six_unlock_intent(&b->c.lock);
459                 }
460         }
461 }
462
463 static int bch2_btree_reserve_get(struct btree_trans *trans,
464                                   struct btree_update *as,
465                                   unsigned nr_nodes[2],
466                                   unsigned flags,
467                                   struct closure *cl)
468 {
469         struct bch_fs *c = as->c;
470         struct btree *b;
471         unsigned interior;
472         int ret = 0;
473
474         BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
475
476         /*
477          * Protects reaping from the btree node cache and using the btree node
478          * open bucket reserve:
479          *
480          * BTREE_INSERT_NOWAIT only applies to btree node allocation, not
481          * blocking on this lock:
482          */
483         ret = bch2_btree_cache_cannibalize_lock(c, cl);
484         if (ret)
485                 return ret;
486
487         for (interior = 0; interior < 2; interior++) {
488                 struct prealloc_nodes *p = as->prealloc_nodes + interior;
489
490                 while (p->nr < nr_nodes[interior]) {
491                         b = __bch2_btree_node_alloc(trans, &as->disk_res,
492                                         flags & BTREE_INSERT_NOWAIT ? NULL : cl,
493                                         interior, flags);
494                         if (IS_ERR(b)) {
495                                 ret = PTR_ERR(b);
496                                 goto err;
497                         }
498
499                         p->b[p->nr++] = b;
500                 }
501         }
502 err:
503         bch2_btree_cache_cannibalize_unlock(c);
504         return ret;
505 }
506
507 /* Asynchronous interior node update machinery */
508
509 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
510 {
511         struct bch_fs *c = as->c;
512
513         if (as->took_gc_lock)
514                 up_read(&c->gc_lock);
515         as->took_gc_lock = false;
516
517         bch2_journal_preres_put(&c->journal, &as->journal_preres);
518
519         bch2_journal_pin_drop(&c->journal, &as->journal);
520         bch2_journal_pin_flush(&c->journal, &as->journal);
521         bch2_disk_reservation_put(c, &as->disk_res);
522         bch2_btree_reserve_put(as, trans);
523
524         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
525                                as->start_time);
526
527         mutex_lock(&c->btree_interior_update_lock);
528         list_del(&as->unwritten_list);
529         list_del(&as->list);
530
531         closure_debug_destroy(&as->cl);
532         mempool_free(as, &c->btree_interior_update_pool);
533
534         /*
535          * Have to do the wakeup with btree_interior_update_lock still held,
536          * since being on btree_interior_update_list is our ref on @c:
537          */
538         closure_wake_up(&c->btree_interior_update_wait);
539
540         mutex_unlock(&c->btree_interior_update_lock);
541 }
542
543 static void btree_update_add_key(struct btree_update *as,
544                                  struct keylist *keys, struct btree *b)
545 {
546         struct bkey_i *k = &b->key;
547
548         BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
549                ARRAY_SIZE(as->_old_keys));
550
551         bkey_copy(keys->top, k);
552         bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
553
554         bch2_keylist_push(keys);
555 }
556
557 /*
558  * The transactional part of an interior btree node update, where we journal the
559  * update we did to the interior node and update alloc info:
560  */
561 static int btree_update_nodes_written_trans(struct btree_trans *trans,
562                                             struct btree_update *as)
563 {
564         struct bkey_i *k;
565         int ret;
566
567         ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s);
568         if (ret)
569                 return ret;
570
571         memcpy(&darray_top(trans->extra_journal_entries),
572                as->journal_entries,
573                as->journal_u64s * sizeof(u64));
574         trans->extra_journal_entries.nr += as->journal_u64s;
575
576         trans->journal_pin = &as->journal;
577
578         for_each_keylist_key(&as->old_keys, k) {
579                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
580
581                 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0);
582                 if (ret)
583                         return ret;
584         }
585
586         for_each_keylist_key(&as->new_keys, k) {
587                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
588
589                 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0);
590                 if (ret)
591                         return ret;
592         }
593
594         return 0;
595 }
596
597 static void btree_update_nodes_written(struct btree_update *as)
598 {
599         struct bch_fs *c = as->c;
600         struct btree *b;
601         struct btree_trans trans;
602         u64 journal_seq = 0;
603         unsigned i;
604         int ret;
605
606         bch2_trans_init(&trans, c, 0, 512);
607         /*
608          * If we're already in an error state, it might be because a btree node
609          * was never written, and we might be trying to free that same btree
610          * node here, but it won't have been marked as allocated and we'll see
611          * spurious disk usage inconsistencies in the transactional part below
612          * if we don't skip it:
613          */
614         ret = bch2_journal_error(&c->journal);
615         if (ret)
616                 goto err;
617
618         /*
619          * Wait for any in flight writes to finish before we free the old nodes
620          * on disk:
621          */
622         for (i = 0; i < as->nr_old_nodes; i++) {
623                 __le64 seq;
624
625                 b = as->old_nodes[i];
626
627                 btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_read);
628                 seq = b->data ? b->data->keys.seq : 0;
629                 six_unlock_read(&b->c.lock);
630
631                 if (seq == as->old_nodes_seq[i])
632                         wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
633                                        TASK_UNINTERRUPTIBLE);
634         }
635
636         /*
637          * We did an update to a parent node where the pointers we added pointed
638          * to child nodes that weren't written yet: now, the child nodes have
639          * been written so we can write out the update to the interior node.
640          */
641
642         /*
643          * We can't call into journal reclaim here: we'd block on the journal
644          * reclaim lock, but we may need to release the open buckets we have
645          * pinned in order for other btree updates to make forward progress, and
646          * journal reclaim does btree updates when flushing bkey_cached entries,
647          * which may require allocations as well.
648          */
649         ret = commit_do(&trans, &as->disk_res, &journal_seq,
650                         BTREE_INSERT_NOFAIL|
651                         BTREE_INSERT_NOCHECK_RW|
652                         BTREE_INSERT_USE_RESERVE|
653                         BTREE_INSERT_JOURNAL_RECLAIM|
654                         JOURNAL_WATERMARK_reserved,
655                         btree_update_nodes_written_trans(&trans, as));
656         bch2_trans_unlock(&trans);
657
658         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
659                              "%s(): error %s", __func__, bch2_err_str(ret));
660 err:
661         if (as->b) {
662                 struct btree_path *path;
663
664                 b = as->b;
665                 path = get_unlocked_mut_path(&trans, as->btree_id, b->c.level, b->key.k.p);
666                 /*
667                  * @b is the node we did the final insert into:
668                  *
669                  * On failure to get a journal reservation, we still have to
670                  * unblock the write and allow most of the write path to happen
671                  * so that shutdown works, but the i->journal_seq mechanism
672                  * won't work to prevent the btree write from being visible (we
673                  * didn't get a journal sequence number) - instead
674                  * __bch2_btree_node_write() doesn't do the actual write if
675                  * we're in journal error state:
676                  */
677
678                 /*
679                  * Ensure transaction is unlocked before using
680                  * btree_node_lock_nopath() (the use of which is always suspect,
681                  * we need to work on removing this in the future)
682                  *
683                  * It should be, but get_unlocked_mut_path() -> bch2_path_get()
684                  * calls bch2_path_upgrade(), before we call path_make_mut(), so
685                  * we may rarely end up with a locked path besides the one we
686                  * have here:
687                  */
688                 bch2_trans_unlock(&trans);
689                 btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_intent);
690                 mark_btree_node_locked(&trans, path, b->c.level, SIX_LOCK_intent);
691                 path->l[b->c.level].lock_seq = b->c.lock.state.seq;
692                 path->l[b->c.level].b = b;
693
694                 bch2_btree_node_lock_write_nofail(&trans, path, &b->c);
695
696                 mutex_lock(&c->btree_interior_update_lock);
697
698                 list_del(&as->write_blocked_list);
699                 if (list_empty(&b->write_blocked))
700                         clear_btree_node_write_blocked(b);
701
702                 /*
703                  * Node might have been freed, recheck under
704                  * btree_interior_update_lock:
705                  */
706                 if (as->b == b) {
707                         struct bset *i = btree_bset_last(b);
708
709                         BUG_ON(!b->c.level);
710                         BUG_ON(!btree_node_dirty(b));
711
