]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.c
Update bcachefs sources to dfaf9a6ee2 lib/printbuf: Clean up headers
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_update.h"
9 #include "btree_update_interior.h"
10 #include "btree_io.h"
11 #include "btree_iter.h"
12 #include "btree_locking.h"
13 #include "buckets.h"
14 #include "error.h"
15 #include "extents.h"
16 #include "journal.h"
17 #include "journal_reclaim.h"
18 #include "keylist.h"
19 #include "recovery.h"
20 #include "replicas.h"
21 #include "super-io.h"
22
23 #include <linux/random.h>
24 #include <trace/events/bcachefs.h>
25
26 static void bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
27                                    struct btree_path *, struct btree *,
28                                    struct keylist *, unsigned);
29 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
30
31 /* Debug code: */
32
33 /*
34  * Verify that child nodes correctly span parent node's range:
35  */
36 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
37 {
38 #ifdef CONFIG_BCACHEFS_DEBUG
39         struct bpos next_node = b->data->min_key;
40         struct btree_node_iter iter;
41         struct bkey_s_c k;
42         struct bkey_s_c_btree_ptr_v2 bp;
43         struct bkey unpacked;
44         struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
45
46         BUG_ON(!b->c.level);
47
48         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
49                 return;
50
51         bch2_btree_node_iter_init_from_start(&iter, b);
52
53         while (1) {
54                 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
55                 if (k.k->type != KEY_TYPE_btree_ptr_v2)
56                         break;
57                 bp = bkey_s_c_to_btree_ptr_v2(k);
58
59                 if (bpos_cmp(next_node, bp.v->min_key)) {
60                         bch2_dump_btree_node(c, b);
61                         bch2_bpos_to_text(&buf1, next_node);
62                         bch2_bpos_to_text(&buf2, bp.v->min_key);
63                         panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
64                 }
65
66                 bch2_btree_node_iter_advance(&iter, b);
67
68                 if (bch2_btree_node_iter_end(&iter)) {
69                         if (bpos_cmp(k.k->p, b->key.k.p)) {
70                                 bch2_dump_btree_node(c, b);
71                                 bch2_bpos_to_text(&buf1, b->key.k.p);
72                                 bch2_bpos_to_text(&buf2, k.k->p);
73                                 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
74                         }
75                         break;
76                 }
77
78                 next_node = bpos_successor(k.k->p);
79         }
80 #endif
81 }
82
83 /* Calculate ideal packed bkey format for new btree nodes: */
84
85 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
86 {
87         struct bkey_packed *k;
88         struct bset_tree *t;
89         struct bkey uk;
90
91         for_each_bset(b, t)
92                 bset_tree_for_each_key(b, t, k)
93                         if (!bkey_deleted(k)) {
94                                 uk = bkey_unpack_key(b, k);
95                                 bch2_bkey_format_add_key(s, &uk);
96                         }
97 }
98
99 static struct bkey_format bch2_btree_calc_format(struct btree *b)
100 {
101         struct bkey_format_state s;
102
103         bch2_bkey_format_init(&s);
104         bch2_bkey_format_add_pos(&s, b->data->min_key);
105         bch2_bkey_format_add_pos(&s, b->data->max_key);
106         __bch2_btree_calc_format(&s, b);
107
108         return bch2_bkey_format_done(&s);
109 }
110
111 static size_t btree_node_u64s_with_format(struct btree *b,
112                                           struct bkey_format *new_f)
113 {
114         struct bkey_format *old_f = &b->format;
115
116         /* stupid integer promotion rules */
117         ssize_t delta =
118             (((int) new_f->key_u64s - old_f->key_u64s) *
119              (int) b->nr.packed_keys) +
120             (((int) new_f->key_u64s - BKEY_U64s) *
121              (int) b->nr.unpacked_keys);
122
123         BUG_ON(delta + b->nr.live_u64s < 0);
124
125         return b->nr.live_u64s + delta;
126 }
127
128 /**
129  * btree_node_format_fits - check if we could rewrite node with a new format
130  *
131  * This assumes all keys can pack with the new format -- it just checks if
132  * the re-packed keys would fit inside the node itself.
133  */
134 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
135                                  struct bkey_format *new_f)
136 {
137         size_t u64s = btree_node_u64s_with_format(b, new_f);
138
139         return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
140 }
141
142 /* Btree node freeing/allocation: */
143
144 static void __btree_node_free(struct bch_fs *c, struct btree *b)
145 {
146         trace_btree_node_free(c, b);
147
148         BUG_ON(btree_node_dirty(b));
149         BUG_ON(btree_node_need_write(b));
150         BUG_ON(b == btree_node_root(c, b));
151         BUG_ON(b->ob.nr);
152         BUG_ON(!list_empty(&b->write_blocked));
153         BUG_ON(b->will_make_reachable);
154
155         clear_btree_node_noevict(b);
156
157         mutex_lock(&c->btree_cache.lock);
158         list_move(&b->list, &c->btree_cache.freeable);
159         mutex_unlock(&c->btree_cache.lock);
160 }
161
162 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
163                                        struct btree *b)
164 {
165         struct bch_fs *c = trans->c;
166         struct btree_path *path;
167
168         trans_for_each_path(trans, path)
169                 BUG_ON(path->l[b->c.level].b == b &&
170                        path->l[b->c.level].lock_seq == b->c.lock.state.seq);
171
172         six_lock_write(&b->c.lock, NULL, NULL);
173
174         bch2_btree_node_hash_remove(&c->btree_cache, b);
175         __btree_node_free(c, b);
176
177         six_unlock_write(&b->c.lock);
178         six_unlock_intent(&b->c.lock);
179 }
180
181 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
182                                              struct disk_reservation *res,
183                                              struct closure *cl,
184                                              bool interior_node,
185                                              unsigned flags)
186 {
187         struct bch_fs *c = trans->c;
188         struct write_point *wp;
189         struct btree *b;
190         __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
191         struct open_buckets ob = { .nr = 0 };
192         struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
193         unsigned nr_reserve;
194         enum alloc_reserve alloc_reserve;
195
196         if (flags & BTREE_INSERT_USE_RESERVE) {
197                 nr_reserve      = 0;
198                 alloc_reserve   = RESERVE_btree_movinggc;
199         } else {
200                 nr_reserve      = BTREE_NODE_RESERVE;
201                 alloc_reserve   = RESERVE_btree;
202         }
203
204         mutex_lock(&c->btree_reserve_cache_lock);
205         if (c->btree_reserve_cache_nr > nr_reserve) {
