]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
Update bcachefs sources to 078a1a596a bcachefs: Optimize bucket reuse
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "error.h"
15 #include "extents.h"
16 #include "journal.h"
17 #include "journal_reclaim.h"
18 #include "keylist.h"
19 #include "replicas.h"
20 #include "super-io.h"
21
22 #include <linux/random.h>
23 #include <trace/events/bcachefs.h>
24
25 static void bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
26                                    struct btree_path *, struct btree *,
27                                    struct keylist *, unsigned);
28 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
29
30 /* Debug code: */
31
32 /*
33  * Verify that child nodes correctly span parent node's range:
34  */
35 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
36 {
37 #ifdef CONFIG_BCACHEFS_DEBUG
38         struct bpos next_node = b->data->min_key;
39         struct btree_node_iter iter;
40         struct bkey_s_c k;
41         struct bkey_s_c_btree_ptr_v2 bp;
42         struct bkey unpacked;
43         char buf1[100], buf2[100];
44
45         BUG_ON(!b->c.level);
46
47         if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags))
48                 return;
49
50         bch2_btree_node_iter_init_from_start(&iter, b);
51
52         while (1) {
53                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
54                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
55                         break;
56                 bp = bkey_s_c_to_btree_ptr_v2(k);
57
58                 if (bpos_cmp(next_node, bp.v->min_key)) {
59                         bch2_dump_btree_node(c, b);
60                         panic("expected next min_key %s got %s\n",
61                               (bch2_bpos_to_text(&PBUF(buf1), next_node), buf1),
62                               (bch2_bpos_to_text(&PBUF(buf2), bp.v->min_key), buf2));
63                 }
64
65                 bch2_btree_node_iter_advance(&iter, b);
66
67                 if (bch2_btree_node_iter_end(&iter)) {
68                         if (bpos_cmp(k.k->p, b->key.k.p)) {
69                                 bch2_dump_btree_node(c, b);
70                                 panic("expected end %s got %s\n",
71                                       (bch2_bpos_to_text(&PBUF(buf1), b->key.k.p), buf1),
72                                       (bch2_bpos_to_text(&PBUF(buf2), k.k->p), buf2));
73                         }
74                         break;
75                 }
76
77                 next_node = bpos_successor(k.k->p);
78         }
79 #endif
80 }
81
82 /* Calculate ideal packed bkey format for new btree nodes: */
83
84 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
85 {
86         struct bkey_packed *k;
87         struct bset_tree *t;
88         struct bkey uk;
89
90         for_each_bset(b, t)
91                 bset_tree_for_each_key(b, t, k)
92                         if (!bkey_deleted(k)) {
93                                 uk = bkey_unpack_key(b, k);
94                                 bch2_bkey_format_add_key(s, &uk);
95                         }
96 }
97
98 static struct bkey_format bch2_btree_calc_format(struct btree *b)
99 {
100         struct bkey_format_state s;
101
102         bch2_bkey_format_init(&s);
103         bch2_bkey_format_add_pos(&s, b->data->min_key);
104         bch2_bkey_format_add_pos(&s, b->data->max_key);
105         __bch2_btree_calc_format(&s, b);
106
107         return bch2_bkey_format_done(&s);
108 }
109
110 static size_t btree_node_u64s_with_format(struct btree *b,
111                                           struct bkey_format *new_f)
112 {
113         struct bkey_format *old_f = &b->format;
114
115         /* stupid integer promotion rules */
116         ssize_t delta =
117             (((int) new_f->key_u64s - old_f->key_u64s) *
118              (int) b->nr.packed_keys) +
119             (((int) new_f->key_u64s - BKEY_U64s) *
120              (int) b->nr.unpacked_keys);
121
122         BUG_ON(delta + b->nr.live_u64s < 0);
123
124         return b->nr.live_u64s + delta;
125 }
126
127 /**
128  * btree_node_format_fits - check if we could rewrite node with a new format
129  *
130  * This assumes all keys can pack with the new format -- it just checks if
131  * the re-packed keys would fit inside the node itself.
132  */
133 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
134                                  struct bkey_format *new_f)
135 {
136         size_t u64s = btree_node_u64s_with_format(b, new_f);
137
138         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
139 }
140
141 /* Btree node freeing/allocation: */
142
143 static void __btree_node_free(struct bch_fs *c, struct btree *b)
144 {
145         trace_btree_node_free(c, b);
146
147         BUG_ON(btree_node_dirty(b));
148         BUG_ON(btree_node_need_write(b));
149         BUG_ON(b == btree_node_root(c, b));
150         BUG_ON(b->ob.nr);
151         BUG_ON(!list_empty(&b->write_blocked));
152         BUG_ON(b->will_make_reachable);
153
154         clear_btree_node_noevict(b);
155
156         mutex_lock(&c->btree_cache.lock);
157         list_move(&b->list, &c->btree_cache.freeable);
158         mutex_unlock(&c->btree_cache.lock);
159 }
160
161 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
162                                        struct btree *b)
163 {
164         struct bch_fs *c = trans->c;
165         struct btree_path *path;
166
167         trans_for_each_path(trans, path)
168                 BUG_ON(path->l[b->c.level].b == b &&
169                        path->l[b->c.level].lock_seq == b->c.lock.state.seq);
170
171         six_lock_write(&b->c.lock, NULL, NULL);
172
173         bch2_btree_node_hash_remove(&c->btree_cache, b);
174         __btree_node_free(c, b);
175
176         six_unlock_write(&b->c.lock);
177         six_unlock_intent(&b->c.lock);
178 }
179
180 static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
181                                              struct disk_reservation *res,
182                                              struct closure *cl,
183                                              unsigned flags)
184 {
185         struct write_point *wp;
186         struct btree *b;
187         __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
188         struct open_buckets ob = { .nr = 0 };
189         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
190         unsigned nr_reserve;
191         enum alloc_reserve alloc_reserve;
192
193         if (flags & BTREE_INSERT_USE_RESERVE) {
194                 nr_reserve      = 0;
195                 alloc_reserve   = RESERVE_BTREE_MOVINGGC;
196         } else {
197                 nr_reserve      = BTREE_NODE_RESERVE;
198                 alloc_reserve   = RESERVE_BTREE;
199         }
200
201         mutex_lock(&c->btree_reserve_cache_lock);
202         if (c->btree_reserve_cache_nr > nr_reserve) {
203                 struct btree_alloc *a =
204                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
205
206                 ob = a->ob;
207                 bkey_copy(&tmp.k, &a->k);
208                 mutex_unlock(&c->btree_reserve_cache_lock);
209                 goto mem_alloc;
210         }
211         mutex_unlock(&c->btree_reserve_cache_lock);
212
213 retry:
214         wp = bch2_alloc_sectors_start(c,
215                                       c->opts.metadata_target ?:
216                                       c->opts.foreground_target,
217                                       0,
218                                       writepoint_ptr(&c->btree_write_point),
219                                       &devs_have,
220                                       res->nr_replicas,
221                                       c->opts.metadata_replicas_required,
222                                       alloc_reserve, 0, cl);
223         if (IS_ERR(wp))
224                 return ERR_CAST(wp);
225
226         if (wp->sectors_free < btree_sectors(c)) {
227                 struct open_bucket *ob;
228                 unsigned i;
229
230                 open_bucket_for_each(c, &wp->ptrs, ob, i)
231                         if (ob->sectors_free < btree_sectors(c))
232                                 ob->sectors_free = 0;
233
234                 bch2_alloc_sectors_done(c, wp);
235                 goto retry;
236         }
237
238         bkey_btree_ptr_v2_init(&tmp.k);
239         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
240
241         bch2_open_bucket_get(c, wp, &ob);
242         bch2_alloc_sectors_done(c, wp);
243 mem_alloc:
244         b = bch2_btree_node_mem_alloc(c);
245
246         /* we hold cannibalize_lock: */
247         BUG_ON(IS_ERR(b));
248         BUG_ON(b->ob.nr);
249
250         bkey_copy(&b->key, &tmp.k);
251         b->ob = ob;
252
253         return b;
254 }
255
256 static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
257 {
258         struct bch_fs *c = as->c;
259         struct btree *b;
260         int ret;
261
262         BUG_ON(level >= BTREE_MAX_DEPTH);
263         BUG_ON(!as->nr_prealloc_nodes);
264
265         b = as->prealloc_nodes[--as->nr_prealloc_nodes];
266
267         set_btree_node_accessed(b);
268         set_btree_node_dirty(c, b);
269         set_btree_node_need_write(b);
270
271         bch2_bset_init_first(b, &b->data->keys);
272         b->c.level      = level;
273         b->c.btree_id   = as->btree_id;
274         b->version_ondisk = c->sb.version;
275
276         memset(&b->nr, 0, sizeof(b->nr));
277         b->data->magic = cpu_to_le64(bset_magic(c));
278         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
279         b->data->flags = 0;
280         SET_BTREE_NODE_ID(b->data, as->btree_id);
281         SET_BTREE_NODE_LEVEL(b->data, level);
282
283         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
284                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
285
286                 bp->v.mem_ptr           = 0;
287                 bp->v.seq               = b->data->keys.seq;