712                         if (!ret) {
713                                 i->journal_seq = cpu_to_le64(
714                                                              max(journal_seq,
715                                                                  le64_to_cpu(i->journal_seq)));
716
717                                 bch2_btree_add_journal_pin(c, b, journal_seq);
718                         } else {
719                                 /*
720                                  * If we didn't get a journal sequence number we
721                                  * can't write this btree node, because recovery
722                                  * won't know to ignore this write:
723                                  */
724                                 set_btree_node_never_write(b);
725                         }
726                 }
727
728                 mutex_unlock(&c->btree_interior_update_lock);
729
730                 mark_btree_node_locked_noreset(path, b->c.level, SIX_LOCK_intent);
731                 six_unlock_write(&b->c.lock);
732
733                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
734                 btree_node_unlock(&trans, path, b->c.level);
735                 bch2_path_put(&trans, path, true);
736         }
737
738         bch2_journal_pin_drop(&c->journal, &as->journal);
739
740         bch2_journal_preres_put(&c->journal, &as->journal_preres);
741
742         mutex_lock(&c->btree_interior_update_lock);
743         for (i = 0; i < as->nr_new_nodes; i++) {
744                 b = as->new_nodes[i];
745
746                 BUG_ON(b->will_make_reachable != (unsigned long) as);
747                 b->will_make_reachable = 0;
748                 clear_btree_node_will_make_reachable(b);
749         }
750         mutex_unlock(&c->btree_interior_update_lock);
751
752         for (i = 0; i < as->nr_new_nodes; i++) {
753                 b = as->new_nodes[i];
754
755                 btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_read);
756                 btree_node_write_if_need(c, b, SIX_LOCK_read);
757                 six_unlock_read(&b->c.lock);
758         }
759
760         for (i = 0; i < as->nr_open_buckets; i++)
761                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
762
763         bch2_btree_update_free(as, &trans);
764         bch2_trans_exit(&trans);
765 }
766
767 static void btree_interior_update_work(struct work_struct *work)
768 {
769         struct bch_fs *c =
770                 container_of(work, struct bch_fs, btree_interior_update_work);
771         struct btree_update *as;
772
773         while (1) {
774                 mutex_lock(&c->btree_interior_update_lock);
775                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
776                                               struct btree_update, unwritten_list);
777                 if (as && !as->nodes_written)
778                         as = NULL;
779                 mutex_unlock(&c->btree_interior_update_lock);
780
781                 if (!as)
782                         break;
783
784                 btree_update_nodes_written(as);
785         }
786 }
787
788 static void btree_update_set_nodes_written(struct closure *cl)
789 {
790         struct btree_update *as = container_of(cl, struct btree_update, cl);
791         struct bch_fs *c = as->c;
792
793         mutex_lock(&c->btree_interior_update_lock);
794         as->nodes_written = true;
795         mutex_unlock(&c->btree_interior_update_lock);
796
797         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
798 }
799
800 /*
801  * We're updating @b with pointers to nodes that haven't finished writing yet:
802  * block @b from being written until @as completes
803  */
804 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
805 {
806         struct bch_fs *c = as->c;
807
808         mutex_lock(&c->btree_interior_update_lock);
809         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
810
811         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
812         BUG_ON(!btree_node_dirty(b));
813         BUG_ON(!b->c.level);
814
815         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
816         as->b           = b;
817
818         set_btree_node_write_blocked(b);
819         list_add(&as->write_blocked_list, &b->write_blocked);
820
821         mutex_unlock(&c->btree_interior_update_lock);
822 }
823
824 static void btree_update_reparent(struct btree_update *as,
825                                   struct btree_update *child)
826 {
827         struct bch_fs *c = as->c;
828
829         lockdep_assert_held(&c->btree_interior_update_lock);
830
831         child->b = NULL;
832         child->mode = BTREE_INTERIOR_UPDATING_AS;
833
834         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
835 }
836
837 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
838 {
839         struct bkey_i *insert = &b->key;
840         struct bch_fs *c = as->c;
841
842         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
843
844         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
845                ARRAY_SIZE(as->journal_entries));
846
847         as->journal_u64s +=
848                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
849                                   BCH_JSET_ENTRY_btree_root,
850                                   b->c.btree_id, b->c.level,
851                                   insert, insert->k.u64s);
852
853         mutex_lock(&c->btree_interior_update_lock);
854         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
855
856         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
857         mutex_unlock(&c->btree_interior_update_lock);
858 }
859
860 /*
861  * bch2_btree_update_add_new_node:
862  *
863  * This causes @as to wait on @b to be written, before it gets to
864  * bch2_btree_update_nodes_written
865  *
866  * Additionally, it sets b->will_make_reachable to prevent any additional writes
867  * to @b from happening besides the first until @b is reachable on disk
868  *
869  * And it adds @b to the list of @as's new nodes, so that we can update sector
870  * counts in bch2_btree_update_nodes_written:
871  */
872 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
873 {
874         struct bch_fs *c = as->c;
875
876         closure_get(&as->cl);
877
878         mutex_lock(&c->btree_interior_update_lock);
879         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
880         BUG_ON(b->will_make_reachable);
881
882         as->new_nodes[as->nr_new_nodes++] = b;
883         b->will_make_reachable = 1UL|(unsigned long) as;
884         set_btree_node_will_make_reachable(b);
885
886         mutex_unlock(&c->btree_interior_update_lock);
887
888         btree_update_add_key(as, &as->new_keys, b);
889
890         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
891                 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
892                 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
893
894                 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
895                         cpu_to_le16(sectors);
896         }
897 }
898
899 /*
900  * returns true if @b was a new node
901  */
902 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
903 {
904         struct btree_update *as;
905         unsigned long v;
906         unsigned i;
907
908         mutex_lock(&c->btree_interior_update_lock);
909         /*
910          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
911          * dropped when it gets written by bch2_btree_complete_write - the
912          * xchg() is for synchronization with bch2_btree_complete_write:
913          */
914         v = xchg(&b->will_make_reachable, 0);
915         clear_btree_node_will_make_reachable(b);
916         as = (struct btree_update *) (v & ~1UL);
917
918         if (!as) {
919                 mutex_unlock(&c->btree_interior_update_lock);
920                 return;
921         }
922
923         for (i = 0; i < as->nr_new_nodes; i++)
924                 if (as->new_nodes[i] == b)
925                         goto found;
926
927         BUG();
928 found:
929         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
930         mutex_unlock(&c->btree_interior_update_lock);
931
932         if (v & 1)
933                 closure_put(&as->cl);
934 }
935
936 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
937 {
938         while (b->ob.nr)
939                 as->open_buckets[as->nr_open_buckets++] =
940                         b->ob.v[--b->ob.nr];
941 }
942
943 /*
944  * @b is being split/rewritten: it may have pointers to not-yet-written btree
945  * nodes and thus outstanding btree_updates - redirect @b's
946  * btree_updates to point to this btree_update:
947  */
948 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
949                                                       struct btree *b)
950 {
951         struct bch_fs *c = as->c;
952         struct btree_update *p, *n;
953         struct btree_write *w;
954
955         set_btree_node_dying(b);
956
957         if (btree_node_fake(b))
958                 return;
959
960         mutex_lock(&c->btree_interior_update_lock);
961
962         /*
963          * Does this node have any btree_update operations preventing
964          * it from being written?
965          *
966          * If so, redirect them to point to this btree_update: we can
967          * write out our new nodes, but we won't make them visible until those
968          * operations complete
969          */
970         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
971                 list_del_init(&p->write_blocked_list);
972                 btree_update_reparent(as, p);
973
974                 /*
975                  * for flush_held_btree_writes() waiting on updates to flush or
976                  * nodes to be writeable:
977                  */
978                 closure_wake_up(&c->btree_interior_update_wait);
979         }
980
981         clear_btree_node_dirty_acct(c, b);
982         clear_btree_node_need_write(b);
983         clear_btree_node_write_blocked(b);
984
985         /*
986          * Does this node have unwritten data that has a pin on the journal?