206                 struct btree_alloc *a =
207                         &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
208
209                 ob = a->ob;
210                 bkey_copy(&tmp.k, &a->k);
211                 mutex_unlock(&c->btree_reserve_cache_lock);
212                 goto mem_alloc;
213         }
214         mutex_unlock(&c->btree_reserve_cache_lock);
215
216 retry:
217         wp = bch2_alloc_sectors_start_trans(trans,
218                                       c->opts.metadata_target ?:
219                                       c->opts.foreground_target,
220                                       0,
221                                       writepoint_ptr(&c->btree_write_point),
222                                       &devs_have,
223                                       res->nr_replicas,
224                                       c->opts.metadata_replicas_required,
225                                       alloc_reserve, 0, cl);
226         if (IS_ERR(wp))
227                 return ERR_CAST(wp);
228
229         if (wp->sectors_free < btree_sectors(c)) {
230                 struct open_bucket *ob;
231                 unsigned i;
232
233                 open_bucket_for_each(c, &wp->ptrs, ob, i)
234                         if (ob->sectors_free < btree_sectors(c))
235                                 ob->sectors_free = 0;
236
237                 bch2_alloc_sectors_done(c, wp);
238                 goto retry;
239         }
240
241         bkey_btree_ptr_v2_init(&tmp.k);
242         bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
243
244         bch2_open_bucket_get(c, wp, &ob);
245         bch2_alloc_sectors_done(c, wp);
246 mem_alloc:
247         b = bch2_btree_node_mem_alloc(c, interior_node);
248         six_unlock_write(&b->c.lock);
249         six_unlock_intent(&b->c.lock);
250
251         /* we hold cannibalize_lock: */
252         BUG_ON(IS_ERR(b));
253         BUG_ON(b->ob.nr);
254
255         bkey_copy(&b->key, &tmp.k);
256         b->ob = ob;
257
258         return b;
259 }
260
261 static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
262 {
263         struct bch_fs *c = as->c;
264         struct btree *b;
265         struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
266         int ret;
267
268         BUG_ON(level >= BTREE_MAX_DEPTH);
269         BUG_ON(!p->nr);
270
271         b = p->b[--p->nr];
272
273         six_lock_intent(&b->c.lock, NULL, NULL);
274         six_lock_write(&b->c.lock, NULL, NULL);
275
276         set_btree_node_accessed(b);
277         set_btree_node_dirty_acct(c, b);
278         set_btree_node_need_write(b);
279
280         bch2_bset_init_first(b, &b->data->keys);
281         b->c.level      = level;
282         b->c.btree_id   = as->btree_id;
283         b->version_ondisk = c->sb.version;
284
285         memset(&b->nr, 0, sizeof(b->nr));
286         b->data->magic = cpu_to_le64(bset_magic(c));
287         memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
288         b->data->flags = 0;
289         SET_BTREE_NODE_ID(b->data, as->btree_id);
290         SET_BTREE_NODE_LEVEL(b->data, level);
291
292         if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
293                 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
294
295                 bp->v.mem_ptr           = 0;
296                 bp->v.seq               = b->data->keys.seq;
297                 bp->v.sectors_written   = 0;
298         }
299
300         SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
301
302         bch2_btree_build_aux_trees(b);
303
304         ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
305         BUG_ON(ret);
306
307         trace_btree_node_alloc(c, b);
308         return b;
309 }
310
311 static void btree_set_min(struct btree *b, struct bpos pos)
312 {
313         if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
314                 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
315         b->data->min_key = pos;
316 }
317
318 static void btree_set_max(struct btree *b, struct bpos pos)
319 {
320         b->key.k.p = pos;
321         b->data->max_key = pos;
322 }
323
324 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
325                                                   struct btree *b,
326                                                   struct bkey_format format)
327 {
328         struct btree *n;
329
330         n = bch2_btree_node_alloc(as, b->c.level);
331
332         SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
333
334         btree_set_min(n, b->data->min_key);
335         btree_set_max(n, b->data->max_key);
336
337         n->data->format         = format;
338         btree_node_set_format(n, format);
339
340         bch2_btree_sort_into(as->c, n, b);
341
342         btree_node_reset_sib_u64s(n);
343
344         n->key.k.p = b->key.k.p;
345         return n;
346 }
347
348 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
349                                                        struct btree *b)
350 {
351         struct bkey_format new_f = bch2_btree_calc_format(b);
352
353         /*
354          * The keys might expand with the new format - if they wouldn't fit in
355          * the btree node anymore, use the old format for now:
356          */
357         if (!bch2_btree_node_format_fits(as->c, b, &new_f))
358                 new_f = b->format;
359
360         return __bch2_btree_node_alloc_replacement(as, b, new_f);
361 }
362
363 static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
364 {
365         struct btree *b = bch2_btree_node_alloc(as, level);
366
367         btree_set_min(b, POS_MIN);
368         btree_set_max(b, SPOS_MAX);
369         b->data->format = bch2_btree_calc_format(b);
370
371         btree_node_set_format(b, b->data->format);
372         bch2_btree_build_aux_trees(b);
373
374         bch2_btree_update_add_new_node(as, b);
375         six_unlock_write(&b->c.lock);
376
377         return b;
378 }
379
380 static void bch2_btree_reserve_put(struct btree_update *as)
381 {
382         struct bch_fs *c = as->c;
383         struct prealloc_nodes *p;
384
385         for (p = as->prealloc_nodes;
386              p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
387              p++) {
388                 while (p->nr) {
389                         struct btree *b = p->b[--p->nr];
390
391                         mutex_lock(&c->btree_reserve_cache_lock);
392
393                         if (c->btree_reserve_cache_nr <
394                             ARRAY_SIZE(c->btree_reserve_cache)) {
395                                 struct btree_alloc *a =
396                                         &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
397
398                                 a->ob = b->ob;
399                                 b->ob.nr = 0;
400                                 bkey_copy(&a->k, &b->key);
401                         } else {
402                                 bch2_open_buckets_put(c, &b->ob);
403                         }
404
405                         mutex_unlock(&c->btree_reserve_cache_lock);
406
407                         six_lock_intent(&b->c.lock, NULL, NULL);