288                 bp->v.sectors_written   = 0;
289         }
290
291         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
292
293         bch2_btree_build_aux_trees(b);
294
295         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
296         BUG_ON(ret);
297
298         trace_btree_node_alloc(c, b);
299         return b;
300 }
301
302 static void btree_set_min(struct btree *b, struct bpos pos)
303 {
304         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
305                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
306         b->data->min_key = pos;
307 }
308
309 static void btree_set_max(struct btree *b, struct bpos pos)
310 {
311         b->key.k.p = pos;
312         b->data->max_key = pos;
313 }
314
315 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
316                                                   struct btree *b,
317                                                   struct bkey_format format)
318 {
319         struct btree *n;
320
321         n = bch2_btree_node_alloc(as, b->c.level);
322
323         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
324
325         btree_set_min(n, b->data->min_key);
326         btree_set_max(n, b->data->max_key);
327
328         n->data->format         = format;
329         btree_node_set_format(n, format);
330
331         bch2_btree_sort_into(as->c, n, b);
332
333         btree_node_reset_sib_u64s(n);
334
335         n->key.k.p = b->key.k.p;
336         return n;
337 }
338
339 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
340                                                        struct btree *b)
341 {
342         struct bkey_format new_f = bch2_btree_calc_format(b);
343
344         /*
345          * The keys might expand with the new format - if they wouldn't fit in
346          * the btree node anymore, use the old format for now:
347          */
348         if (!bch2_btree_node_format_fits(as->c, b, &new_f))
349                 new_f = b->format;
350
351         return __bch2_btree_node_alloc_replacement(as, b, new_f);
352 }
353
354 static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
355 {
356         struct btree *b = bch2_btree_node_alloc(as, level);
357
358         btree_set_min(b, POS_MIN);
359         btree_set_max(b, SPOS_MAX);
360         b->data->format = bch2_btree_calc_format(b);
361
362         btree_node_set_format(b, b->data->format);
363         bch2_btree_build_aux_trees(b);
364
365         bch2_btree_update_add_new_node(as, b);
366         six_unlock_write(&b->c.lock);
367
368         return b;
369 }
370
371 static void bch2_btree_reserve_put(struct btree_update *as)
372 {
373         struct bch_fs *c = as->c;
374
375         mutex_lock(&c->btree_reserve_cache_lock);
376
377         while (as->nr_prealloc_nodes) {
378                 struct btree *b = as->prealloc_nodes[--as->nr_prealloc_nodes];
379
380                 six_unlock_write(&b->c.lock);
381
382                 if (c->btree_reserve_cache_nr <
383                     ARRAY_SIZE(c->btree_reserve_cache)) {
384                         struct btree_alloc *a =
385                                 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
386
387                         a->ob = b->ob;
388                         b->ob.nr = 0;
389                         bkey_copy(&a->k, &b->key);
390                 } else {
391                         bch2_open_buckets_put(c, &b->ob);
392                 }
393
394                 btree_node_lock_type(c, b, SIX_LOCK_write);
395                 __btree_node_free(c, b);
396                 six_unlock_write(&b->c.lock);
397
398                 six_unlock_intent(&b->c.lock);
399         }
400
401         mutex_unlock(&c->btree_reserve_cache_lock);
402 }
403
404 static int bch2_btree_reserve_get(struct btree_update *as, unsigned nr_nodes,
405                                   unsigned flags, struct closure *cl)
406 {
407         struct bch_fs *c = as->c;
408         struct btree *b;
409         int ret;
410
411         BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
412
413         /*
414          * Protects reaping from the btree node cache and using the btree node
415          * open bucket reserve:
416          */
417         ret = bch2_btree_cache_cannibalize_lock(c, cl);
418         if (ret)
419                 return ret;
420
421         while (as->nr_prealloc_nodes < nr_nodes) {
422                 b = __bch2_btree_node_alloc(c, &as->disk_res,
423                                             flags & BTREE_INSERT_NOWAIT
424                                             ? NULL : cl, flags);
425                 if (IS_ERR(b)) {
426                         ret = PTR_ERR(b);
427                         goto err_free;
428                 }
429
430                 as->prealloc_nodes[as->nr_prealloc_nodes++] = b;
431         }
432
433         bch2_btree_cache_cannibalize_unlock(c);
434         return 0;
435 err_free:
436         bch2_btree_cache_cannibalize_unlock(c);
437         trace_btree_reserve_get_fail(c, nr_nodes, cl);
438         return ret;
439 }
440
441 /* Asynchronous interior node update machinery */
442
443 static void bch2_btree_update_free(struct btree_update *as)
444 {
445         struct bch_fs *c = as->c;
446
447         if (as->took_gc_lock)
448                 up_read(&c->gc_lock);
449         as->took_gc_lock = false;
450
451         bch2_journal_preres_put(&c->journal, &as->journal_preres);
452
453         bch2_journal_pin_drop(&c->journal, &as->journal);
454         bch2_journal_pin_flush(&c->journal, &as->journal);
455         bch2_disk_reservation_put(c, &as->disk_res);
456         bch2_btree_reserve_put(as);
457
458         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
459                                as->start_time);
460
461         mutex_lock(&c->btree_interior_update_lock);
462         list_del(&as->unwritten_list);
463         list_del(&as->list);
464
465         closure_debug_destroy(&as->cl);
466         mempool_free(as, &c->btree_interior_update_pool);
467
468         /*
469          * Have to do the wakeup with btree_interior_update_lock still held,
470          * since being on btree_interior_update_list is our ref on @c:
471          */
472         closure_wake_up(&c->btree_interior_update_wait);
473
474         mutex_unlock(&c->btree_interior_update_lock);
475 }
476
477 static void btree_update_will_delete_key(struct btree_update *as,
478                                          struct bkey_i *k)
479 {
480         BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s >
481                ARRAY_SIZE(as->_old_keys));
482         bch2_keylist_add(&as->old_keys, k);
483 }
484
485 static void btree_update_will_add_key(struct btree_update *as,
486                                       struct bkey_i *k)
487 {
488         BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s >
489                ARRAY_SIZE(as->_new_keys));
490         bch2_keylist_add(&as->new_keys, k);
491 }
492
493 /*
494  * The transactional part of an interior btree node update, where we journal the
495  * update we did to the interior node and update alloc info:
496  */
497 static int btree_update_nodes_written_trans(struct btree_trans *trans,
498                                             struct btree_update *as)
499 {
500         struct bkey_i *k;
501         int ret;
502
503         trans->extra_journal_entries = (void *) &as->journal_entries[0];
504         trans->extra_journal_entry_u64s = as->journal_u64s;
505         trans->journal_pin = &as->journal;
506
507         for_each_keylist_key(&as->new_keys, k) {
508                 ret = bch2_trans_mark_key(trans,
509                                           bkey_s_c_null,
510                                           bkey_i_to_s_c(k),
511                                           BTREE_TRIGGER_INSERT);
512                 if (ret)
513                         return ret;
514         }
515
516         for_each_keylist_key(&as->old_keys, k) {
517                 ret = bch2_trans_mark_key(trans,
518                                           bkey_i_to_s_c(k),
519                                           bkey_s_c_null,
520                                           BTREE_TRIGGER_OVERWRITE);
521                 if (ret)
522                         return ret;
523         }
524
525         return 0;
526 }
527
528 static void btree_update_nodes_written(struct btree_update *as)
529 {
530         struct bch_fs *c = as->c;
531         struct btree *b = as->b;
532         struct btree_trans trans;
533         u64 journal_seq = 0;
534         unsigned i;
535         int ret;
536
537         /*
538          * If we're already in an error state, it might be because a btree node
539          * was never written, and we might be trying to free that same btree
540          * node here, but it won't have been marked as allocated and we'll see
541          * spurious disk usage inconsistencies in the transactional part below
542          * if we don't skip it:
543          */
544         ret = bch2_journal_error(&c->journal);
545         if (ret)
546                 goto err;
547
548         BUG_ON(!journal_pin_active(&as->journal));
549
550         /*
551          * Wait for any in flight writes to finish before we free the old nodes
552          * on disk:
553          */
554         for (i = 0; i < as->nr_old_nodes; i++) {
555                 struct btree *old = as->old_nodes[i];
556                 __le64 seq;
557
558                 six_lock_read(&old->c.lock, NULL, NULL);
559                 seq = old->data ? old->data->keys.seq : 0;
560                 six_unlock_read(&old->c.lock);
561
562                 if (seq == as->old_nodes_seq[i])
563                         wait_on_bit_io(&old->flags, BTREE_NODE_write_in_flight_inner,
564                                        TASK_UNINTERRUPTIBLE);
565         }
566
567         /*
568          * We did an update to a parent node where the pointers we added pointed
569          * to child nodes that weren't written yet: now, the child nodes have
570          * been written so we can write out the update to the interior node.