987          *
988          * If so, transfer that pin to the btree_update operation -
989          * note that if we're freeing multiple nodes, we only need to keep the
990          * oldest pin of any of the nodes we're freeing. We'll release the pin
991          * when the new nodes are persistent and reachable on disk:
992          */
993         w = btree_current_write(b);
994         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
995         bch2_journal_pin_drop(&c->journal, &w->journal);
996
997         w = btree_prev_write(b);
998         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
999         bch2_journal_pin_drop(&c->journal, &w->journal);
1000
1001         mutex_unlock(&c->btree_interior_update_lock);
1002
1003         /*
1004          * Is this a node that isn't reachable on disk yet?
1005          *
1006          * Nodes that aren't reachable yet have writes blocked until they're
1007          * reachable - now that we've cancelled any pending writes and moved
1008          * things waiting on that write to wait on this update, we can drop this
1009          * node from the list of nodes that the other update is making
1010          * reachable, prior to freeing it:
1011          */
1012         btree_update_drop_new_node(c, b);
1013
1014         btree_update_add_key(as, &as->old_keys, b);
1015
1016         as->old_nodes[as->nr_old_nodes] = b;
1017         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1018         as->nr_old_nodes++;
1019 }
1020
1021 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1022 {
1023         struct bch_fs *c = as->c;
1024         u64 start_time = as->start_time;
1025
1026         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1027
1028         if (as->took_gc_lock)
1029                 up_read(&as->c->gc_lock);
1030         as->took_gc_lock = false;
1031
1032         bch2_btree_reserve_put(as, trans);
1033
1034         continue_at(&as->cl, btree_update_set_nodes_written,
1035                     as->c->btree_interior_update_worker);
1036
1037         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1038                                start_time);
1039 }
1040
1041 static struct btree_update *
1042 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1043                         unsigned level, bool split, unsigned flags)
1044 {
1045         struct bch_fs *c = trans->c;
1046         struct btree_update *as;
1047         u64 start_time = local_clock();
1048         int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
1049                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1050         unsigned nr_nodes[2] = { 0, 0 };
1051         unsigned update_level = level;
1052         int journal_flags = flags & JOURNAL_WATERMARK_MASK;
1053         int ret = 0;
1054         u32 restart_count = trans->restart_count;
1055
1056         BUG_ON(!path->should_be_locked);
1057
1058         if (flags & BTREE_INSERT_JOURNAL_RECLAIM)
1059                 journal_flags |= JOURNAL_RES_GET_NONBLOCK;
1060
1061         while (1) {
1062                 nr_nodes[!!update_level] += 1 + split;
1063                 update_level++;
1064
1065                 ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1066                 if (ret)
1067                         return ERR_PTR(ret);
1068
1069                 if (!btree_path_node(path, update_level)) {
1070                         /* Allocating new root? */
1071                         nr_nodes[1] += split;
1072                         update_level = BTREE_MAX_DEPTH;
1073                         break;
1074                 }
1075
1076                 if (bch2_btree_node_insert_fits(c, path->l[update_level].b,
1077                                         BKEY_BTREE_PTR_U64s_MAX * (1 + split)))
1078                         break;
1079
1080                 split = true;
1081         }
1082
1083         if (flags & BTREE_INSERT_GC_LOCK_HELD)
1084                 lockdep_assert_held(&c->gc_lock);
1085         else if (!down_read_trylock(&c->gc_lock)) {
1086                 bch2_trans_unlock(trans);
1087                 down_read(&c->gc_lock);
1088                 ret = bch2_trans_relock(trans);
1089                 if (ret) {
1090                         up_read(&c->gc_lock);
1091                         return ERR_PTR(ret);
1092                 }
1093         }
1094
1095         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
1096         memset(as, 0, sizeof(*as));
1097         closure_init(&as->cl, NULL);
1098         as->c           = c;
1099         as->start_time  = start_time;
1100         as->mode        = BTREE_INTERIOR_NO_UPDATE;
1101         as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
1102         as->btree_id    = path->btree_id;
1103         as->update_level = update_level;
1104         INIT_LIST_HEAD(&as->list);
1105         INIT_LIST_HEAD(&as->unwritten_list);
1106         INIT_LIST_HEAD(&as->write_blocked_list);
1107         bch2_keylist_init(&as->old_keys, as->_old_keys);
1108         bch2_keylist_init(&as->new_keys, as->_new_keys);
1109         bch2_keylist_init(&as->parent_keys, as->inline_keys);
1110
1111         mutex_lock(&c->btree_interior_update_lock);
1112         list_add_tail(&as->list, &c->btree_interior_update_list);
1113         mutex_unlock(&c->btree_interior_update_lock);
1114
1115         /*
1116          * We don't want to allocate if we're in an error state, that can cause
1117          * deadlock on emergency shutdown due to open buckets getting stuck in
1118          * the btree_reserve_cache after allocator shutdown has cleared it out.
1119          * This check needs to come after adding us to the btree_interior_update
1120          * list but before calling bch2_btree_reserve_get, to synchronize with
1121          * __bch2_fs_read_only().
1122          */
1123         ret = bch2_journal_error(&c->journal);
1124         if (ret)
1125                 goto err;
1126
1127         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1128                                       BTREE_UPDATE_JOURNAL_RES,
1129                                       journal_flags|JOURNAL_RES_GET_NONBLOCK);
1130         if (ret) {
1131                 bch2_trans_unlock(trans);
1132
1133                 if (flags & BTREE_INSERT_JOURNAL_RECLAIM) {
1134                         ret = -BCH_ERR_journal_reclaim_would_deadlock;
1135                         goto err;
1136                 }
1137
1138                 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1139                                               BTREE_UPDATE_JOURNAL_RES,
1140                                               journal_flags);
1141                 if (ret) {
1142                         trace_and_count(c, trans_restart_journal_preres_get, trans, _RET_IP_, journal_flags);
1143                         ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_journal_preres_get);
1144                         goto err;
1145                 }
1146
1147                 ret = bch2_trans_relock(trans);
1148                 if (ret)
1149                         goto err;
1150         }
1151
1152         ret = bch2_disk_reservation_get(c, &as->disk_res,
1153                         (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1154                         c->opts.metadata_replicas,
1155                         disk_res_flags);
1156         if (ret)
1157                 goto err;
1158
1159         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1160         if (bch2_err_matches(ret, ENOSPC) ||
1161             bch2_err_matches(ret, ENOMEM)) {
1162                 struct closure cl;
1163
1164                 closure_init_stack(&cl);
1165
1166                 do {
1167                         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1168
1169                         bch2_trans_unlock(trans);
1170                         closure_sync(&cl);
1171                 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1172         }
1173
1174         if (ret) {
1175                 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1176                                 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1177                 goto err;
1178         }
1179
1180         ret = bch2_trans_relock(trans);
1181         if (ret)
1182                 goto err;
1183
1184         bch2_trans_verify_not_restarted(trans, restart_count);
1185         return as;
1186 err:
1187         bch2_btree_update_free(as, trans);
1188         return ERR_PTR(ret);
1189 }
1190
1191 /* Btree root updates: */
1192
1193 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1194 {
1195         /* Root nodes cannot be reaped */
1196         mutex_lock(&c->btree_cache.lock);
1197         list_del_init(&b->list);
1198         mutex_unlock(&c->btree_cache.lock);
1199
1200         mutex_lock(&c->btree_root_lock);
1201         BUG_ON(btree_node_root(c, b) &&
1202                (b->c.level < btree_node_root(c, b)->c.level ||
1203                 !btree_node_dying(btree_node_root(c, b))));
1204
1205         btree_node_root(c, b) = b;
1206         mutex_unlock(&c->btree_root_lock);
1207
1208         bch2_recalc_btree_reserve(c);
1209 }
1210
1211 /**
1212  * bch_btree_set_root - update the root in memory and on disk
1213  *
1214  * To ensure forward progress, the current task must not be holding any
1215  * btree node write locks. However, you must hold an intent lock on the
1216  * old root.
1217  *
1218  * Note: This allocates a journal entry but doesn't add any keys to
1219  * it.  All the btree roots are part of every journal write, so there
1220  * is nothing new to be done.  This just guarantees that there is a
1221  * journal write.