408                         six_lock_write(&b->c.lock, NULL, NULL);
409                         __btree_node_free(c, b);
410                         six_unlock_write(&b->c.lock);
411                         six_unlock_intent(&b->c.lock);
412                 }
413         }
414 }
415
416 static int bch2_btree_reserve_get(struct btree_trans *trans,
417                                   struct btree_update *as,
418                                   unsigned nr_nodes[2],
419                                   unsigned flags,
420                                   struct closure *cl)
421 {
422         struct bch_fs *c = as->c;
423         struct btree *b;
424         unsigned interior;
425         int ret = 0;
426
427         BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
428
429         /*
430          * Protects reaping from the btree node cache and using the btree node
431          * open bucket reserve:
432          *
433          * BTREE_INSERT_NOWAIT only applies to btree node allocation, not
434          * blocking on this lock:
435          */
436         ret = bch2_btree_cache_cannibalize_lock(c, cl);
437         if (ret)
438                 return ret;
439
440         for (interior = 0; interior < 2; interior++) {
441                 struct prealloc_nodes *p = as->prealloc_nodes + interior;
442
443                 while (p->nr < nr_nodes[interior]) {
444                         b = __bch2_btree_node_alloc(trans, &as->disk_res,
445                                         flags & BTREE_INSERT_NOWAIT ? NULL : cl,
446                                         interior, flags);
447                         if (IS_ERR(b)) {
448                                 ret = PTR_ERR(b);
449                                 goto err;
450                         }
451
452                         p->b[p->nr++] = b;
453                 }
454         }
455 err:
456         bch2_btree_cache_cannibalize_unlock(c);
457         return ret;
458 }
459
460 /* Asynchronous interior node update machinery */
461
462 static void bch2_btree_update_free(struct btree_update *as)
463 {
464         struct bch_fs *c = as->c;
465
466         if (as->took_gc_lock)
467                 up_read(&c->gc_lock);
468         as->took_gc_lock = false;
469
470         bch2_journal_preres_put(&c->journal, &as->journal_preres);
471
472         bch2_journal_pin_drop(&c->journal, &as->journal);
473         bch2_journal_pin_flush(&c->journal, &as->journal);
474         bch2_disk_reservation_put(c, &as->disk_res);
475         bch2_btree_reserve_put(as);
476
477         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
478                                as->start_time);
479
480         mutex_lock(&c->btree_interior_update_lock);
481         list_del(&as->unwritten_list);
482         list_del(&as->list);
483
484         closure_debug_destroy(&as->cl);
485         mempool_free(as, &c->btree_interior_update_pool);
486
487         /*
488          * Have to do the wakeup with btree_interior_update_lock still held,
489          * since being on btree_interior_update_list is our ref on @c:
490          */
491         closure_wake_up(&c->btree_interior_update_wait);
492
493         mutex_unlock(&c->btree_interior_update_lock);
494 }
495
496 static void btree_update_add_key(struct btree_update *as,
497                                  struct keylist *keys, struct btree *b)
498 {
499         struct bkey_i *k = &b->key;
500
501         BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
502                ARRAY_SIZE(as->_old_keys));
503
504         bkey_copy(keys->top, k);
505         bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
506
507         bch2_keylist_push(keys);
508 }
509
510 /*
511  * The transactional part of an interior btree node update, where we journal the
512  * update we did to the interior node and update alloc info:
513  */
514 static int btree_update_nodes_written_trans(struct btree_trans *trans,
515                                             struct btree_update *as)
516 {
517         struct bkey_i *k;
518         int ret;
519
520         ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s);
521         if (ret)
522                 return ret;
523
524         memcpy(&darray_top(trans->extra_journal_entries),
525                as->journal_entries,
526                as->journal_u64s * sizeof(u64));
527         trans->extra_journal_entries.nr += as->journal_u64s;
528
529         trans->journal_pin = &as->journal;
530
531         for_each_keylist_key(&as->old_keys, k) {
532                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
533
534                 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0);
535                 if (ret)
536                         return ret;
537         }
538
539         for_each_keylist_key(&as->new_keys, k) {
540                 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
541
542                 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0);
543                 if (ret)
544                         return ret;
545         }
546
547         return 0;
548 }
549
550 static void btree_update_nodes_written(struct btree_update *as)
551 {
552         struct bch_fs *c = as->c;
553         struct btree *b = as->b;
554         struct btree_trans trans;
555         u64 journal_seq = 0;
556         unsigned i;
557         int ret;
558
559         /*
560          * If we're already in an error state, it might be because a btree node
561          * was never written, and we might be trying to free that same btree
562          * node here, but it won't have been marked as allocated and we'll see
563          * spurious disk usage inconsistencies in the transactional part below
564          * if we don't skip it:
565          */
566         ret = bch2_journal_error(&c->journal);
567         if (ret)
568                 goto err;
569
570         /*
571          * Wait for any in flight writes to finish before we free the old nodes
572          * on disk:
573          */
574         for (i = 0; i < as->nr_old_nodes; i++) {
575                 struct btree *old = as->old_nodes[i];
576                 __le64 seq;
577
578                 six_lock_read(&old->c.lock, NULL, NULL);
579                 seq = old->data ? old->data->keys.seq : 0;
580                 six_unlock_read(&old->c.lock);
581
582                 if (seq == as->old_nodes_seq[i])
583                         wait_on_bit_io(&old->flags, BTREE_NODE_write_in_flight_inner,
584                                        TASK_UNINTERRUPTIBLE);
585         }
586
587         /*
588          * We did an update to a parent node where the pointers we added pointed
589          * to child nodes that weren't written yet: now, the child nodes have
590          * been written so we can write out the update to the interior node.
591          */
592
593         /*
594          * We can't call into journal reclaim here: we'd block on the journal
595          * reclaim lock, but we may need to release the open buckets we have
596          * pinned in order for other btree updates to make forward progress, and
597          * journal reclaim does btree updates when flushing bkey_cached entries,
598          * which may require allocations as well.