571          */
572
573         /*
574          * We can't call into journal reclaim here: we'd block on the journal
575          * reclaim lock, but we may need to release the open buckets we have
576          * pinned in order for other btree updates to make forward progress, and
577          * journal reclaim does btree updates when flushing bkey_cached entries,
578          * which may require allocations as well.
579          */
580         bch2_trans_init(&trans, c, 0, 512);
581         ret = __bch2_trans_do(&trans, &as->disk_res, &journal_seq,
582                               BTREE_INSERT_NOFAIL|
583                               BTREE_INSERT_NOCHECK_RW|
584                               BTREE_INSERT_JOURNAL_RECLAIM|
585                               BTREE_INSERT_JOURNAL_RESERVED,
586                               btree_update_nodes_written_trans(&trans, as));
587         bch2_trans_exit(&trans);
588
589         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
590                              "error %i in btree_update_nodes_written()", ret);
591 err:
592         if (b) {
593                 /*
594                  * @b is the node we did the final insert into:
595                  *
596                  * On failure to get a journal reservation, we still have to
597                  * unblock the write and allow most of the write path to happen
598                  * so that shutdown works, but the i->journal_seq mechanism
599                  * won't work to prevent the btree write from being visible (we
600                  * didn't get a journal sequence number) - instead
601                  * __bch2_btree_node_write() doesn't do the actual write if
602                  * we're in journal error state:
603                  */
604
605                 btree_node_lock_type(c, b, SIX_LOCK_intent);
606                 btree_node_lock_type(c, b, SIX_LOCK_write);
607                 mutex_lock(&c->btree_interior_update_lock);
608
609                 list_del(&as->write_blocked_list);
610
611                 /*
612                  * Node might have been freed, recheck under
613                  * btree_interior_update_lock:
614                  */
615                 if (as->b == b) {
616                         struct bset *i = btree_bset_last(b);
617
618                         BUG_ON(!b->c.level);
619                         BUG_ON(!btree_node_dirty(b));
620
621                         if (!ret) {
622                                 i->journal_seq = cpu_to_le64(
623                                         max(journal_seq,
624                                             le64_to_cpu(i->journal_seq)));
625
626                                 bch2_btree_add_journal_pin(c, b, journal_seq);
627                         } else {
628                                 /*
629                                  * If we didn't get a journal sequence number we
630                                  * can't write this btree node, because recovery
631                                  * won't know to ignore this write:
632                                  */
633                                 set_btree_node_never_write(b);
634                         }
635                 }
636
637                 mutex_unlock(&c->btree_interior_update_lock);
638                 six_unlock_write(&b->c.lock);
639
640                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
641                 six_unlock_intent(&b->c.lock);
642         }
643
644         bch2_journal_pin_drop(&c->journal, &as->journal);
645
646         bch2_journal_preres_put(&c->journal, &as->journal_preres);
647
648         mutex_lock(&c->btree_interior_update_lock);
649         for (i = 0; i < as->nr_new_nodes; i++) {
650                 b = as->new_nodes[i];
651
652                 BUG_ON(b->will_make_reachable != (unsigned long) as);
653                 b->will_make_reachable = 0;
654         }
655         mutex_unlock(&c->btree_interior_update_lock);
656
657         for (i = 0; i < as->nr_new_nodes; i++) {
658                 b = as->new_nodes[i];
659
660                 btree_node_lock_type(c, b, SIX_LOCK_read);
661                 btree_node_write_if_need(c, b, SIX_LOCK_read);
662                 six_unlock_read(&b->c.lock);
663         }
664
665         for (i = 0; i < as->nr_open_buckets; i++)
666                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
667
668         bch2_btree_update_free(as);
669 }
670
671 static void btree_interior_update_work(struct work_struct *work)
672 {
673         struct bch_fs *c =
674                 container_of(work, struct bch_fs, btree_interior_update_work);
675         struct btree_update *as;
676
677         while (1) {
678                 mutex_lock(&c->btree_interior_update_lock);
679                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
680                                               struct btree_update, unwritten_list);
681                 if (as && !as->nodes_written)
682                         as = NULL;
683                 mutex_unlock(&c->btree_interior_update_lock);
684
685                 if (!as)
686                         break;
687
688                 btree_update_nodes_written(as);
689         }
690 }
691
692 static void btree_update_set_nodes_written(struct closure *cl)
693 {
694         struct btree_update *as = container_of(cl, struct btree_update, cl);
695         struct bch_fs *c = as->c;
696
697         mutex_lock(&c->btree_interior_update_lock);
698         as->nodes_written = true;
699         mutex_unlock(&c->btree_interior_update_lock);
700
701         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
702 }
703
704 /*
705  * We're updating @b with pointers to nodes that haven't finished writing yet:
706  * block @b from being written until @as completes
707  */
708 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
709 {
710         struct bch_fs *c = as->c;
711
712         mutex_lock(&c->btree_interior_update_lock);
713         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
714
715         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
716         BUG_ON(!btree_node_dirty(b));
717
718         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
719         as->b           = b;
720         list_add(&as->write_blocked_list, &b->write_blocked);
721
722         mutex_unlock(&c->btree_interior_update_lock);
723 }
724
725 static void btree_update_reparent(struct btree_update *as,
726                                   struct btree_update *child)
727 {
728         struct bch_fs *c = as->c;
729
730         lockdep_assert_held(&c->btree_interior_update_lock);
731
732         child->b = NULL;
733         child->mode = BTREE_INTERIOR_UPDATING_AS;
734
735         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
736 }
737
738 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
739 {
740         struct bkey_i *insert = &b->key;
741         struct bch_fs *c = as->c;
742
743         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
744
745         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
746                ARRAY_SIZE(as->journal_entries));
747
748         as->journal_u64s +=
749                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
750                                   BCH_JSET_ENTRY_btree_root,
751                                   b->c.btree_id, b->c.level,
752                                   insert, insert->k.u64s);
753
754         mutex_lock(&c->btree_interior_update_lock);
755         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
756
757         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
758         mutex_unlock(&c->btree_interior_update_lock);
759 }
760
761 /*
762  * bch2_btree_update_add_new_node:
763  *
764  * This causes @as to wait on @b to be written, before it gets to
765  * bch2_btree_update_nodes_written
766  *
767  * Additionally, it sets b->will_make_reachable to prevent any additional writes
768  * to @b from happening besides the first until @b is reachable on disk
769  *
770  * And it adds @b to the list of @as's new nodes, so that we can update sector
771  * counts in bch2_btree_update_nodes_written:
772  */
773 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
774 {
775         struct bch_fs *c = as->c;
776
777         closure_get(&as->cl);
778
779         mutex_lock(&c->btree_interior_update_lock);
780         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
781         BUG_ON(b->will_make_reachable);
782
783         as->new_nodes[as->nr_new_nodes++] = b;
784         b->will_make_reachable = 1UL|(unsigned long) as;
785
786         mutex_unlock(&c->btree_interior_update_lock);
787
788         btree_update_will_add_key(as, &b->key);
789 }
790
791 /*
792  * returns true if @b was a new node
793  */
794 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
795 {
796         struct btree_update *as;
797         unsigned long v;
798         unsigned i;
799
800         mutex_lock(&c->btree_interior_update_lock);
801         /*
802          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
803          * dropped when it gets written by bch2_btree_complete_write - the
804          * xchg() is for synchronization with bch2_btree_complete_write:
805          */
806         v = xchg(&b->will_make_reachable, 0);
807         as = (struct btree_update *) (v & ~1UL);
808
809         if (!as) {
810                 mutex_unlock(&c->btree_interior_update_lock);
811                 return;
812         }
813
814         for (i = 0; i < as->nr_new_nodes; i++)
815                 if (as->new_nodes[i] == b)
816                         goto found;
817
818         BUG();
819 found:
820         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
821         mutex_unlock(&c->btree_interior_update_lock);
822
823         if (v & 1)
824                 closure_put(&as->cl);
825 }
826
827 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
828 {
829         while (b->ob.nr)
830                 as->open_buckets[as->nr_open_buckets++] =
831                         b->ob.v[--b->ob.nr];
832 }
833
834 /*
835  * @b is being split/rewritten: it may have pointers to not-yet-written btree
836  * nodes and thus outstanding btree_updates - redirect @b's
837  * btree_updates to point to this btree_update:
838  */
839 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
840                                                struct btree *b)
841 {
842         struct bch_fs *c = as->c;
843         struct btree_update *p, *n;
844         struct btree_write *w;
845
846         set_btree_node_dying(b);
847
848         if (btree_node_fake(b))
849                 return;
850
851         mutex_lock(&c->btree_interior_update_lock);
852
853         /*
854          * Does this node have any btree_update operations preventing
855          * it from being written?