1222  */
1223 static void bch2_btree_set_root(struct btree_update *as,
1224                                 struct btree_trans *trans,
1225                                 struct btree_path *path,
1226                                 struct btree *b)
1227 {
1228         struct bch_fs *c = as->c;
1229         struct btree *old;
1230
1231         trace_and_count(c, btree_node_set_root, c, b);
1232
1233         old = btree_node_root(c, b);
1234
1235         /*
1236          * Ensure no one is using the old root while we switch to the
1237          * new root:
1238          */
1239         bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1240
1241         bch2_btree_set_root_inmem(c, b);
1242
1243         btree_update_updated_root(as, b);
1244
1245         /*
1246          * Unlock old root after new root is visible:
1247          *
1248          * The new root isn't persistent, but that's ok: we still have
1249          * an intent lock on the new root, and any updates that would
1250          * depend on the new root would have to update the new root.
1251          */
1252         bch2_btree_node_unlock_write(trans, path, old);
1253 }
1254
1255 /* Interior node updates: */
1256
1257 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1258                                         struct btree_trans *trans,
1259                                         struct btree_path *path,
1260                                         struct btree *b,
1261                                         struct btree_node_iter *node_iter,
1262                                         struct bkey_i *insert)
1263 {
1264         struct bch_fs *c = as->c;
1265         struct bkey_packed *k;
1266         struct printbuf buf = PRINTBUF;
1267         unsigned long old, new, v;
1268
1269         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1270                !btree_ptr_sectors_written(insert));
1271
1272         if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1273                 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1274
1275         if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1276                               btree_node_type(b), WRITE, &buf) ?:
1277             bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf)) {
1278                 printbuf_reset(&buf);
1279                 prt_printf(&buf, "inserting invalid bkey\n  ");
1280                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1281                 prt_printf(&buf, "\n  ");
1282                 bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1283                                   btree_node_type(b), WRITE, &buf);
1284                 bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf);
1285
1286                 bch2_fs_inconsistent(c, "%s", buf.buf);
1287                 dump_stack();
1288         }
1289
1290         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1291                ARRAY_SIZE(as->journal_entries));
1292
1293         as->journal_u64s +=
1294                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1295                                   BCH_JSET_ENTRY_btree_keys,
1296                                   b->c.btree_id, b->c.level,
1297                                   insert, insert->k.u64s);
1298
1299         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1300                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1301                 bch2_btree_node_iter_advance(node_iter, b);
1302
1303         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1304         set_btree_node_dirty_acct(c, b);
1305
1306         v = READ_ONCE(b->flags);
1307         do {
1308                 old = new = v;
1309
1310                 new &= ~BTREE_WRITE_TYPE_MASK;
1311                 new |= BTREE_WRITE_interior;
1312                 new |= 1 << BTREE_NODE_need_write;
1313         } while ((v = cmpxchg(&b->flags, old, new)) != old);
1314
1315         printbuf_exit(&buf);
1316 }
1317
1318 static void
1319 __bch2_btree_insert_keys_interior(struct btree_update *as,
1320                                   struct btree_trans *trans,
1321                                   struct btree_path *path,
1322                                   struct btree *b,
1323                                   struct btree_node_iter node_iter,
1324                                   struct keylist *keys)
1325 {
1326         struct bkey_i *insert = bch2_keylist_front(keys);
1327         struct bkey_packed *k;
1328
1329         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1330
1331         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1332                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1333                 ;
1334
1335         while (!bch2_keylist_empty(keys)) {
1336                 struct bkey_i *k = bch2_keylist_front(keys);
1337
1338                 if (bpos_gt(k->k.p, b->key.k.p))
1339                         break;
1340
1341                 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, k);
1342                 bch2_keylist_pop_front(keys);
1343         }
1344 }
1345
1346 /*
1347  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1348  * node)
1349  */
1350 static void __btree_split_node(struct btree_update *as,
1351                                struct btree_trans *trans,
1352                                struct btree *b,
1353                                struct btree *n[2])
1354 {
1355         struct bkey_packed *k;
1356         struct bpos n1_pos = POS_MIN;
1357         struct btree_node_iter iter;
1358         struct bset *bsets[2];
1359         struct bkey_format_state format[2];
1360         struct bkey_packed *out[2];
1361         struct bkey uk;
1362         unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1363         int i;
1364
1365         for (i = 0; i < 2; i++) {
1366                 BUG_ON(n[i]->nsets != 1);
1367
1368                 bsets[i] = btree_bset_first(n[i]);
1369                 out[i] = bsets[i]->start;
1370
1371                 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1372                 bch2_bkey_format_init(&format[i]);
1373         }
1374
1375         u64s = 0;
1376         for_each_btree_node_key(b, k, &iter) {
1377                 if (bkey_deleted(k))
1378                         continue;
1379
1380                 i = u64s >= n1_u64s;
1381                 u64s += k->u64s;
1382                 uk = bkey_unpack_key(b, k);
1383                 if (!i)
1384                         n1_pos = uk.p;
1385                 bch2_bkey_format_add_key(&format[i], &uk);
1386         }
1387
1388         btree_set_min(n[0], b->data->min_key);
1389         btree_set_max(n[0], n1_pos);
1390         btree_set_min(n[1], bpos_successor(n1_pos));
1391         btree_set_max(n[1], b->data->max_key);
1392
1393         for (i = 0; i < 2; i++) {
1394                 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1395                 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1396
1397                 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1398                 btree_node_set_format(n[i], n[i]->data->format);
1399         }
1400
1401         u64s = 0;
1402         for_each_btree_node_key(b, k, &iter) {
1403                 if (bkey_deleted(k))
1404                         continue;
1405
1406                 i = u64s >= n1_u64s;
1407                 u64s += k->u64s;
1408
1409                 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1410                                         ? &b->format: &bch2_bkey_format_current, k))
1411                         out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1412                 else
1413                         bch2_bkey_unpack(b, (void *) out[i], k);
1414
1415                 out[i]->needs_whiteout = false;
1416
1417                 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1418                 out[i] = bkey_p_next(out[i]);
1419         }
1420
1421         for (i = 0; i < 2; i++) {
1422                 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1423
1424                 BUG_ON(!bsets[i]->u64s);
1425
1426                 set_btree_bset_end(n[i], n[i]->set);
1427
1428                 btree_node_reset_sib_u64s(n[i]);
1429
1430                 bch2_verify_btree_nr_keys(n[i]);
1431
1432                 if (b->c.level)
1433                         btree_node_interior_verify(as->c, n[i]);
1434         }
1435 }
1436
1437 /*
1438  * For updates to interior nodes, we've got to do the insert before we split
1439  * because the stuff we're inserting has to be inserted atomically. Post split,
1440  * the keys might have to go in different nodes and the split would no longer be
1441  * atomic.