599          */
600         bch2_trans_init(&trans, c, 0, 512);
601         ret = commit_do(&trans, &as->disk_res, &journal_seq,
602                               BTREE_INSERT_NOFAIL|
603                               BTREE_INSERT_NOCHECK_RW|
604                               BTREE_INSERT_JOURNAL_RECLAIM|
605                               JOURNAL_WATERMARK_reserved,
606                               btree_update_nodes_written_trans(&trans, as));
607         bch2_trans_exit(&trans);
608
609         bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
610                              "error %i in btree_update_nodes_written()", ret);
611 err:
612         if (b) {
613                 /*
614                  * @b is the node we did the final insert into:
615                  *
616                  * On failure to get a journal reservation, we still have to
617                  * unblock the write and allow most of the write path to happen
618                  * so that shutdown works, but the i->journal_seq mechanism
619                  * won't work to prevent the btree write from being visible (we
620                  * didn't get a journal sequence number) - instead
621                  * __bch2_btree_node_write() doesn't do the actual write if
622                  * we're in journal error state:
623                  */
624
625                 six_lock_intent(&b->c.lock, NULL, NULL);
626                 six_lock_write(&b->c.lock, NULL, NULL);
627                 mutex_lock(&c->btree_interior_update_lock);
628
629                 list_del(&as->write_blocked_list);
630                 if (list_empty(&b->write_blocked))
631                         clear_btree_node_write_blocked(b);
632
633                 /*
634                  * Node might have been freed, recheck under
635                  * btree_interior_update_lock:
636                  */
637                 if (as->b == b) {
638                         struct bset *i = btree_bset_last(b);
639
640                         BUG_ON(!b->c.level);
641                         BUG_ON(!btree_node_dirty(b));
642
643                         if (!ret) {
644                                 i->journal_seq = cpu_to_le64(
645                                                              max(journal_seq,
646                                                                  le64_to_cpu(i->journal_seq)));
647
648                                 bch2_btree_add_journal_pin(c, b, journal_seq);
649                         } else {
650                                 /*
651                                  * If we didn't get a journal sequence number we
652                                  * can't write this btree node, because recovery
653                                  * won't know to ignore this write:
654                                  */
655                                 set_btree_node_never_write(b);
656                         }
657                 }
658
659                 mutex_unlock(&c->btree_interior_update_lock);
660                 six_unlock_write(&b->c.lock);
661
662                 btree_node_write_if_need(c, b, SIX_LOCK_intent);
663                 six_unlock_intent(&b->c.lock);
664         }
665
666         bch2_journal_pin_drop(&c->journal, &as->journal);
667
668         bch2_journal_preres_put(&c->journal, &as->journal_preres);
669
670         mutex_lock(&c->btree_interior_update_lock);
671         for (i = 0; i < as->nr_new_nodes; i++) {
672                 b = as->new_nodes[i];
673
674                 BUG_ON(b->will_make_reachable != (unsigned long) as);
675                 b->will_make_reachable = 0;
676                 clear_btree_node_will_make_reachable(b);
677         }
678         mutex_unlock(&c->btree_interior_update_lock);
679
680         for (i = 0; i < as->nr_new_nodes; i++) {
681                 b = as->new_nodes[i];
682
683                 six_lock_read(&b->c.lock, NULL, NULL);
684                 btree_node_write_if_need(c, b, SIX_LOCK_read);
685                 six_unlock_read(&b->c.lock);
686         }
687
688         for (i = 0; i < as->nr_open_buckets; i++)
689                 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
690
691         bch2_btree_update_free(as);
692 }
693
694 static void btree_interior_update_work(struct work_struct *work)
695 {
696         struct bch_fs *c =
697                 container_of(work, struct bch_fs, btree_interior_update_work);
698         struct btree_update *as;
699
700         while (1) {
701                 mutex_lock(&c->btree_interior_update_lock);
702                 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
703                                               struct btree_update, unwritten_list);
704                 if (as && !as->nodes_written)
705                         as = NULL;
706                 mutex_unlock(&c->btree_interior_update_lock);
707
708                 if (!as)
709                         break;
710
711                 btree_update_nodes_written(as);
712         }
713 }
714
715 static void btree_update_set_nodes_written(struct closure *cl)
716 {
717         struct btree_update *as = container_of(cl, struct btree_update, cl);
718         struct bch_fs *c = as->c;
719
720         mutex_lock(&c->btree_interior_update_lock);
721         as->nodes_written = true;
722         mutex_unlock(&c->btree_interior_update_lock);
723
724         queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
725 }
726
727 /*
728  * We're updating @b with pointers to nodes that haven't finished writing yet:
729  * block @b from being written until @as completes
730  */
731 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
732 {
733         struct bch_fs *c = as->c;
734
735         mutex_lock(&c->btree_interior_update_lock);
736         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
737
738         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
739         BUG_ON(!btree_node_dirty(b));
740
741         as->mode        = BTREE_INTERIOR_UPDATING_NODE;
742         as->b           = b;
743
744         set_btree_node_write_blocked(b);
745         list_add(&as->write_blocked_list, &b->write_blocked);
746
747         mutex_unlock(&c->btree_interior_update_lock);
748 }
749
750 static void btree_update_reparent(struct btree_update *as,
751                                   struct btree_update *child)
752 {
753         struct bch_fs *c = as->c;
754
755         lockdep_assert_held(&c->btree_interior_update_lock);
756
757         child->b = NULL;
758         child->mode = BTREE_INTERIOR_UPDATING_AS;
759
760         bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
761 }
762
763 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
764 {
765         struct bkey_i *insert = &b->key;
766         struct bch_fs *c = as->c;
767
768         BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
769
770         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
771                ARRAY_SIZE(as->journal_entries));
772
773         as->journal_u64s +=
774                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
775                                   BCH_JSET_ENTRY_btree_root,
776                                   b->c.btree_id, b->c.level,
777                                   insert, insert->k.u64s);
778
779         mutex_lock(&c->btree_interior_update_lock);
780         list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
781
782         as->mode        = BTREE_INTERIOR_UPDATING_ROOT;
783         mutex_unlock(&c->btree_interior_update_lock);
784 }
785
786 /*
787  * bch2_btree_update_add_new_node:
788  *
789  * This causes @as to wait on @b to be written, before it gets to
790  * bch2_btree_update_nodes_written
791  *
792  * Additionally, it sets b->will_make_reachable to prevent any additional writes
793  * to @b from happening besides the first until @b is reachable on disk
794  *
795  * And it adds @b to the list of @as's new nodes, so that we can update sector
796  * counts in bch2_btree_update_nodes_written:
797  */
798 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
799 {
800         struct bch_fs *c = as->c;
801
802         closure_get(&as->cl);
803
804         mutex_lock(&c->btree_interior_update_lock);
805         BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
806         BUG_ON(b->will_make_reachable);
807
808         as->new_nodes[as->nr_new_nodes++] = b;
809         b->will_make_reachable = 1UL|(unsigned long) as;
810         set_btree_node_will_make_reachable(b);
811
812         mutex_unlock(&c->btree_interior_update_lock);
813
814         btree_update_add_key(as, &as->new_keys, b);
815 }
816
817 /*
818  * returns true if @b was a new node
819  */
820 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
821 {
822         struct btree_update *as;
823         unsigned long v;
824         unsigned i;
825
826         mutex_lock(&c->btree_interior_update_lock);
827         /*
828          * When b->will_make_reachable != 0, it owns a ref on as->cl that's
829          * dropped when it gets written by bch2_btree_complete_write - the
830          * xchg() is for synchronization with bch2_btree_complete_write:
831          */
832         v = xchg(&b->will_make_reachable, 0);
833         clear_btree_node_will_make_reachable(b);
834         as = (struct btree_update *) (v & ~1UL);
835
836         if (!as) {
837                 mutex_unlock(&c->btree_interior_update_lock);
838                 return;
839         }
840
841         for (i = 0; i < as->nr_new_nodes; i++)
842                 if (as->new_nodes[i] == b)
843                         goto found;
844
845         BUG();
846 found:
847         array_remove_item(as->new_nodes, as->nr_new_nodes, i);
848         mutex_unlock(&c->btree_interior_update_lock);
849
850         if (v & 1)
851                 closure_put(&as->cl);
852 }
853
854 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
855 {
856         while (b->ob.nr)
857                 as->open_buckets[as->nr_open_buckets++] =
858                         b->ob.v[--b->ob.nr];
859 }
860
861 /*
862  * @b is being split/rewritten: it may have pointers to not-yet-written btree
863  * nodes and thus outstanding btree_updates - redirect @b's
864  * btree_updates to point to this btree_update:
865  */
866 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
867                                                       struct btree *b)
868 {
869         struct bch_fs *c = as->c;
870         struct btree_update *p, *n;
871         struct btree_write *w;
872
873         set_btree_node_dying(b);
874
875         if (btree_node_fake(b))
876                 return;
877
878         mutex_lock(&c->btree_interior_update_lock);
879
880         /*
881          * Does this node have any btree_update operations preventing
882          * it from being written?