856          *
857          * If so, redirect them to point to this btree_update: we can
858          * write out our new nodes, but we won't make them visible until those
859          * operations complete
860          */
861         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
862                 list_del_init(&p->write_blocked_list);
863                 btree_update_reparent(as, p);
864
865                 /*
866                  * for flush_held_btree_writes() waiting on updates to flush or
867                  * nodes to be writeable:
868                  */
869                 closure_wake_up(&c->btree_interior_update_wait);
870         }
871
872         clear_btree_node_dirty(c, b);
873         clear_btree_node_need_write(b);
874
875         /*
876          * Does this node have unwritten data that has a pin on the journal?
877          *
878          * If so, transfer that pin to the btree_update operation -
879          * note that if we're freeing multiple nodes, we only need to keep the
880          * oldest pin of any of the nodes we're freeing. We'll release the pin
881          * when the new nodes are persistent and reachable on disk:
882          */
883         w = btree_current_write(b);
884         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
885         bch2_journal_pin_drop(&c->journal, &w->journal);
886
887         w = btree_prev_write(b);
888         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
889         bch2_journal_pin_drop(&c->journal, &w->journal);
890
891         mutex_unlock(&c->btree_interior_update_lock);
892
893         /*
894          * Is this a node that isn't reachable on disk yet?
895          *
896          * Nodes that aren't reachable yet have writes blocked until they're
897          * reachable - now that we've cancelled any pending writes and moved
898          * things waiting on that write to wait on this update, we can drop this
899          * node from the list of nodes that the other update is making
900          * reachable, prior to freeing it:
901          */
902         btree_update_drop_new_node(c, b);
903
904         btree_update_will_delete_key(as, &b->key);
905
906         as->old_nodes[as->nr_old_nodes] = b;
907         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
908         as->nr_old_nodes++;
909 }
910
911 static void bch2_btree_update_done(struct btree_update *as)
912 {
913         struct bch_fs *c = as->c;
914         u64 start_time = as->start_time;
915
916         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
917
918         if (as->took_gc_lock)
919                 up_read(&as->c->gc_lock);
920         as->took_gc_lock = false;
921
922         bch2_btree_reserve_put(as);
923
924         continue_at(&as->cl, btree_update_set_nodes_written,
925                     as->c->btree_interior_update_worker);
926
927         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
928                                start_time);
929 }
930
931 static struct btree_update *
932 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
933                         unsigned level, unsigned nr_nodes, unsigned flags)
934 {
935         struct bch_fs *c = trans->c;
936         struct btree_update *as;
937         struct closure cl;
938         u64 start_time = local_clock();
939         int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
940                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
941         int journal_flags = 0;
942         int ret = 0;
943
944         BUG_ON(!path->should_be_locked);
945
946         if (flags & BTREE_INSERT_JOURNAL_RESERVED)
947                 journal_flags |= JOURNAL_RES_GET_RESERVED;
948
949         closure_init_stack(&cl);
950 retry:
951
952         /*
953          * XXX: figure out how far we might need to split,
954          * instead of locking/reserving all the way to the root:
955          */
956         if (!bch2_btree_path_upgrade(trans, path, U8_MAX)) {
957                 trace_trans_restart_iter_upgrade(trans->ip, _RET_IP_,
958                                                  path->btree_id, &path->pos);
959                 ret = btree_trans_restart(trans);
960                 return ERR_PTR(ret);
961         }
962
963         if (flags & BTREE_INSERT_GC_LOCK_HELD)
964                 lockdep_assert_held(&c->gc_lock);
965         else if (!down_read_trylock(&c->gc_lock)) {
966                 bch2_trans_unlock(trans);
967                 down_read(&c->gc_lock);
968                 if (!bch2_trans_relock(trans)) {
969                         up_read(&c->gc_lock);
970                         return ERR_PTR(-EINTR);
971                 }
972         }
973
974         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
975         memset(as, 0, sizeof(*as));
976         closure_init(&as->cl, NULL);
977         as->c           = c;
978         as->start_time  = start_time;
979         as->mode        = BTREE_INTERIOR_NO_UPDATE;
980         as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
981         as->btree_id    = path->btree_id;
982         INIT_LIST_HEAD(&as->list);
983         INIT_LIST_HEAD(&as->unwritten_list);
984         INIT_LIST_HEAD(&as->write_blocked_list);
985         bch2_keylist_init(&as->old_keys, as->_old_keys);
986         bch2_keylist_init(&as->new_keys, as->_new_keys);
987         bch2_keylist_init(&as->parent_keys, as->inline_keys);
988
989         mutex_lock(&c->btree_interior_update_lock);
990         list_add_tail(&as->list, &c->btree_interior_update_list);
991         mutex_unlock(&c->btree_interior_update_lock);
992
993         /*
994          * We don't want to allocate if we're in an error state, that can cause
995          * deadlock on emergency shutdown due to open buckets getting stuck in
996          * the btree_reserve_cache after allocator shutdown has cleared it out.
997          * This check needs to come after adding us to the btree_interior_update
998          * list but before calling bch2_btree_reserve_get, to synchronize with
999          * __bch2_fs_read_only().
1000          */
1001         ret = bch2_journal_error(&c->journal);
1002         if (ret)
1003                 goto err;
1004
1005         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1006                                       BTREE_UPDATE_JOURNAL_RES,
1007                                       journal_flags|JOURNAL_RES_GET_NONBLOCK);
1008         if (ret == -EAGAIN) {
1009                 bch2_trans_unlock(trans);
1010
1011                 if (flags & BTREE_INSERT_JOURNAL_RECLAIM) {
1012                         bch2_btree_update_free(as);
1013                         btree_trans_restart(trans);
1014                         return ERR_PTR(ret);
1015                 }
1016
1017                 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1018                                 BTREE_UPDATE_JOURNAL_RES,
1019                                 journal_flags);
1020                 if (ret) {
1021                         trace_trans_restart_journal_preres_get(trans->ip, _RET_IP_);
1022                         goto err;
1023                 }
1024
1025                 if (!bch2_trans_relock(trans)) {
1026                         ret = -EINTR;
1027                         goto err;
1028                 }
1029         }
1030
1031         ret = bch2_disk_reservation_get(c, &as->disk_res,
1032                         nr_nodes * btree_sectors(c),
1033                         c->opts.metadata_replicas,
1034                         disk_res_flags);
1035         if (ret)
1036                 goto err;
1037
1038         ret = bch2_btree_reserve_get(as, nr_nodes, flags, &cl);
1039         if (ret)
1040                 goto err;
1041
1042         bch2_journal_pin_add(&c->journal,
1043                              atomic64_read(&c->journal.seq),
1044                              &as->journal, NULL);
1045
1046         return as;
1047 err:
1048         bch2_btree_update_free(as);
1049
1050         if (ret == -EAGAIN) {
1051                 bch2_trans_unlock(trans);
1052                 closure_sync(&cl);
1053                 ret = -EINTR;
1054         }
1055
1056         if (ret == -EINTR && bch2_trans_relock(trans))
1057                 goto retry;
1058
1059         return ERR_PTR(ret);
1060 }
1061
1062 /* Btree root updates: */
1063
1064 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1065 {
1066         /* Root nodes cannot be reaped */
1067         mutex_lock(&c->btree_cache.lock);
1068         list_del_init(&b->list);
1069         mutex_unlock(&c->btree_cache.lock);
1070
1071         if (b->c.level)
1072                 six_lock_pcpu_alloc(&b->c.lock);
1073         else
1074                 six_lock_pcpu_free(&b->c.lock);
1075
1076         mutex_lock(&c->btree_root_lock);
1077         BUG_ON(btree_node_root(c, b) &&
1078                (b->c.level < btree_node_root(c, b)->c.level ||
1079                 !btree_node_dying(btree_node_root(c, b))));
1080
1081         btree_node_root(c, b) = b;
1082         mutex_unlock(&c->btree_root_lock);
1083
1084         bch2_recalc_btree_reserve(c);
1085 }
1086
1087 /**
1088  * bch_btree_set_root - update the root in memory and on disk
1089  *
1090  * To ensure forward progress, the current task must not be holding any
1091  * btree node write locks. However, you must hold an intent lock on the
1092  * old root.
1093  *
1094  * Note: This allocates a journal entry but doesn't add any keys to
1095  * it.  All the btree roots are part of every journal write, so there
1096  * is nothing new to be done.  This just guarantees that there is a
1097  * journal write.
1098  */
1099 static void bch2_btree_set_root(struct btree_update *as,
1100                                 struct btree_trans *trans,
1101                                 struct btree_path *path,
1102                                 struct btree *b)
1103 {
1104         struct bch_fs *c = as->c;
1105         struct btree *old;
1106
1107         trace_btree_set_root(c, b);
1108         BUG_ON(!b->written &&
1109                !test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags));
1110
1111         old = btree_node_root(c, b);
1112
1113         /*
1114          * Ensure no one is using the old root while we switch to the
1115          * new root:
1116          */
1117         bch2_btree_node_lock_write(trans, path, old);
1118
1119         bch2_btree_set_root_inmem(c, b);
1120
1121         btree_update_updated_root(as, b);
1122
1123         /*
1124          * Unlock old root after new root is visible:
1125          *
1126          * The new root isn't persistent, but that's ok: we still have
1127          * an intent lock on the new root, and any updates that would
1128          * depend on the new root would have to update the new root.