1442  *
1443  * Worse, if the insert is from btree node coalescing, if we do the insert after
1444  * we do the split (and pick the pivot) - the pivot we pick might be between
1445  * nodes that were coalesced, and thus in the middle of a child node post
1446  * coalescing:
1447  */
1448 static void btree_split_insert_keys(struct btree_update *as,
1449                                     struct btree_trans *trans,
1450                                     struct btree_path *path,
1451                                     struct btree *b,
1452                                     struct keylist *keys)
1453 {
1454         if (!bch2_keylist_empty(keys) &&
1455             bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1456                 struct btree_node_iter node_iter;
1457
1458                 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1459
1460                 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1461
1462                 btree_node_interior_verify(as->c, b);
1463         }
1464 }
1465
1466 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1467                        struct btree_path *path, struct btree *b,
1468                        struct keylist *keys, unsigned flags)
1469 {
1470         struct bch_fs *c = as->c;
1471         struct btree *parent = btree_node_parent(path, b);
1472         struct btree *n1, *n2 = NULL, *n3 = NULL;
1473         struct btree_path *path1 = NULL, *path2 = NULL;
1474         u64 start_time = local_clock();
1475         int ret = 0;
1476
1477         BUG_ON(!parent && (b != btree_node_root(c, b)));
1478         BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1));
1479
1480         bch2_btree_interior_update_will_free_node(as, b);
1481
1482         if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1483                 struct btree *n[2];
1484
1485                 trace_and_count(c, btree_node_split, c, b);
1486
1487                 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1488                 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1489
1490                 __btree_split_node(as, trans, b, n);
1491
1492                 if (keys) {
1493                         btree_split_insert_keys(as, trans, path, n1, keys);
1494                         btree_split_insert_keys(as, trans, path, n2, keys);
1495                         BUG_ON(!bch2_keylist_empty(keys));
1496                 }
1497
1498                 bch2_btree_build_aux_trees(n2);
1499                 bch2_btree_build_aux_trees(n1);
1500
1501                 bch2_btree_update_add_new_node(as, n1);
1502                 bch2_btree_update_add_new_node(as, n2);
1503                 six_unlock_write(&n2->c.lock);
1504                 six_unlock_write(&n1->c.lock);
1505
1506                 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1507                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1508                 mark_btree_node_locked(trans, path1, n1->c.level, SIX_LOCK_intent);
1509                 bch2_btree_path_level_init(trans, path1, n1);
1510
1511                 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p);
1512                 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1513                 mark_btree_node_locked(trans, path2, n2->c.level, SIX_LOCK_intent);
1514                 bch2_btree_path_level_init(trans, path2, n2);
1515
1516                 /*
1517                  * Note that on recursive parent_keys == keys, so we
1518                  * can't start adding new keys to parent_keys before emptying it
1519                  * out (which we did with btree_split_insert_keys() above)
1520                  */
1521                 bch2_keylist_add(&as->parent_keys, &n1->key);
1522                 bch2_keylist_add(&as->parent_keys, &n2->key);
1523
1524                 if (!parent) {
1525                         /* Depth increases, make a new root */
1526                         n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1527
1528                         bch2_btree_update_add_new_node(as, n3);
1529                         six_unlock_write(&n3->c.lock);
1530
1531                         path2->locks_want++;
1532                         BUG_ON(btree_node_locked(path2, n3->c.level));
1533                         six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1534                         mark_btree_node_locked(trans, path2, n3->c.level, SIX_LOCK_intent);
1535                         bch2_btree_path_level_init(trans, path2, n3);
1536
1537                         n3->sib_u64s[0] = U16_MAX;
1538                         n3->sib_u64s[1] = U16_MAX;
1539
1540                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1541                 }
1542         } else {
1543                 trace_and_count(c, btree_node_compact, c, b);
1544
1545                 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1546
1547                 if (keys) {
1548                         btree_split_insert_keys(as, trans, path, n1, keys);
1549                         BUG_ON(!bch2_keylist_empty(keys));
1550                 }
1551
1552                 bch2_btree_build_aux_trees(n1);
1553                 bch2_btree_update_add_new_node(as, n1);
1554                 six_unlock_write(&n1->c.lock);
1555
1556                 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1557                 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1558                 mark_btree_node_locked(trans, path1, n1->c.level, SIX_LOCK_intent);
1559                 bch2_btree_path_level_init(trans, path1, n1);
1560
1561                 if (parent)
1562                         bch2_keylist_add(&as->parent_keys, &n1->key);
1563         }
1564
1565         /* New nodes all written, now make them visible: */
1566
1567         if (parent) {
1568                 /* Split a non root node */
1569                 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1570                 if (ret)
1571                         goto err;
1572         } else if (n3) {
1573                 bch2_btree_set_root(as, trans, path, n3);
1574         } else {
1575                 /* Root filled up but didn't need to be split */
1576                 bch2_btree_set_root(as, trans, path, n1);
1577         }
1578
1579         if (n3) {
1580                 bch2_btree_update_get_open_buckets(as, n3);
1581                 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1582         }
1583         if (n2) {
1584                 bch2_btree_update_get_open_buckets(as, n2);
1585                 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1586         }
1587         bch2_btree_update_get_open_buckets(as, n1);
1588         bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1589
1590         /*
1591          * The old node must be freed (in memory) _before_ unlocking the new
1592          * nodes - else another thread could re-acquire a read lock on the old
1593          * node after another thread has locked and updated the new node, thus
1594          * seeing stale data:
1595          */
1596         bch2_btree_node_free_inmem(trans, path, b);
1597
1598         if (n3)
1599                 bch2_trans_node_add(trans, n3);
1600         if (n2)
1601                 bch2_trans_node_add(trans, n2);
1602         bch2_trans_node_add(trans, n1);
1603
1604         if (n3)
1605                 six_unlock_intent(&n3->c.lock);
1606         if (n2)
1607                 six_unlock_intent(&n2->c.lock);
1608         six_unlock_intent(&n1->c.lock);
1609 out:
1610         if (path2) {
1611                 __bch2_btree_path_unlock(trans, path2);
1612                 bch2_path_put(trans, path2, true);
1613         }
1614         if (path1) {
1615                 __bch2_btree_path_unlock(trans, path1);
1616                 bch2_path_put(trans, path1, true);
1617         }
1618
1619         bch2_trans_verify_locks(trans);
1620
1621         bch2_time_stats_update(&c->times[n2
1622                                ? BCH_TIME_btree_node_split
1623                                : BCH_TIME_btree_node_compact],
1624                                start_time);
1625         return ret;
1626 err:
1627         if (n3)
1628                 bch2_btree_node_free_never_used(as, trans, n3);
1629         if (n2)
1630                 bch2_btree_node_free_never_used(as, trans, n2);
1631         bch2_btree_node_free_never_used(as, trans, n1);
1632         goto out;
1633 }
1634
1635 static void
1636 bch2_btree_insert_keys_interior(struct btree_update *as,
1637                                 struct btree_trans *trans,
1638                                 struct btree_path *path,
1639                                 struct btree *b,
1640                                 struct keylist *keys)
1641 {
1642         struct btree_path *linked;
1643
1644         __bch2_btree_insert_keys_interior(as, trans, path, b,
1645                                           path->l[b->c.level].iter, keys);
1646
1647         btree_update_updated_node(as, b);
1648
1649         trans_for_each_path_with_node(trans, b, linked)
1650                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1651
1652         bch2_trans_verify_paths(trans);
1653 }
1654
1655 /**
1656  * bch_btree_insert_node - insert bkeys into a given btree node
1657  *
1658  * @iter:               btree iterator
1659  * @keys:               list of keys to insert
1660  * @hook:               insert callback
1661  * @persistent:         if not null, @persistent will wait on journal write
1662  *
1663  * Inserts as many keys as it can into a given btree node, splitting it if full.
1664  * If a split occurred, this function will return early. This can only happen
1665  * for leaf nodes -- inserts into interior nodes have to be atomic.