883          *
884          * If so, redirect them to point to this btree_update: we can
885          * write out our new nodes, but we won't make them visible until those
886          * operations complete
887          */
888         list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
889                 list_del_init(&p->write_blocked_list);
890                 btree_update_reparent(as, p);
891
892                 /*
893                  * for flush_held_btree_writes() waiting on updates to flush or
894                  * nodes to be writeable:
895                  */
896                 closure_wake_up(&c->btree_interior_update_wait);
897         }
898
899         clear_btree_node_dirty_acct(c, b);
900         clear_btree_node_need_write(b);
901
902         /*
903          * Does this node have unwritten data that has a pin on the journal?
904          *
905          * If so, transfer that pin to the btree_update operation -
906          * note that if we're freeing multiple nodes, we only need to keep the
907          * oldest pin of any of the nodes we're freeing. We'll release the pin
908          * when the new nodes are persistent and reachable on disk:
909          */
910         w = btree_current_write(b);
911         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
912         bch2_journal_pin_drop(&c->journal, &w->journal);
913
914         w = btree_prev_write(b);
915         bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
916         bch2_journal_pin_drop(&c->journal, &w->journal);
917
918         mutex_unlock(&c->btree_interior_update_lock);
919
920         /*
921          * Is this a node that isn't reachable on disk yet?
922          *
923          * Nodes that aren't reachable yet have writes blocked until they're
924          * reachable - now that we've cancelled any pending writes and moved
925          * things waiting on that write to wait on this update, we can drop this
926          * node from the list of nodes that the other update is making
927          * reachable, prior to freeing it:
928          */
929         btree_update_drop_new_node(c, b);
930
931         btree_update_add_key(as, &as->old_keys, b);
932
933         as->old_nodes[as->nr_old_nodes] = b;
934         as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
935         as->nr_old_nodes++;
936 }
937
938 static void bch2_btree_update_done(struct btree_update *as)
939 {
940         struct bch_fs *c = as->c;
941         u64 start_time = as->start_time;
942
943         BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
944
945         if (as->took_gc_lock)
946                 up_read(&as->c->gc_lock);
947         as->took_gc_lock = false;
948
949         bch2_btree_reserve_put(as);
950
951         continue_at(&as->cl, btree_update_set_nodes_written,
952                     as->c->btree_interior_update_worker);
953
954         bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
955                                start_time);
956 }
957
958 static struct btree_update *
959 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
960                         unsigned level, bool split, unsigned flags)
961 {
962         struct bch_fs *c = trans->c;
963         struct btree_update *as;
964         u64 start_time = local_clock();
965         int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
966                 ? BCH_DISK_RESERVATION_NOFAIL : 0;
967         unsigned nr_nodes[2] = { 0, 0 };
968         unsigned update_level = level;
969         int journal_flags = flags & JOURNAL_WATERMARK_MASK;
970         int ret = 0;
971         u32 restart_count = trans->restart_count;
972
973         BUG_ON(!path->should_be_locked);
974
975         if (flags & BTREE_INSERT_JOURNAL_RECLAIM)
976                 journal_flags |= JOURNAL_RES_GET_NONBLOCK;
977
978         while (1) {
979                 nr_nodes[!!update_level] += 1 + split;
980                 update_level++;
981
982                 if (!btree_path_node(path, update_level))
983                         break;
984
985                 /*
986                  * XXX: figure out how far we might need to split,
987                  * instead of locking/reserving all the way to the root:
988                  */
989                 split = update_level + 1 < BTREE_MAX_DEPTH;
990         }
991
992         /* Might have to allocate a new root: */
993         if (update_level < BTREE_MAX_DEPTH)
994                 nr_nodes[1] += 1;
995
996         if (!bch2_btree_path_upgrade(trans, path, U8_MAX)) {
997                 trace_trans_restart_iter_upgrade(trans, _RET_IP_, path);
998                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_upgrade);
999                 return ERR_PTR(ret);
1000         }
1001
1002         if (flags & BTREE_INSERT_GC_LOCK_HELD)
1003                 lockdep_assert_held(&c->gc_lock);
1004         else if (!down_read_trylock(&c->gc_lock)) {
1005                 bch2_trans_unlock(trans);
1006                 down_read(&c->gc_lock);
1007                 ret = bch2_trans_relock(trans);
1008                 if (ret) {
1009                         up_read(&c->gc_lock);
1010                         return ERR_PTR(ret);
1011                 }
1012         }
1013
1014         as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
1015         memset(as, 0, sizeof(*as));
1016         closure_init(&as->cl, NULL);
1017         as->c           = c;
1018         as->start_time  = start_time;
1019         as->mode        = BTREE_INTERIOR_NO_UPDATE;
1020         as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
1021         as->btree_id    = path->btree_id;
1022         INIT_LIST_HEAD(&as->list);
1023         INIT_LIST_HEAD(&as->unwritten_list);
1024         INIT_LIST_HEAD(&as->write_blocked_list);
1025         bch2_keylist_init(&as->old_keys, as->_old_keys);
1026         bch2_keylist_init(&as->new_keys, as->_new_keys);
1027         bch2_keylist_init(&as->parent_keys, as->inline_keys);
1028
1029         mutex_lock(&c->btree_interior_update_lock);
1030         list_add_tail(&as->list, &c->btree_interior_update_list);
1031         mutex_unlock(&c->btree_interior_update_lock);
1032
1033         /*
1034          * We don't want to allocate if we're in an error state, that can cause
1035          * deadlock on emergency shutdown due to open buckets getting stuck in
1036          * the btree_reserve_cache after allocator shutdown has cleared it out.