1129          */
1130         bch2_btree_node_unlock_write(trans, path, old);
1131 }
1132
1133 /* Interior node updates: */
1134
1135 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1136                                         struct btree_trans *trans,
1137                                         struct btree_path *path,
1138                                         struct btree *b,
1139                                         struct btree_node_iter *node_iter,
1140                                         struct bkey_i *insert)
1141 {
1142         struct bch_fs *c = as->c;
1143         struct bkey_packed *k;
1144         const char *invalid;
1145
1146         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1147                !btree_ptr_sectors_written(insert));
1148
1149         invalid = bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b)) ?:
1150                 bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert));
1151         if (invalid) {
1152                 char buf[160];
1153
1154                 bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(insert));
1155                 bch2_fs_inconsistent(c, "inserting invalid bkey %s: %s", buf, invalid);
1156                 dump_stack();
1157         }
1158
1159         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1160                ARRAY_SIZE(as->journal_entries));
1161
1162         as->journal_u64s +=
1163                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1164                                   BCH_JSET_ENTRY_btree_keys,
1165                                   b->c.btree_id, b->c.level,
1166                                   insert, insert->k.u64s);
1167
1168         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1169                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1170                 bch2_btree_node_iter_advance(node_iter, b);
1171
1172         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1173         set_btree_node_dirty(c, b);
1174         set_btree_node_need_write(b);
1175 }
1176
1177 static void
1178 __bch2_btree_insert_keys_interior(struct btree_update *as,
1179                                   struct btree_trans *trans,
1180                                   struct btree_path *path,
1181                                   struct btree *b,
1182                                   struct btree_node_iter node_iter,
1183                                   struct keylist *keys)
1184 {
1185         struct bkey_i *insert = bch2_keylist_front(keys);
1186         struct bkey_packed *k;
1187
1188         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1189
1190         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1191                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1192                 ;
1193
1194         while (!bch2_keylist_empty(keys)) {
1195                 bch2_insert_fixup_btree_ptr(as, trans, path, b,
1196                                 &node_iter, bch2_keylist_front(keys));
1197                 bch2_keylist_pop_front(keys);
1198         }
1199 }
1200
1201 /*
1202  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1203  * node)
1204  */
1205 static struct btree *__btree_split_node(struct btree_update *as,
1206                                         struct btree *n1)
1207 {
1208         struct bkey_format_state s;
1209         size_t nr_packed = 0, nr_unpacked = 0;
1210         struct btree *n2;
1211         struct bset *set1, *set2;
1212         struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL;
1213         struct bpos n1_pos;
1214
1215         n2 = bch2_btree_node_alloc(as, n1->c.level);
1216         bch2_btree_update_add_new_node(as, n2);
1217
1218         n2->data->max_key       = n1->data->max_key;
1219         n2->data->format        = n1->format;
1220         SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
1221         n2->key.k.p = n1->key.k.p;
1222
1223         set1 = btree_bset_first(n1);
1224         set2 = btree_bset_first(n2);
1225
1226         /*
1227          * Has to be a linear search because we don't have an auxiliary
1228          * search tree yet
1229          */
1230         k = set1->start;
1231         while (1) {
1232                 struct bkey_packed *n = bkey_next(k);
1233
1234                 if (n == vstruct_last(set1))
1235                         break;
1236                 if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
1237                         break;
1238
1239                 if (bkey_packed(k))
1240                         nr_packed++;
1241                 else
1242                         nr_unpacked++;
1243
1244                 prev = k;
1245                 k = n;
1246         }
1247
1248         BUG_ON(!prev);
1249         set2_start      = k;
1250         set2_end        = vstruct_last(set1);
1251
1252         set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data);
1253         set_btree_bset_end(n1, n1->set);
1254
1255         n1->nr.live_u64s        = le16_to_cpu(set1->u64s);
1256         n1->nr.bset_u64s[0]     = le16_to_cpu(set1->u64s);
1257         n1->nr.packed_keys      = nr_packed;
1258         n1->nr.unpacked_keys    = nr_unpacked;
1259
1260         n1_pos = bkey_unpack_pos(n1, prev);
1261         if (as->c->sb.version < bcachefs_metadata_version_snapshot)
1262                 n1_pos.snapshot = U32_MAX;
1263
1264         btree_set_max(n1, n1_pos);
1265         btree_set_min(n2, bpos_successor(n1->key.k.p));
1266
1267         bch2_bkey_format_init(&s);
1268         bch2_bkey_format_add_pos(&s, n2->data->min_key);
1269         bch2_bkey_format_add_pos(&s, n2->data->max_key);
1270
1271         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1272                 struct bkey uk = bkey_unpack_key(n1, k);
1273                 bch2_bkey_format_add_key(&s, &uk);
1274         }
1275
1276         n2->data->format = bch2_bkey_format_done(&s);
1277         btree_node_set_format(n2, n2->data->format);
1278
1279         out = set2->start;
1280         memset(&n2->nr, 0, sizeof(n2->nr));
1281
1282         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1283                 BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k)
1284                                        ? &n1->format : &bch2_bkey_format_current, k));
1285                 out->format = KEY_FORMAT_LOCAL_BTREE;
1286                 btree_keys_account_key_add(&n2->nr, 0, out);
1287                 out = bkey_next(out);
1288         }
1289
1290         set2->u64s = cpu_to_le16((u64 *) out - set2->_data);
1291         set_btree_bset_end(n2, n2->set);
1292
1293         BUG_ON(!set1->u64s);
1294         BUG_ON(!set2->u64s);
1295
1296         btree_node_reset_sib_u64s(n1);
1297         btree_node_reset_sib_u64s(n2);
1298
1299         bch2_verify_btree_nr_keys(n1);
1300         bch2_verify_btree_nr_keys(n2);
1301
1302         if (n1->c.level) {
1303                 btree_node_interior_verify(as->c, n1);
1304                 btree_node_interior_verify(as->c, n2);
1305         }
1306
1307         return n2;
1308 }
1309
1310 /*
1311  * For updates to interior nodes, we've got to do the insert before we split
1312  * because the stuff we're inserting has to be inserted atomically. Post split,
1313  * the keys might have to go in different nodes and the split would no longer be
1314  * atomic.
1315  *
1316  * Worse, if the insert is from btree node coalescing, if we do the insert after
1317  * we do the split (and pick the pivot) - the pivot we pick might be between
1318  * nodes that were coalesced, and thus in the middle of a child node post
1319  * coalescing:
1320  */
1321 static void btree_split_insert_keys(struct btree_update *as,
1322                                     struct btree_trans *trans,
1323                                     struct btree_path *path,
1324                                     struct btree *b,
1325                                     struct keylist *keys)
1326 {
1327         struct btree_node_iter node_iter;
1328         struct bkey_i *k = bch2_keylist_front(keys);
1329         struct bkey_packed *src, *dst, *n;
1330         struct bset *i;
1331
1332         bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
1333
1334         __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1335
1336         /*
1337          * We can't tolerate whiteouts here - with whiteouts there can be
1338          * duplicate keys, and it would be rather bad if we picked a duplicate
1339          * for the pivot:
1340          */
1341         i = btree_bset_first(b);
1342         src = dst = i->start;
1343         while (src != vstruct_last(i)) {
1344                 n = bkey_next(src);
1345                 if (!bkey_deleted(src)) {
1346                         memmove_u64s_down(dst, src, src->u64s);
1347                         dst = bkey_next(dst);
1348                 }
1349                 src = n;
1350         }
1351
1352         /* Also clear out the unwritten whiteouts area: */
1353         b->whiteout_u64s = 0;
1354
1355         i->u64s = cpu_to_le16((u64 *) dst - i->_data);
1356         set_btree_bset_end(b, b->set);
1357
1358         BUG_ON(b->nsets != 1 ||
1359                b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
1360
1361         btree_node_interior_verify(as->c, b);
1362 }
1363
1364 static void btree_split(struct btree_update *as, struct btree_trans *trans,
1365                         struct btree_path *path, struct btree *b,
1366                         struct keylist *keys, unsigned flags)
1367 {
1368         struct bch_fs *c = as->c;
1369         struct btree *parent = btree_node_parent(path, b);
1370         struct btree *n1, *n2 = NULL, *n3 = NULL;
1371         u64 start_time = local_clock();
1372
1373         BUG_ON(!parent && (b != btree_node_root(c, b)));
1374         BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level));
1375
1376         bch2_btree_interior_update_will_free_node(as, b);
1377
1378         n1 = bch2_btree_node_alloc_replacement(as, b);
1379         bch2_btree_update_add_new_node(as, n1);
1380
1381         if (keys)
1382                 btree_split_insert_keys(as, trans, path, n1, keys);
1383
1384         if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
1385                 trace_btree_split(c, b);
1386
1387                 n2 = __btree_split_node(as, n1);
1388
1389                 bch2_btree_build_aux_trees(n2);