1666  */
1667 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1668                                   struct btree_path *path, struct btree *b,
1669                                   struct keylist *keys, unsigned flags)
1670 {
1671         struct bch_fs *c = as->c;
1672         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1673         int old_live_u64s = b->nr.live_u64s;
1674         int live_u64s_added, u64s_added;
1675         int ret;
1676
1677         lockdep_assert_held(&c->gc_lock);
1678         BUG_ON(!btree_node_intent_locked(path, b->c.level));
1679         BUG_ON(!b->c.level);
1680         BUG_ON(!as || as->b);
1681         bch2_verify_keylist_sorted(keys);
1682
1683         if ((local_clock() & 63) == 63)
1684                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1685
1686         ret = bch2_btree_node_lock_write(trans, path, &b->c);
1687         if (ret)
1688                 return ret;
1689
1690         bch2_btree_node_prep_for_write(trans, path, b);
1691
1692         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1693                 bch2_btree_node_unlock_write(trans, path, b);
1694                 goto split;
1695         }
1696
1697         btree_node_interior_verify(c, b);
1698
1699         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1700
1701         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1702         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1703
1704         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1705                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1706         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1707                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1708
1709         if (u64s_added > live_u64s_added &&
1710             bch2_maybe_compact_whiteouts(c, b))
1711                 bch2_trans_node_reinit_iter(trans, b);
1712
1713         bch2_btree_node_unlock_write(trans, path, b);
1714
1715         btree_node_interior_verify(c, b);
1716         return 0;
1717 split:
1718         /*
1719          * We could attempt to avoid the transaction restart, by calling
1720          * bch2_btree_path_upgrade() and allocating more nodes:
1721          */
1722         if (b->c.level >= as->update_level) {
1723                 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1724                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1725         }
1726
1727         return btree_split(as, trans, path, b, keys, flags);
1728 }
1729
1730 int bch2_btree_split_leaf(struct btree_trans *trans,
1731                           struct btree_path *path,
1732                           unsigned flags)
1733 {
1734         struct btree *b = path_l(path)->b;
1735         struct btree_update *as;
1736         unsigned l;
1737         int ret = 0;
1738
1739         as = bch2_btree_update_start(trans, path, path->level,
1740                                      true, flags);
1741         if (IS_ERR(as))
1742                 return PTR_ERR(as);
1743
1744         ret = btree_split(as, trans, path, b, NULL, flags);
1745         if (ret) {
1746                 bch2_btree_update_free(as, trans);
1747                 return ret;
1748         }
1749
1750         bch2_btree_update_done(as, trans);
1751
1752         for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++)
1753                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1754
1755         return ret;
1756 }
1757
1758 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1759                                   struct btree_path *path,
1760                                   unsigned level,
1761                                   unsigned flags,
1762                                   enum btree_node_sibling sib)
1763 {
1764         struct bch_fs *c = trans->c;
1765         struct btree_path *sib_path = NULL, *new_path = NULL;
1766         struct btree_update *as;
1767         struct bkey_format_state new_s;
1768         struct bkey_format new_f;
1769         struct bkey_i delete;
1770         struct btree *b, *m, *n, *prev, *next, *parent;
1771         struct bpos sib_pos;
1772         size_t sib_u64s;
1773         u64 start_time = local_clock();
1774         int ret = 0;
1775
1776         BUG_ON(!path->should_be_locked);
1777         BUG_ON(!btree_node_locked(path, level));
1778
1779         b = path->l[level].b;
1780
1781         if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1782             (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1783                 b->sib_u64s[sib] = U16_MAX;
1784                 return 0;
1785         }
1786
1787         sib_pos = sib == btree_prev_sib
1788                 ? bpos_predecessor(b->data->min_key)
1789                 : bpos_successor(b->data->max_key);
1790
1791         sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1792                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1793         ret = bch2_btree_path_traverse(trans, sib_path, false);
1794         if (ret)
1795                 goto err;
1796
1797         btree_path_set_should_be_locked(sib_path);
1798
1799         m = sib_path->l[level].b;
1800
1801         if (btree_node_parent(path, b) !=
1802             btree_node_parent(sib_path, m)) {
1803                 b->sib_u64s[sib] = U16_MAX;
1804                 goto out;
1805         }
1806
1807         if (sib == btree_prev_sib) {
1808                 prev = m;
1809                 next = b;
1810         } else {
1811                 prev = b;
1812                 next = m;
1813         }
1814
1815         if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1816                 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1817
1818                 bch2_bpos_to_text(&buf1, prev->data->max_key);
1819                 bch2_bpos_to_text(&buf2, next->data->min_key);
1820                 bch_err(c,
1821                         "%s(): btree topology error:\n"
1822                         "  prev ends at   %s\n"
1823                         "  next starts at %s",
1824                         __func__, buf1.buf, buf2.buf);
1825                 printbuf_exit(&buf1);
1826                 printbuf_exit(&buf2);
1827                 bch2_topology_error(c);
1828                 ret = -EIO;
1829                 goto err;
1830         }
1831
1832         bch2_bkey_format_init(&new_s);
1833         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1834         __bch2_btree_calc_format(&new_s, prev);
1835         __bch2_btree_calc_format(&new_s, next);
1836         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1837         new_f = bch2_bkey_format_done(&new_s);
1838
1839         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1840                 btree_node_u64s_with_format(m, &new_f);
1841
1842         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1843                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1844                 sib_u64s /= 2;
1845                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1846         }
1847
1848         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1849         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1850         b->sib_u64s[sib] = sib_u64s;
1851
1852         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1853                 goto out;
1854
1855         parent = btree_node_parent(path, b);
1856         as = bch2_btree_update_start(trans, path, level, false,
1857                          BTREE_INSERT_NOFAIL|
1858                          BTREE_INSERT_USE_RESERVE|
1859                          flags);
1860         ret = PTR_ERR_OR_ZERO(as);
1861         if (ret)
1862                 goto err;
1863
1864         trace_and_count(c, btree_node_merge, c, b);
1865
1866         bch2_btree_interior_update_will_free_node(as, b);
1867         bch2_btree_interior_update_will_free_node(as, m);
1868
1869         n = bch2_btree_node_alloc(as, trans, b->c.level);
1870
1871         SET_BTREE_NODE_SEQ(n->data,
1872                            max(BTREE_NODE_SEQ(b->data),
1873                                BTREE_NODE_SEQ(m->data)) + 1);
1874
1875         btree_set_min(n, prev->data->min_key);
1876         btree_set_max(n, next->data->max_key);
1877
1878         n->data->format  = new_f;
1879         btree_node_set_format(n, new_f);
1880
1881         bch2_btree_sort_into(c, n, prev);
1882         bch2_btree_sort_into(c, n, next);
1883
1884         bch2_btree_build_aux_trees(n);
1885         bch2_btree_update_add_new_node(as, n);
1886         six_unlock_write(&n->c.lock);
1887
1888         new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p);
1889         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1890         mark_btree_node_locked(trans, new_path, n->c.level, SIX_LOCK_intent);
1891         bch2_btree_path_level_init(trans, new_path, n);
1892
1893         bkey_init(&delete.k);
1894         delete.k.p = prev->key.k.p;
1895         bch2_keylist_add(&as->parent_keys, &delete);
1896         bch2_keylist_add(&as->parent_keys, &n->key);
1897
1898         bch2_trans_verify_paths(trans);
1899
1900         ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1901         if (ret)
1902                 goto err_free_update;
1903
1904         bch2_trans_verify_paths(trans);
1905
1906         bch2_btree_update_get_open_buckets(as, n);
1907         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1908
1909         bch2_btree_node_free_inmem(trans, path, b);
1910         bch2_btree_node_free_inmem(trans, sib_path, m);
1911
1912         bch2_trans_node_add(trans, n);
1913
1914         bch2_trans_verify_paths(trans);
1915
1916         six_unlock_intent(&n->c.lock);
1917
1918         bch2_btree_update_done(as, trans);
1919
1920         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1921 out:
1922 err:
1923         if (new_path)
1924                 bch2_path_put(trans, new_path, true);
1925         bch2_path_put(trans, sib_path, true);
1926         bch2_trans_verify_locks(trans);
1927         return ret;
1928 err_free_update:
1929         bch2_btree_node_free_never_used(as, trans, n);
1930         bch2_btree_update_free(as, trans);
1931         goto out;
1932 }
1933
1934 /**
1935  * bch_btree_node_rewrite - Rewrite/move a btree node
1936  */
1937 int bch2_btree_node_rewrite(struct btree_trans *trans,