1037          * This check needs to come after adding us to the btree_interior_update
1038          * list but before calling bch2_btree_reserve_get, to synchronize with
1039          * __bch2_fs_read_only().
1040          */
1041         ret = bch2_journal_error(&c->journal);
1042         if (ret)
1043                 goto err;
1044
1045         ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1046                                       BTREE_UPDATE_JOURNAL_RES,
1047                                       journal_flags|JOURNAL_RES_GET_NONBLOCK);
1048         if (ret) {
1049                 bch2_trans_unlock(trans);
1050
1051                 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1052                                               BTREE_UPDATE_JOURNAL_RES,
1053                                               journal_flags);
1054                 if (ret) {
1055                         trace_trans_restart_journal_preres_get(trans, _RET_IP_);
1056                         ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_journal_preres_get);
1057                         goto err;
1058                 }
1059
1060                 ret = bch2_trans_relock(trans);
1061                 if (ret)
1062                         goto err;
1063         }
1064
1065         ret = bch2_disk_reservation_get(c, &as->disk_res,
1066                         (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1067                         c->opts.metadata_replicas,
1068                         disk_res_flags);
1069         if (ret)
1070                 goto err;
1071
1072         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1073         if (ret == -EAGAIN ||
1074             ret == -ENOMEM) {
1075                 struct closure cl;
1076
1077                 closure_init_stack(&cl);
1078
1079                 bch2_trans_unlock(trans);
1080
1081                 do {
1082                         ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1083                         closure_sync(&cl);
1084                 } while (ret == -EAGAIN);
1085         }
1086
1087         if (ret) {
1088                 trace_btree_reserve_get_fail(trans->fn, _RET_IP_,
1089                                              nr_nodes[0] + nr_nodes[1]);
1090                 goto err;
1091         }
1092
1093         ret = bch2_trans_relock(trans);
1094         if (ret)
1095                 goto err;
1096
1097         bch2_trans_verify_not_restarted(trans, restart_count);
1098         return as;
1099 err:
1100         bch2_btree_update_free(as);
1101         return ERR_PTR(ret);
1102 }
1103
1104 /* Btree root updates: */
1105
1106 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1107 {
1108         /* Root nodes cannot be reaped */
1109         mutex_lock(&c->btree_cache.lock);
1110         list_del_init(&b->list);
1111         mutex_unlock(&c->btree_cache.lock);
1112
1113         mutex_lock(&c->btree_root_lock);
1114         BUG_ON(btree_node_root(c, b) &&
1115                (b->c.level < btree_node_root(c, b)->c.level ||
1116                 !btree_node_dying(btree_node_root(c, b))));
1117
1118         btree_node_root(c, b) = b;
1119         mutex_unlock(&c->btree_root_lock);
1120
1121         bch2_recalc_btree_reserve(c);
1122 }
1123
1124 /**
1125  * bch_btree_set_root - update the root in memory and on disk
1126  *
1127  * To ensure forward progress, the current task must not be holding any
1128  * btree node write locks. However, you must hold an intent lock on the
1129  * old root.
1130  *
1131  * Note: This allocates a journal entry but doesn't add any keys to
1132  * it.  All the btree roots are part of every journal write, so there
1133  * is nothing new to be done.  This just guarantees that there is a
1134  * journal write.
1135  */
1136 static void bch2_btree_set_root(struct btree_update *as,
1137                                 struct btree_trans *trans,
1138                                 struct btree_path *path,
1139                                 struct btree *b)
1140 {
1141         struct bch_fs *c = as->c;
1142         struct btree *old;
1143
1144         trace_btree_set_root(c, b);
1145         BUG_ON(!b->written);
1146
1147         old = btree_node_root(c, b);
1148
1149         /*
1150          * Ensure no one is using the old root while we switch to the
1151          * new root:
1152          */
1153         bch2_btree_node_lock_write(trans, path, old);
1154
1155         bch2_btree_set_root_inmem(c, b);
1156
1157         btree_update_updated_root(as, b);
1158
1159         /*
1160          * Unlock old root after new root is visible:
1161          *
1162          * The new root isn't persistent, but that's ok: we still have
1163          * an intent lock on the new root, and any updates that would
1164          * depend on the new root would have to update the new root.