1390                 bch2_btree_build_aux_trees(n1);
1391                 six_unlock_write(&n2->c.lock);
1392                 six_unlock_write(&n1->c.lock);
1393
1394                 bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1395                 bch2_btree_node_write(c, n2, SIX_LOCK_intent);
1396
1397                 /*
1398                  * Note that on recursive parent_keys == keys, so we
1399                  * can't start adding new keys to parent_keys before emptying it
1400                  * out (which we did with btree_split_insert_keys() above)
1401                  */
1402                 bch2_keylist_add(&as->parent_keys, &n1->key);
1403                 bch2_keylist_add(&as->parent_keys, &n2->key);
1404
1405                 if (!parent) {
1406                         /* Depth increases, make a new root */
1407                         n3 = __btree_root_alloc(as, b->c.level + 1);
1408
1409                         n3->sib_u64s[0] = U16_MAX;
1410                         n3->sib_u64s[1] = U16_MAX;
1411
1412                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1413
1414                         bch2_btree_node_write(c, n3, SIX_LOCK_intent);
1415                 }
1416         } else {
1417                 trace_btree_compact(c, b);
1418
1419                 bch2_btree_build_aux_trees(n1);
1420                 six_unlock_write(&n1->c.lock);
1421
1422                 bch2_btree_node_write(c, n1, SIX_LOCK_intent);
1423
1424                 if (parent)
1425                         bch2_keylist_add(&as->parent_keys, &n1->key);
1426         }
1427
1428         /* New nodes all written, now make them visible: */
1429
1430         if (parent) {
1431                 /* Split a non root node */
1432                 bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1433         } else if (n3) {
1434                 bch2_btree_set_root(as, trans, path, n3);
1435         } else {
1436                 /* Root filled up but didn't need to be split */
1437                 bch2_btree_set_root(as, trans, path, n1);
1438         }
1439
1440         bch2_btree_update_get_open_buckets(as, n1);
1441         if (n2)
1442                 bch2_btree_update_get_open_buckets(as, n2);
1443         if (n3)
1444                 bch2_btree_update_get_open_buckets(as, n3);
1445
1446         /* Successful split, update the path to point to the new nodes: */
1447
1448         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1449         if (n3)
1450                 bch2_trans_node_add(trans, n3);
1451         if (n2)
1452                 bch2_trans_node_add(trans, n2);
1453         bch2_trans_node_add(trans, n1);
1454
1455         /*
1456          * The old node must be freed (in memory) _before_ unlocking the new
1457          * nodes - else another thread could re-acquire a read lock on the old
1458          * node after another thread has locked and updated the new node, thus
1459          * seeing stale data:
1460          */
1461         bch2_btree_node_free_inmem(trans, b);
1462
1463         if (n3)
1464                 six_unlock_intent(&n3->c.lock);
1465         if (n2)
1466                 six_unlock_intent(&n2->c.lock);
1467         six_unlock_intent(&n1->c.lock);
1468
1469         bch2_trans_verify_locks(trans);
1470
1471         bch2_time_stats_update(&c->times[n2
1472                                ? BCH_TIME_btree_node_split
1473                                : BCH_TIME_btree_node_compact],
1474                                start_time);
1475 }
1476
1477 static void
1478 bch2_btree_insert_keys_interior(struct btree_update *as,
1479                                 struct btree_trans *trans,
1480                                 struct btree_path *path,
1481                                 struct btree *b,
1482                                 struct keylist *keys)
1483 {
1484         struct btree_path *linked;
1485
1486         __bch2_btree_insert_keys_interior(as, trans, path, b,
1487                                           path->l[b->c.level].iter, keys);
1488
1489         btree_update_updated_node(as, b);
1490
1491         trans_for_each_path_with_node(trans, b, linked)
1492                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1493
1494         bch2_trans_verify_paths(trans);
1495 }
1496
1497 /**
1498  * bch_btree_insert_node - insert bkeys into a given btree node
1499  *
1500  * @iter:               btree iterator
1501  * @keys:               list of keys to insert
1502  * @hook:               insert callback
1503  * @persistent:         if not null, @persistent will wait on journal write
1504  *
1505  * Inserts as many keys as it can into a given btree node, splitting it if full.
1506  * If a split occurred, this function will return early. This can only happen
1507  * for leaf nodes -- inserts into interior nodes have to be atomic.
1508  */
1509 static void bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1510                                    struct btree_path *path, struct btree *b,
1511                                    struct keylist *keys, unsigned flags)
1512 {
1513         struct bch_fs *c = as->c;
1514         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1515         int old_live_u64s = b->nr.live_u64s;
1516         int live_u64s_added, u64s_added;
1517
1518         lockdep_assert_held(&c->gc_lock);
1519         BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level));
1520         BUG_ON(!b->c.level);
1521         BUG_ON(!as || as->b);
1522         bch2_verify_keylist_sorted(keys);
1523
1524         bch2_btree_node_lock_for_insert(trans, path, b);
1525
1526         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1527                 bch2_btree_node_unlock_write(trans, path, b);
1528                 goto split;
1529         }
1530
1531         btree_node_interior_verify(c, b);
1532
1533         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1534
1535         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1536         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1537
1538         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1539                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1540         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1541                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1542
1543         if (u64s_added > live_u64s_added &&
1544             bch2_maybe_compact_whiteouts(c, b))
1545                 bch2_trans_node_reinit_iter(trans, b);
1546
1547         bch2_btree_node_unlock_write(trans, path, b);
1548
1549         btree_node_interior_verify(c, b);
1550         return;
1551 split:
1552         btree_split(as, trans, path, b, keys, flags);
1553 }
1554
1555 int bch2_btree_split_leaf(struct btree_trans *trans,
1556                           struct btree_path *path,
1557                           unsigned flags)
1558 {
1559         struct bch_fs *c = trans->c;
1560         struct btree *b = path_l(path)->b;
1561         struct btree_update *as;
1562         unsigned l;
1563         int ret = 0;
1564
1565         as = bch2_btree_update_start(trans, path, path->level,
1566                 btree_update_reserve_required(c, b), flags);
1567         if (IS_ERR(as))
1568                 return PTR_ERR(as);
1569
1570         btree_split(as, trans, path, b, NULL, flags);
1571         bch2_btree_update_done(as);
1572
1573         for (l = path->level + 1; btree_path_node(path, l) && !ret; l++)
1574                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1575
1576         return ret;
1577 }
1578
1579 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1580                                   struct btree_path *path,
1581                                   unsigned level,
1582                                   unsigned flags,
1583                                   enum btree_node_sibling sib)
1584 {
1585         struct bch_fs *c = trans->c;
1586         struct btree_path *sib_path = NULL;
1587         struct btree_update *as;
1588         struct bkey_format_state new_s;
1589         struct bkey_format new_f;
1590         struct bkey_i delete;
1591         struct btree *b, *m, *n, *prev, *next, *parent;
1592         struct bpos sib_pos;
1593         size_t sib_u64s;
1594         u64 start_time = local_clock();
1595         int ret = 0;
1596
1597         BUG_ON(!path->should_be_locked);
1598         BUG_ON(!btree_node_locked(path, level));
1599
1600         b = path->l[level].b;
1601
1602         if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) ||
1603             (sib == btree_next_sib && !bpos_cmp(b->data->max_key, SPOS_MAX))) {
1604                 b->sib_u64s[sib] = U16_MAX;
1605                 return 0;
1606         }
1607
1608         sib_pos = sib == btree_prev_sib
1609                 ? bpos_predecessor(b->data->min_key)
1610                 : bpos_successor(b->data->max_key);
1611
1612         sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1613                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1614         ret = bch2_btree_path_traverse(trans, sib_path, false);
1615         if (ret)
1616                 goto err;
1617
1618         sib_path->should_be_locked = true;
1619
1620         m = sib_path->l[level].b;
1621
1622         if (btree_node_parent(path, b) !=
1623             btree_node_parent(sib_path, m)) {
1624                 b->sib_u64s[sib] = U16_MAX;
1625                 goto out;
1626         }
1627
1628         if (sib == btree_prev_sib) {
1629                 prev = m;
1630                 next = b;
1631         } else {
1632                 prev = b;
1633                 next = m;
1634         }
1635
1636         if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) {
1637                 char buf1[100], buf2[100];
1638
1639                 bch2_bpos_to_text(&PBUF(buf1), prev->data->max_key);
1640                 bch2_bpos_to_text(&PBUF(buf2), next->data->min_key);
1641                 bch_err(c,
1642                         "btree topology error in btree merge:\n"
1643                         "  prev ends at   %s\n"
1644                         "  next starts at %s",
1645                         buf1, buf2);
1646                 bch2_topology_error(c);
1647                 ret = -EIO;
1648                 goto err;
1649         }
1650
1651         bch2_bkey_format_init(&new_s);