1938                             struct btree_iter *iter,
1939                             struct btree *b,
1940                             unsigned flags)
1941 {
1942         struct bch_fs *c = trans->c;
1943         struct btree_path *new_path = NULL;
1944         struct btree *n, *parent;
1945         struct btree_update *as;
1946         int ret;
1947
1948         flags |= BTREE_INSERT_NOFAIL;
1949
1950         parent = btree_node_parent(iter->path, b);
1951         as = bch2_btree_update_start(trans, iter->path, b->c.level,
1952                                      false, flags);
1953         ret = PTR_ERR_OR_ZERO(as);
1954         if (ret)
1955                 goto out;
1956
1957         bch2_btree_interior_update_will_free_node(as, b);
1958
1959         n = bch2_btree_node_alloc_replacement(as, trans, b);
1960
1961         bch2_btree_build_aux_trees(n);
1962         bch2_btree_update_add_new_node(as, n);
1963         six_unlock_write(&n->c.lock);
1964
1965         new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
1966         six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1967         mark_btree_node_locked(trans, new_path, n->c.level, SIX_LOCK_intent);
1968         bch2_btree_path_level_init(trans, new_path, n);
1969
1970         trace_and_count(c, btree_node_rewrite, c, b);
1971
1972         if (parent) {
1973                 bch2_keylist_add(&as->parent_keys, &n->key);
1974                 ret = bch2_btree_insert_node(as, trans, iter->path, parent,
1975                                              &as->parent_keys, flags);
1976                 if (ret)
1977                         goto err;
1978         } else {
1979                 bch2_btree_set_root(as, trans, iter->path, n);
1980         }
1981
1982         bch2_btree_update_get_open_buckets(as, n);
1983         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1984
1985         bch2_btree_node_free_inmem(trans, iter->path, b);
1986
1987         bch2_trans_node_add(trans, n);
1988         six_unlock_intent(&n->c.lock);
1989
1990         bch2_btree_update_done(as, trans);
1991 out:
1992         if (new_path)
1993                 bch2_path_put(trans, new_path, true);
1994         bch2_btree_path_downgrade(trans, iter->path);
1995         return ret;
1996 err:
1997         bch2_btree_node_free_never_used(as, trans, n);
1998         bch2_btree_update_free(as, trans);
1999         goto out;
2000 }
2001
2002 struct async_btree_rewrite {
2003         struct bch_fs           *c;
2004         struct work_struct      work;
2005         struct list_head        list;
2006         enum btree_id           btree_id;
2007         unsigned                level;
2008         struct bpos             pos;
2009         __le64                  seq;
2010 };
2011
2012 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2013                                           struct async_btree_rewrite *a)
2014 {
2015         struct bch_fs *c = trans->c;
2016         struct btree_iter iter;
2017         struct btree *b;
2018         int ret;
2019
2020         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2021                                   BTREE_MAX_DEPTH, a->level, 0);
2022         b = bch2_btree_iter_peek_node(&iter);
2023         ret = PTR_ERR_OR_ZERO(b);
2024         if (ret)
2025                 goto out;
2026
2027         if (!b || b->data->keys.seq != a->seq) {
2028                 struct printbuf buf = PRINTBUF;
2029
2030                 if (b)
2031                         bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2032                 else
2033                         prt_str(&buf, "(null");
2034                 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2035                          __func__, a->seq, buf.buf);
2036                 printbuf_exit(&buf);
2037                 goto out;
2038         }
2039
2040         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2041 out:
2042         bch2_trans_iter_exit(trans, &iter);
2043
2044         return ret;
2045 }
2046
2047 void async_btree_node_rewrite_work(struct work_struct *work)
2048 {
2049         struct async_btree_rewrite *a =
2050                 container_of(work, struct async_btree_rewrite, work);
2051         struct bch_fs *c = a->c;
2052         int ret;
2053
2054         ret = bch2_trans_do(c, NULL, NULL, 0,
2055                       async_btree_node_rewrite_trans(&trans, a));
2056         if (ret)
2057                 bch_err(c, "%s: error %s", __func__, bch2_err_str(ret));
2058         bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2059         kfree(a);
2060 }
2061
2062 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2063 {
2064         struct async_btree_rewrite *a;
2065         int ret;
2066
2067         a = kmalloc(sizeof(*a), GFP_NOFS);
2068         if (!a) {
2069                 bch_err(c, "%s: error allocating memory", __func__);
2070                 return;
2071         }
2072
2073         a->c            = c;
2074         a->btree_id     = b->c.btree_id;
2075         a->level        = b->c.level;
2076         a->pos          = b->key.k.p;
2077         a->seq          = b->data->keys.seq;
2078         INIT_WORK(&a->work, async_btree_node_rewrite_work);
2079
2080         if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) {
2081                 mutex_lock(&c->pending_node_rewrites_lock);
2082                 list_add(&a->list, &c->pending_node_rewrites);
2083                 mutex_unlock(&c->pending_node_rewrites_lock);
2084                 return;
2085         }
2086
2087         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2088                 if (test_bit(BCH_FS_STARTED, &c->flags)) {
2089                         bch_err(c, "%s: error getting c->writes ref", __func__);
2090                         kfree(a);
2091                         return;
2092                 }
2093
2094                 ret = bch2_fs_read_write_early(c);
2095                 if (ret) {
2096                         bch_err(c, "%s: error going read-write: %s",
2097                                 __func__, bch2_err_str(ret));
2098                         kfree(a);
2099                         return;
2100                 }
2101
2102                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2103         }
2104
2105         queue_work(c->btree_interior_update_worker, &a->work);
2106 }
2107
2108 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2109 {
2110         struct async_btree_rewrite *a, *n;
2111
2112         mutex_lock(&c->pending_node_rewrites_lock);
2113         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2114                 list_del(&a->list);
2115
2116                 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2117                 queue_work(c->btree_interior_update_worker, &a->work);
2118         }
2119         mutex_unlock(&c->pending_node_rewrites_lock);
2120 }
2121
2122 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2123 {
2124         struct async_btree_rewrite *a, *n;
2125
2126         mutex_lock(&c->pending_node_rewrites_lock);
2127         list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2128                 list_del(&a->list);
2129
2130                 kfree(a);
2131         }
2132         mutex_unlock(&c->pending_node_rewrites_lock);
2133 }
2134
2135 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2136                                         struct btree_iter *iter,
2137                                         struct btree *b, struct btree *new_hash,
2138                                         struct bkey_i *new_key,
2139                                         bool skip_triggers)
2140 {
2141         struct bch_fs *c = trans->c;
2142         struct btree_iter iter2 = { NULL };
2143         struct btree *parent;
2144         int ret;
2145
2146         if (!skip_triggers) {
2147                 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1,
2148                                           bkey_i_to_s_c(&b->key), 0);
2149                 if (ret)
2150                         return ret;
2151
2152                 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1,
2153                                           new_key, 0);
2154                 if (ret)
2155                         return ret;
2156         }
2157
2158         if (new_hash) {
2159                 bkey_copy(&new_hash->key, new_key);
2160                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2161                                 new_hash, b->c.level, b->c.btree_id);
2162                 BUG_ON(ret);
2163         }
2164
2165         parent = btree_node_parent(iter->path, b);
2166         if (parent) {
2167                 bch2_trans_copy_iter(&iter2, iter);
2168
2169                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2170                                 iter2.flags & BTREE_ITER_INTENT,
2171                                 _THIS_IP_);
2172
2173                 BUG_ON(iter2.path->level != b->c.level);
2174                 BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p));
2175
2176                 btree_path_set_level_up(trans, iter2.path);
2177
2178                 trans->paths_sorted = false;
2179
2180                 ret   = bch2_btree_iter_traverse(&iter2) ?:
2181                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2182                 if (ret)
2183                         goto err;
2184         } else {
2185                 BUG_ON(btree_node_root(c, b) != b);
2186
2187                 ret = darray_make_room(&trans->extra_journal_entries,
2188                                        jset_u64s(new_key->k.u64s));
2189                 if (ret)
2190                         return ret;
2191
2192                 journal_entry_set((void *) &darray_top(trans->extra_journal_entries),
2193                                   BCH_JSET_ENTRY_btree_root,
2194                                   b->c.btree_id, b->c.level,
2195                                   new_key, new_key->k.u64s);
2196                 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s);
2197         }
2198
2199         ret = bch2_trans_commit(trans, NULL, NULL,
2200                                 BTREE_INSERT_NOFAIL|
2201                                 BTREE_INSERT_NOCHECK_RW|
2202                                 BTREE_INSERT_USE_RESERVE|