1165          */
1166         bch2_btree_node_unlock_write(trans, path, old);
1167 }
1168
1169 /* Interior node updates: */
1170
1171 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1172                                         struct btree_trans *trans,
1173                                         struct btree_path *path,
1174                                         struct btree *b,
1175                                         struct btree_node_iter *node_iter,
1176                                         struct bkey_i *insert)
1177 {
1178         struct bch_fs *c = as->c;
1179         struct bkey_packed *k;
1180         struct printbuf buf = PRINTBUF;
1181
1182         BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1183                !btree_ptr_sectors_written(insert));
1184
1185         if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1186                 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1187
1188         if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1189                               btree_node_type(b), WRITE, &buf) ?:
1190             bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf)) {
1191                 printbuf_reset(&buf);
1192                 prt_printf(&buf, "inserting invalid bkey\n  ");
1193                 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1194                 prt_printf(&buf, "\n  ");
1195                 bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1196                                   btree_node_type(b), WRITE, &buf);
1197                 bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf);
1198
1199                 bch2_fs_inconsistent(c, "%s", buf.buf);
1200                 dump_stack();
1201         }
1202
1203         BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1204                ARRAY_SIZE(as->journal_entries));
1205
1206         as->journal_u64s +=
1207                 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1208                                   BCH_JSET_ENTRY_btree_keys,
1209                                   b->c.btree_id, b->c.level,
1210                                   insert, insert->k.u64s);
1211
1212         while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1213                bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1214                 bch2_btree_node_iter_advance(node_iter, b);
1215
1216         bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1217         set_btree_node_dirty_acct(c, b);
1218         set_btree_node_need_write(b);
1219
1220         printbuf_exit(&buf);
1221 }
1222
1223 static void
1224 __bch2_btree_insert_keys_interior(struct btree_update *as,
1225                                   struct btree_trans *trans,
1226                                   struct btree_path *path,
1227                                   struct btree *b,
1228                                   struct btree_node_iter node_iter,
1229                                   struct keylist *keys)
1230 {
1231         struct bkey_i *insert = bch2_keylist_front(keys);
1232         struct bkey_packed *k;
1233
1234         BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1235
1236         while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1237                (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1238                 ;
1239
1240         while (!bch2_keylist_empty(keys)) {
1241                 bch2_insert_fixup_btree_ptr(as, trans, path, b,
1242                                 &node_iter, bch2_keylist_front(keys));
1243                 bch2_keylist_pop_front(keys);
1244         }
1245 }
1246
1247 /*
1248  * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1249  * node)
1250  */
1251 static struct btree *__btree_split_node(struct btree_update *as,
1252                                         struct btree *n1)
1253 {
1254         struct bkey_format_state s;
1255         size_t nr_packed = 0, nr_unpacked = 0;
1256         struct btree *n2;
1257         struct bset *set1, *set2;
1258         struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL;
1259         struct bpos n1_pos;
1260
1261         n2 = bch2_btree_node_alloc(as, n1->c.level);
1262
1263         n2->data->max_key       = n1->data->max_key;
1264         n2->data->format        = n1->format;
1265         SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
1266         n2->key.k.p = n1->key.k.p;
1267
1268         bch2_btree_update_add_new_node(as, n2);
1269
1270         set1 = btree_bset_first(n1);
1271         set2 = btree_bset_first(n2);
1272
1273         /*
1274          * Has to be a linear search because we don't have an auxiliary
1275          * search tree yet
1276          */
1277         k = set1->start;
1278         while (1) {
1279                 struct bkey_packed *n = bkey_next(k);
1280
1281                 if (n == vstruct_last(set1))
1282                         break;
1283                 if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
1284                         break;
1285
1286                 if (bkey_packed(k))
1287                         nr_packed++;
1288                 else
1289                         nr_unpacked++;
1290
1291                 prev = k;
1292                 k = n;
1293         }
1294
1295         BUG_ON(!prev);
1296         set2_start      = k;
1297         set2_end        = vstruct_last(set1);
1298
1299         set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data);
1300         set_btree_bset_end(n1, n1->set);
1301
1302         n1->nr.live_u64s        = le16_to_cpu(set1->u64s);
1303         n1->nr.bset_u64s[0]     = le16_to_cpu(set1->u64s);
1304         n1->nr.packed_keys      = nr_packed;
1305         n1->nr.unpacked_keys    = nr_unpacked;
1306
1307         n1_pos = bkey_unpack_pos(n1, prev);
1308         if (as->c->sb.version < bcachefs_metadata_version_snapshot)
1309                 n1_pos.snapshot = U32_MAX;
1310
1311         btree_set_max(n1, n1_pos);
1312         btree_set_min(n2, bpos_successor(n1->key.k.p));
1313
1314         bch2_bkey_format_init(&s);
1315         bch2_bkey_format_add_pos(&s, n2->data->min_key);
1316         bch2_bkey_format_add_pos(&s, n2->data->max_key);
1317
1318         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1319                 struct bkey uk = bkey_unpack_key(n1, k);
1320                 bch2_bkey_format_add_key(&s, &uk);
1321         }
1322
1323         n2->data->format = bch2_bkey_format_done(&s);
1324         btree_node_set_format(n2, n2->data->format);
1325
1326         out = set2->start;
1327         memset(&n2->nr, 0, sizeof(n2->nr));
1328
1329         for (k = set2_start; k != set2_end; k = bkey_next(k)) {
1330                 BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k)
1331                                        ? &n1->format : &bch2_bkey_format_current, k));
1332                 out->format = KEY_FORMAT_LOCAL_BTREE;
1333                 btree_keys_account_key_add(&n2->nr, 0, out);
1334                 out = bkey_next(out);
1335         }
1336
1337         set2->u64s = cpu_to_le16((u64 *) out - set2->_data);
1338         set_btree_bset_end(n2, n2->set);
1339
1340         BUG_ON(!set1->u64s);
1341         BUG_ON(!set2->u64s);
1342
1343         btree_node_reset_sib_u64s(n1);
1344         btree_node_reset_sib_u64s(n2);
1345
1346         bch2_verify_btree_nr_keys(n1);
1347         bch2_verify_btree_nr_keys(n2);
1348
1349         if (n1->c.level) {
1350                 btree_node_interior_verify(as->c, n1);
1351                 btree_node_interior_verify(as->c, n2);
1352         }
1353
1354         return n2;
1355 }
1356
1357 /*
1358  * For updates to interior nodes, we've got to do the insert before we split
1359  * because the stuff we're inserting has to be inserted atomically. Post split,
1360  * the keys might have to go in different nodes and the split would no longer be
1361  * atomic.