1652         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1653         __bch2_btree_calc_format(&new_s, prev);
1654         __bch2_btree_calc_format(&new_s, next);
1655         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1656         new_f = bch2_bkey_format_done(&new_s);
1657
1658         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1659                 btree_node_u64s_with_format(m, &new_f);
1660
1661         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1662                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1663                 sib_u64s /= 2;
1664                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1665         }
1666
1667         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1668         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1669         b->sib_u64s[sib] = sib_u64s;
1670
1671         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1672                 goto out;
1673
1674         parent = btree_node_parent(path, b);
1675         as = bch2_btree_update_start(trans, path, level,
1676                          btree_update_reserve_required(c, parent) + 1,
1677                          flags|
1678                          BTREE_INSERT_NOFAIL|
1679                          BTREE_INSERT_USE_RESERVE);
1680         ret = PTR_ERR_OR_ZERO(as);
1681         if (ret)
1682                 goto err;
1683
1684         trace_btree_merge(c, b);
1685
1686         bch2_btree_interior_update_will_free_node(as, b);
1687         bch2_btree_interior_update_will_free_node(as, m);
1688
1689         n = bch2_btree_node_alloc(as, b->c.level);
1690         bch2_btree_update_add_new_node(as, n);
1691
1692         btree_set_min(n, prev->data->min_key);
1693         btree_set_max(n, next->data->max_key);
1694         n->data->format         = new_f;
1695
1696         btree_node_set_format(n, new_f);
1697
1698         bch2_btree_sort_into(c, n, prev);
1699         bch2_btree_sort_into(c, n, next);
1700
1701         bch2_btree_build_aux_trees(n);
1702         six_unlock_write(&n->c.lock);
1703
1704         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1705
1706         bkey_init(&delete.k);
1707         delete.k.p = prev->key.k.p;
1708         bch2_keylist_add(&as->parent_keys, &delete);
1709         bch2_keylist_add(&as->parent_keys, &n->key);
1710
1711         bch2_trans_verify_paths(trans);
1712
1713         bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1714
1715         bch2_trans_verify_paths(trans);
1716
1717         bch2_btree_update_get_open_buckets(as, n);
1718
1719         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1720         six_lock_increment(&m->c.lock, SIX_LOCK_intent);
1721
1722         bch2_trans_node_add(trans, n);
1723
1724         bch2_trans_verify_paths(trans);
1725
1726         bch2_btree_node_free_inmem(trans, b);
1727         bch2_btree_node_free_inmem(trans, m);
1728
1729         six_unlock_intent(&n->c.lock);
1730
1731         bch2_btree_update_done(as);
1732
1733         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1734 out:
1735 err:
1736         bch2_path_put(trans, sib_path, true);
1737         bch2_trans_verify_locks(trans);
1738         return ret;
1739 }
1740
1741 /**
1742  * bch_btree_node_rewrite - Rewrite/move a btree node
1743  */
1744 int bch2_btree_node_rewrite(struct btree_trans *trans,
1745                             struct btree_iter *iter,
1746                             struct btree *b,
1747                             unsigned flags)
1748 {
1749         struct bch_fs *c = trans->c;
1750         struct btree *n, *parent;
1751         struct btree_update *as;
1752         int ret;
1753
1754         flags |= BTREE_INSERT_NOFAIL;
1755
1756         parent = btree_node_parent(iter->path, b);
1757         as = bch2_btree_update_start(trans, iter->path, b->c.level,
1758                 (parent
1759                  ? btree_update_reserve_required(c, parent)
1760                  : 0) + 1,
1761                 flags);
1762         ret = PTR_ERR_OR_ZERO(as);
1763         if (ret) {
1764                 trace_btree_gc_rewrite_node_fail(c, b);
1765                 goto out;
1766         }
1767
1768         bch2_btree_interior_update_will_free_node(as, b);
1769
1770         n = bch2_btree_node_alloc_replacement(as, b);
1771         bch2_btree_update_add_new_node(as, n);
1772
1773         bch2_btree_build_aux_trees(n);
1774         six_unlock_write(&n->c.lock);
1775
1776         trace_btree_gc_rewrite_node(c, b);
1777
1778         bch2_btree_node_write(c, n, SIX_LOCK_intent);
1779
1780         if (parent) {
1781                 bch2_keylist_add(&as->parent_keys, &n->key);
1782                 bch2_btree_insert_node(as, trans, iter->path, parent,
1783                                        &as->parent_keys, flags);
1784         } else {
1785                 bch2_btree_set_root(as, trans, iter->path, n);
1786         }
1787
1788         bch2_btree_update_get_open_buckets(as, n);
1789
1790         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1791         bch2_trans_node_add(trans, n);
1792         bch2_btree_node_free_inmem(trans, b);
1793         six_unlock_intent(&n->c.lock);
1794
1795         bch2_btree_update_done(as);
1796 out:
1797         bch2_btree_path_downgrade(iter->path);
1798         return ret;
1799 }
1800
1801 struct async_btree_rewrite {
1802         struct bch_fs           *c;
1803         struct work_struct      work;
1804         enum btree_id           btree_id;
1805         unsigned                level;
1806         struct bpos             pos;
1807         __le64                  seq;
1808 };
1809
1810 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
1811                                           struct async_btree_rewrite *a)
1812 {
1813         struct btree_iter iter;
1814         struct btree *b;
1815         int ret;
1816
1817         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
1818                                   BTREE_MAX_DEPTH, a->level, 0);
1819         b = bch2_btree_iter_peek_node(&iter);
1820         ret = PTR_ERR_OR_ZERO(b);
1821         if (ret)
1822                 goto out;
1823
1824         if (!b || b->data->keys.seq != a->seq)
1825                 goto out;
1826
1827         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
1828 out :
1829         bch2_trans_iter_exit(trans, &iter);
1830
1831         return ret;
1832 }
1833
1834 void async_btree_node_rewrite_work(struct work_struct *work)
1835 {
1836         struct async_btree_rewrite *a =
1837                 container_of(work, struct async_btree_rewrite, work);
1838         struct bch_fs *c = a->c;
1839
1840         bch2_trans_do(c, NULL, NULL, 0,
1841                       async_btree_node_rewrite_trans(&trans, a));
1842         percpu_ref_put(&c->writes);
1843         kfree(a);
1844 }
1845
1846 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
1847 {
1848         struct async_btree_rewrite *a;
1849
1850         if (!test_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags))
1851                 return;
1852
1853         if (!percpu_ref_tryget(&c->writes))
1854                 return;
1855
1856         a = kmalloc(sizeof(*a), GFP_NOFS);
1857         if (!a) {
1858                 percpu_ref_put(&c->writes);
1859                 return;
1860         }
1861
1862         a->c            = c;
1863         a->btree_id     = b->c.btree_id;
1864         a->level        = b->c.level;
1865         a->pos          = b->key.k.p;
1866         a->seq          = b->data->keys.seq;
1867
1868         INIT_WORK(&a->work, async_btree_node_rewrite_work);
1869         queue_work(c->btree_interior_update_worker, &a->work);
1870 }
1871
1872 static int __bch2_btree_node_update_key(struct btree_trans *trans,
1873                                         struct btree_iter *iter,
1874                                         struct btree *b, struct btree *new_hash,
1875                                         struct bkey_i *new_key,
1876                                         bool skip_triggers)
1877 {
1878         struct bch_fs *c = trans->c;
1879         struct btree_iter iter2 = { NULL };
1880         struct btree *parent;
1881         u64 journal_entries[BKEY_BTREE_PTR_U64s_MAX];
1882         int ret;
1883
1884         if (!skip_triggers) {
1885                 ret = bch2_trans_mark_key(trans,
1886                                           bkey_s_c_null,
1887                                           bkey_i_to_s_c(new_key),
1888                                           BTREE_TRIGGER_INSERT);
1889                 if (ret)
1890                         return ret;
1891
1892                 ret = bch2_trans_mark_key(trans,
1893                                           bkey_i_to_s_c(&b->key),
1894                                           bkey_s_c_null,
1895                                           BTREE_TRIGGER_OVERWRITE);
1896                 if (ret)
1897                         return ret;
1898         }
1899
1900         if (new_hash) {
1901                 bkey_copy(&new_hash->key, new_key);
1902                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
1903                                 new_hash, b->c.level, b->c.btree_id);
1904                 BUG_ON(ret);
1905         }
1906
1907         parent = btree_node_parent(iter->path, b);
1908         if (parent) {
1909                 bch2_trans_copy_iter(&iter2, iter);
1910
1911                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
1912                                 iter2.flags & BTREE_ITER_INTENT,
1913                                 _THIS_IP_);
1914
1915                 BUG_ON(iter2.path->level != b->c.level);
1916                 BUG_ON(bpos_cmp(iter2.path->pos, new_key->k.p));
1917
1918                 btree_node_unlock(iter2.path, iter2.path->level);
1919                 path_l(iter2.path)->b = BTREE_ITER_NO_NODE_UP;
1920                 iter2.path->level++;
1921
1922                 ret   = bch2_btree_iter_traverse(&iter2) ?:
1923                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
1924                 if (ret)
1925                         goto err;
1926         } else {
1927                 BUG_ON(btree_node_root(c, b) != b);
1928
1929                 trans->extra_journal_entries = (void *) &journal_entries[0];
1930                 trans->extra_journal_entry_u64s =