2203                                 BTREE_INSERT_JOURNAL_RECLAIM|
2204                                 JOURNAL_WATERMARK_reserved);
2205         if (ret)
2206                 goto err;
2207
2208         bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c);
2209
2210         if (new_hash) {
2211                 mutex_lock(&c->btree_cache.lock);
2212                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2213                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2214
2215                 bkey_copy(&b->key, new_key);
2216                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2217                 BUG_ON(ret);
2218                 mutex_unlock(&c->btree_cache.lock);
2219         } else {
2220                 bkey_copy(&b->key, new_key);
2221         }
2222
2223         bch2_btree_node_unlock_write(trans, iter->path, b);
2224 out:
2225         bch2_trans_iter_exit(trans, &iter2);
2226         return ret;
2227 err:
2228         if (new_hash) {
2229                 mutex_lock(&c->btree_cache.lock);
2230                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2231                 mutex_unlock(&c->btree_cache.lock);
2232         }
2233         goto out;
2234 }
2235
2236 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2237                                struct btree *b, struct bkey_i *new_key,
2238                                bool skip_triggers)
2239 {
2240         struct bch_fs *c = trans->c;
2241         struct btree *new_hash = NULL;
2242         struct btree_path *path = iter->path;
2243         struct closure cl;
2244         int ret = 0;
2245
2246         ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2247         if (ret)
2248                 return ret;
2249
2250         closure_init_stack(&cl);
2251
2252         /*
2253          * check btree_ptr_hash_val() after @b is locked by
2254          * btree_iter_traverse():
2255          */
2256         if (btree_ptr_hash_val(new_key) != b->hash_val) {
2257                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2258                 if (ret) {
2259                         bch2_trans_unlock(trans);
2260                         closure_sync(&cl);
2261                         ret = bch2_trans_relock(trans);
2262                         if (ret)
2263                                 return ret;
2264                 }
2265
2266                 new_hash = bch2_btree_node_mem_alloc(trans, false);
2267         }
2268
2269         path->intent_ref++;
2270         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash,
2271                                            new_key, skip_triggers);
2272         --path->intent_ref;
2273
2274         if (new_hash) {
2275                 mutex_lock(&c->btree_cache.lock);
2276                 list_move(&new_hash->list, &c->btree_cache.freeable);
2277                 mutex_unlock(&c->btree_cache.lock);
2278
2279                 six_unlock_write(&new_hash->c.lock);
2280                 six_unlock_intent(&new_hash->c.lock);
2281         }
2282         closure_sync(&cl);
2283         bch2_btree_cache_cannibalize_unlock(c);
2284         return ret;
2285 }
2286
2287 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2288                                         struct btree *b, struct bkey_i *new_key,
2289                                         bool skip_triggers)
2290 {
2291         struct btree_iter iter;
2292         int ret;
2293
2294         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2295                                   BTREE_MAX_DEPTH, b->c.level,
2296                                   BTREE_ITER_INTENT);
2297         ret = bch2_btree_iter_traverse(&iter);
2298         if (ret)
2299                 goto out;
2300
2301         /* has node been freed? */
2302         if (iter.path->l[b->c.level].b != b) {
2303                 /* node has been freed: */
2304                 BUG_ON(!btree_node_dying(b));
2305                 goto out;
2306         }
2307
2308         BUG_ON(!btree_node_hashed(b));
2309
2310         ret = bch2_btree_node_update_key(trans, &iter, b, new_key, skip_triggers);
2311 out:
2312         bch2_trans_iter_exit(trans, &iter);
2313         return ret;
2314 }
2315
2316 /* Init code: */
2317
2318 /*
2319  * Only for filesystem bringup, when first reading the btree roots or allocating
2320  * btree roots when initializing a new filesystem:
2321  */
2322 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2323 {
2324         BUG_ON(btree_node_root(c, b));
2325
2326         bch2_btree_set_root_inmem(c, b);
2327 }
2328
2329 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2330 {
2331         struct bch_fs *c = trans->c;
2332         struct closure cl;
2333         struct btree *b;
2334         int ret;
2335
2336         closure_init_stack(&cl);
2337
2338         do {
2339                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2340                 closure_sync(&cl);
2341         } while (ret);
2342
2343         b = bch2_btree_node_mem_alloc(trans, false);
2344         bch2_btree_cache_cannibalize_unlock(c);
2345
2346         set_btree_node_fake(b);
2347         set_btree_node_need_rewrite(b);
2348         b->c.level      = 0;
2349         b->c.btree_id   = id;
2350
2351         bkey_btree_ptr_init(&b->key);
2352         b->key.k.p = SPOS_MAX;
2353         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2354
2355         bch2_bset_init_first(b, &b->data->keys);
2356         bch2_btree_build_aux_trees(b);
2357
2358         b->data->flags = 0;
2359         btree_set_min(b, POS_MIN);
2360         btree_set_max(b, SPOS_MAX);
2361         b->data->format = bch2_btree_calc_format(b);
2362         btree_node_set_format(b, b->data->format);
2363
2364         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2365                                           b->c.level, b->c.btree_id);
2366         BUG_ON(ret);
2367
2368         bch2_btree_set_root_inmem(c, b);
2369
2370         six_unlock_write(&b->c.lock);
2371         six_unlock_intent(&b->c.lock);
2372         return 0;
2373 }
2374
2375 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2376 {
2377         bch2_trans_run(c, __bch2_btree_root_alloc(&trans, id));
2378 }
2379
2380 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2381 {
2382         struct btree_update *as;
2383
2384         mutex_lock(&c->btree_interior_update_lock);
2385         list_for_each_entry(as, &c->btree_interior_update_list, list)
2386                 prt_printf(out, "%p m %u w %u r %u j %llu\n",
2387                        as,
2388                        as->mode,
2389                        as->nodes_written,
2390                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
2391                        as->journal.seq);
2392         mutex_unlock(&c->btree_interior_update_lock);
2393 }
2394
2395 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2396 {
2397         bool ret;
2398
2399         mutex_lock(&c->btree_interior_update_lock);
2400         ret = !list_empty(&c->btree_interior_update_list);
2401         mutex_unlock(&c->btree_interior_update_lock);
2402
2403         return ret;
2404 }
2405
2406 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2407 {
2408         bool ret = bch2_btree_interior_updates_pending(c);
2409
2410         if (ret)
2411                 closure_wait_event(&c->btree_interior_update_wait,
2412                                    !bch2_btree_interior_updates_pending(c));
2413         return ret;
2414 }
2415
2416 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2417 {
2418         struct btree_root *r = &c->btree_roots[entry->btree_id];
2419
2420         mutex_lock(&c->btree_root_lock);
2421
2422         r->level = entry->level;
2423         r->alive = true;
2424         bkey_copy(&r->key, &entry->start[0]);
2425
2426         mutex_unlock(&c->btree_root_lock);
2427 }
2428
2429 struct jset_entry *
2430 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2431                                     struct jset_entry *start,
2432                                     struct jset_entry *end)
2433 {
2434         struct jset_entry *entry;
2435         unsigned long have = 0;
2436         unsigned i;
2437
2438         for (entry = start; entry < end; entry = vstruct_next(entry))
2439                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2440                         __set_bit(entry->btree_id, &have);
2441
2442         mutex_lock(&c->btree_root_lock);
2443
2444         for (i = 0; i < BTREE_ID_NR; i++)
2445                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2446                         journal_entry_set(end,
2447                                           BCH_JSET_ENTRY_btree_root,
2448                                           i, c->btree_roots[i].level,
2449                                           &c->btree_roots[i].key,
2450                                           c->btree_roots[i].key.k.u64s);
2451                         end = vstruct_next(end);
2452                 }
2453
2454         mutex_unlock(&c->btree_root_lock);
2455
2456         return end;
2457 }
2458
2459 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2460 {
2461         if (c->btree_interior_update_worker)
2462                 destroy_workqueue(c->btree_interior_update_worker);
2463         mempool_exit(&c->btree_interior_update_pool);
2464 }
2465
2466 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2467 {
2468         mutex_init(&c->btree_reserve_cache_lock);
2469         INIT_LIST_HEAD(&c->btree_interior_update_list);
2470         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2471         mutex_init(&c->btree_interior_update_lock);
2472         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2473
2474         INIT_LIST_HEAD(&c->pending_node_rewrites);
2475         mutex_init(&c->pending_node_rewrites_lock);
2476
2477         c->btree_interior_update_worker =
2478                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2479         if (!c->btree_interior_update_worker)
2480                 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2481
2482         if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2483                                       sizeof(struct btree_update)))
2484                 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2485
2486         return 0;
2487 }