1931                         journal_entry_set((void *) &journal_entries[0],
1932                                           BCH_JSET_ENTRY_btree_root,
1933                                           b->c.btree_id, b->c.level,
1934                                           new_key, new_key->k.u64s);
1935         }
1936
1937         ret = bch2_trans_commit(trans, NULL, NULL,
1938                                 BTREE_INSERT_NOFAIL|
1939                                 BTREE_INSERT_NOCHECK_RW|
1940                                 BTREE_INSERT_JOURNAL_RECLAIM|
1941                                 BTREE_INSERT_JOURNAL_RESERVED);
1942         if (ret)
1943                 goto err;
1944
1945         bch2_btree_node_lock_write(trans, iter->path, b);
1946
1947         if (new_hash) {
1948                 mutex_lock(&c->btree_cache.lock);
1949                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
1950                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1951
1952                 bkey_copy(&b->key, new_key);
1953                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
1954                 BUG_ON(ret);
1955                 mutex_unlock(&c->btree_cache.lock);
1956         } else {
1957                 bkey_copy(&b->key, new_key);
1958         }
1959
1960         bch2_btree_node_unlock_write(trans, iter->path, b);
1961 out:
1962         bch2_trans_iter_exit(trans, &iter2);
1963         return ret;
1964 err:
1965         if (new_hash) {
1966                 mutex_lock(&c->btree_cache.lock);
1967                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1968                 mutex_unlock(&c->btree_cache.lock);
1969         }
1970         goto out;
1971 }
1972
1973 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
1974                                struct btree *b, struct bkey_i *new_key,
1975                                bool skip_triggers)
1976 {
1977         struct bch_fs *c = trans->c;
1978         struct btree *new_hash = NULL;
1979         struct btree_path *path = iter->path;
1980         struct closure cl;
1981         int ret = 0;
1982
1983         if (!btree_node_intent_locked(path, b->c.level) &&
1984             !bch2_btree_path_upgrade(trans, path, b->c.level + 1)) {
1985                 btree_trans_restart(trans);
1986                 return -EINTR;
1987         }
1988
1989         closure_init_stack(&cl);
1990
1991         /*
1992          * check btree_ptr_hash_val() after @b is locked by
1993          * btree_iter_traverse():
1994          */
1995         if (btree_ptr_hash_val(new_key) != b->hash_val) {
1996                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
1997                 if (ret) {
1998                         bch2_trans_unlock(trans);
1999                         closure_sync(&cl);
2000                         if (!bch2_trans_relock(trans))
2001                                 return -EINTR;
2002                 }
2003
2004                 new_hash = bch2_btree_node_mem_alloc(c);
2005         }
2006
2007         path->intent_ref++;
2008         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash,
2009                                            new_key, skip_triggers);
2010         --path->intent_ref;
2011
2012         if (new_hash) {
2013                 mutex_lock(&c->btree_cache.lock);
2014                 list_move(&new_hash->list, &c->btree_cache.freeable);
2015                 mutex_unlock(&c->btree_cache.lock);
2016
2017                 six_unlock_write(&new_hash->c.lock);
2018                 six_unlock_intent(&new_hash->c.lock);
2019         }
2020         closure_sync(&cl);
2021         bch2_btree_cache_cannibalize_unlock(c);
2022         return ret;
2023 }
2024
2025 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2026                                         struct btree *b, struct bkey_i *new_key,
2027                                         bool skip_triggers)
2028 {
2029         struct btree_iter iter;
2030         int ret;
2031
2032         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2033                                   BTREE_MAX_DEPTH, b->c.level,
2034                                   BTREE_ITER_INTENT);
2035         ret = bch2_btree_iter_traverse(&iter);
2036         if (ret)
2037                 goto out;
2038
2039         /* has node been freed? */
2040         if (iter.path->l[b->c.level].b != b) {
2041                 /* node has been freed: */
2042                 BUG_ON(!btree_node_dying(b));
2043                 goto out;
2044         }
2045
2046         BUG_ON(!btree_node_hashed(b));
2047
2048         ret = bch2_btree_node_update_key(trans, &iter, b, new_key, skip_triggers);
2049 out:
2050         bch2_trans_iter_exit(trans, &iter);
2051         return ret;
2052 }
2053
2054 /* Init code: */
2055
2056 /*
2057  * Only for filesystem bringup, when first reading the btree roots or allocating
2058  * btree roots when initializing a new filesystem:
2059  */
2060 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2061 {
2062         BUG_ON(btree_node_root(c, b));
2063
2064         bch2_btree_set_root_inmem(c, b);
2065 }
2066
2067 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2068 {
2069         struct closure cl;
2070         struct btree *b;
2071         int ret;
2072
2073         closure_init_stack(&cl);
2074
2075         do {
2076                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2077                 closure_sync(&cl);
2078         } while (ret);
2079
2080         b = bch2_btree_node_mem_alloc(c);
2081         bch2_btree_cache_cannibalize_unlock(c);
2082
2083         set_btree_node_fake(b);
2084         set_btree_node_need_rewrite(b);
2085         b->c.level      = 0;
2086         b->c.btree_id   = id;
2087
2088         bkey_btree_ptr_init(&b->key);
2089         b->key.k.p = SPOS_MAX;
2090         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2091
2092         bch2_bset_init_first(b, &b->data->keys);
2093         bch2_btree_build_aux_trees(b);
2094
2095         b->data->flags = 0;
2096         btree_set_min(b, POS_MIN);
2097         btree_set_max(b, SPOS_MAX);
2098         b->data->format = bch2_btree_calc_format(b);
2099         btree_node_set_format(b, b->data->format);
2100
2101         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2102                                           b->c.level, b->c.btree_id);
2103         BUG_ON(ret);
2104
2105         bch2_btree_set_root_inmem(c, b);
2106
2107         six_unlock_write(&b->c.lock);
2108         six_unlock_intent(&b->c.lock);
2109 }
2110
2111 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2112 {
2113         struct btree_update *as;
2114
2115         mutex_lock(&c->btree_interior_update_lock);
2116         list_for_each_entry(as, &c->btree_interior_update_list, list)
2117                 pr_buf(out, "%p m %u w %u r %u j %llu\n",
2118                        as,
2119                        as->mode,
2120                        as->nodes_written,
2121                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
2122                        as->journal.seq);
2123         mutex_unlock(&c->btree_interior_update_lock);
2124 }
2125
2126 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
2127 {
2128         size_t ret = 0;
2129         struct list_head *i;
2130
2131         mutex_lock(&c->btree_interior_update_lock);
2132         list_for_each(i, &c->btree_interior_update_list)
2133                 ret++;
2134         mutex_unlock(&c->btree_interior_update_lock);
2135
2136         return ret;
2137 }
2138
2139 void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
2140 {
2141         struct btree_root *r;
2142         struct jset_entry *entry;
2143
2144         mutex_lock(&c->btree_root_lock);
2145
2146         vstruct_for_each(jset, entry)
2147                 if (entry->type == BCH_JSET_ENTRY_btree_root) {
2148                         r = &c->btree_roots[entry->btree_id];
2149                         r->level = entry->level;
2150                         r->alive = true;
2151                         bkey_copy(&r->key, &entry->start[0]);
2152                 }
2153
2154         mutex_unlock(&c->btree_root_lock);
2155 }
2156
2157 struct jset_entry *
2158 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2159                                     struct jset_entry *start,
2160                                     struct jset_entry *end)
2161 {
2162         struct jset_entry *entry;
2163         unsigned long have = 0;
2164         unsigned i;
2165
2166         for (entry = start; entry < end; entry = vstruct_next(entry))
2167                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2168                         __set_bit(entry->btree_id, &have);
2169
2170         mutex_lock(&c->btree_root_lock);
2171
2172         for (i = 0; i < BTREE_ID_NR; i++)
2173                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2174                         journal_entry_set(end,
2175                                           BCH_JSET_ENTRY_btree_root,
2176                                           i, c->btree_roots[i].level,
2177                                           &c->btree_roots[i].key,
2178                                           c->btree_roots[i].key.u64s);
2179                         end = vstruct_next(end);
2180                 }
2181
2182         mutex_unlock(&c->btree_root_lock);
2183
2184         return end;
2185 }
2186
2187 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2188 {
2189         if (c->btree_interior_update_worker)
2190                 destroy_workqueue(c->btree_interior_update_worker);
2191         mempool_exit(&c->btree_interior_update_pool);
2192 }
2193
2194 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2195 {
2196         mutex_init(&c->btree_reserve_cache_lock);
2197         INIT_LIST_HEAD(&c->btree_interior_update_list);
2198         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2199         mutex_init(&c->btree_interior_update_lock);
2200         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2201
2202         c->btree_interior_update_worker =
2203                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2204         if (!c->btree_interior_update_worker)
2205                 return -ENOMEM;
2206
2207         return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2208                                          sizeof(struct btree_update));
2209 }