1362  *
1363  * Worse, if the insert is from btree node coalescing, if we do the insert after
1364  * we do the split (and pick the pivot) - the pivot we pick might be between
1365  * nodes that were coalesced, and thus in the middle of a child node post
1366  * coalescing:
1367  */
1368 static void btree_split_insert_keys(struct btree_update *as,
1369                                     struct btree_trans *trans,
1370                                     struct btree_path *path,
1371                                     struct btree *b,
1372                                     struct keylist *keys)
1373 {
1374         struct btree_node_iter node_iter;
1375         struct bkey_i *k = bch2_keylist_front(keys);
1376         struct bkey_packed *src, *dst, *n;
1377         struct bset *i;
1378
1379         bch2_btree_node_iter_init(&node_iter, b, &k->k.p);
1380
1381         __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1382
1383         /*
1384          * We can't tolerate whiteouts here - with whiteouts there can be
1385          * duplicate keys, and it would be rather bad if we picked a duplicate
1386          * for the pivot:
1387          */
1388         i = btree_bset_first(b);
1389         src = dst = i->start;
1390         while (src != vstruct_last(i)) {
1391                 n = bkey_next(src);
1392                 if (!bkey_deleted(src)) {
1393                         memmove_u64s_down(dst, src, src->u64s);
1394                         dst = bkey_next(dst);
1395                 }
1396                 src = n;
1397         }
1398
1399         /* Also clear out the unwritten whiteouts area: */
1400         b->whiteout_u64s = 0;
1401
1402         i->u64s = cpu_to_le16((u64 *) dst - i->_data);
1403         set_btree_bset_end(b, b->set);
1404
1405         BUG_ON(b->nsets != 1 ||
1406                b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
1407
1408         btree_node_interior_verify(as->c, b);
1409 }
1410
1411 static void btree_split(struct btree_update *as, struct btree_trans *trans,
1412                         struct btree_path *path, struct btree *b,
1413                         struct keylist *keys, unsigned flags)
1414 {
1415         struct bch_fs *c = as->c;
1416         struct btree *parent = btree_node_parent(path, b);
1417         struct btree *n1, *n2 = NULL, *n3 = NULL;
1418         u64 start_time = local_clock();
1419
1420         BUG_ON(!parent && (b != btree_node_root(c, b)));
1421         BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level));
1422
1423         bch2_btree_interior_update_will_free_node(as, b);
1424
1425         n1 = bch2_btree_node_alloc_replacement(as, b);
1426
1427         if (keys)
1428                 btree_split_insert_keys(as, trans, path, n1, keys);
1429
1430         if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) {
1431                 trace_btree_split(c, b);
1432
1433                 n2 = __btree_split_node(as, n1);
1434
1435                 bch2_btree_build_aux_trees(n2);
1436                 bch2_btree_build_aux_trees(n1);
1437                 six_unlock_write(&n2->c.lock);
1438                 six_unlock_write(&n1->c.lock);
1439
1440                 bch2_btree_update_add_new_node(as, n1);
1441
1442                 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1443                 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1444
1445                 /*
1446                  * Note that on recursive parent_keys == keys, so we
1447                  * can't start adding new keys to parent_keys before emptying it
1448                  * out (which we did with btree_split_insert_keys() above)
1449                  */
1450                 bch2_keylist_add(&as->parent_keys, &n1->key);
1451                 bch2_keylist_add(&as->parent_keys, &n2->key);
1452
1453                 if (!parent) {
1454                         /* Depth increases, make a new root */
1455                         n3 = __btree_root_alloc(as, b->c.level + 1);
1456
1457                         n3->sib_u64s[0] = U16_MAX;
1458                         n3->sib_u64s[1] = U16_MAX;
1459
1460                         btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1461
1462                         bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1463                 }
1464         } else {
1465                 trace_btree_compact(c, b);
1466
1467                 bch2_btree_build_aux_trees(n1);
1468                 six_unlock_write(&n1->c.lock);
1469
1470                 bch2_btree_update_add_new_node(as, n1);
1471
1472                 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1473
1474                 if (parent)
1475                         bch2_keylist_add(&as->parent_keys, &n1->key);
1476         }
1477
1478         /* New nodes all written, now make them visible: */
1479
1480         if (parent) {
1481                 /* Split a non root node */
1482                 bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1483         } else if (n3) {
1484                 bch2_btree_set_root(as, trans, path, n3);
1485         } else {
1486                 /* Root filled up but didn't need to be split */
1487                 bch2_btree_set_root(as, trans, path, n1);
1488         }
1489
1490         bch2_btree_update_get_open_buckets(as, n1);
1491         if (n2)
1492                 bch2_btree_update_get_open_buckets(as, n2);
1493         if (n3)
1494                 bch2_btree_update_get_open_buckets(as, n3);
1495
1496         /* Successful split, update the path to point to the new nodes: */
1497
1498         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1499         if (n3)
1500                 bch2_trans_node_add(trans, n3);
1501         if (n2)
1502                 bch2_trans_node_add(trans, n2);
1503         bch2_trans_node_add(trans, n1);
1504
1505         /*
1506          * The old node must be freed (in memory) _before_ unlocking the new
1507          * nodes - else another thread could re-acquire a read lock on the old
1508          * node after another thread has locked and updated the new node, thus
1509          * seeing stale data:
1510          */
1511         bch2_btree_node_free_inmem(trans, b);
1512
1513         if (n3)
1514                 six_unlock_intent(&n3->c.lock);
1515         if (n2)
1516                 six_unlock_intent(&n2->c.lock);
1517         six_unlock_intent(&n1->c.lock);
1518
1519         bch2_trans_verify_locks(trans);
1520
1521         bch2_time_stats_update(&c->times[n2
1522                                ? BCH_TIME_btree_node_split
1523                                : BCH_TIME_btree_node_compact],
1524                                start_time);
1525 }
1526
1527 static void
1528 bch2_btree_insert_keys_interior(struct btree_update *as,
1529                                 struct btree_trans *trans,
1530                                 struct btree_path *path,
1531                                 struct btree *b,
1532                                 struct keylist *keys)
1533 {
1534         struct btree_path *linked;
1535
1536         __bch2_btree_insert_keys_interior(as, trans, path, b,
1537                                           path->l[b->c.level].iter, keys);
1538
1539         btree_update_updated_node(as, b);
1540
1541         trans_for_each_path_with_node(trans, b, linked)
1542                 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1543
1544         bch2_trans_verify_paths(trans);
1545 }
1546
1547 /**
1548  * bch_btree_insert_node - insert bkeys into a given btree node
1549  *
1550  * @iter:               btree iterator
1551  * @keys:               list of keys to insert
1552  * @hook:               insert callback
1553  * @persistent:         if not null, @persistent will wait on journal write
1554  *
1555  * Inserts as many keys as it can into a given btree node, splitting it if full.
1556  * If a split occurred, this function will return early. This can only happen
1557  * for leaf nodes -- inserts into interior nodes have to be atomic.
1558  */
1559 static void bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1560                                    struct btree_path *path, struct btree *b,
1561                                    struct keylist *keys, unsigned flags)
1562 {
1563         struct bch_fs *c = as->c;
1564         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1565         int old_live_u64s = b->nr.live_u64s;
1566         int live_u64s_added, u64s_added;
1567
1568         lockdep_assert_held(&c->gc_lock);
1569         BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level));
1570         BUG_ON(!b->c.level);
1571         BUG_ON(!as || as->b);
1572         bch2_verify_keylist_sorted(keys);
1573
1574         bch2_btree_node_lock_for_insert(trans, path, b);
1575
1576         if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1577                 bch2_btree_node_unlock_write(trans, path, b);
1578                 goto split;
1579         }
1580
1581         btree_node_interior_verify(c, b);
1582
1583         bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1584
1585         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1586         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1587
1588         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1589                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1590         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1591                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1592
1593         if (u64s_added > live_u64s_added &&
1594             bch2_maybe_compact_whiteouts(c, b))
1595                 bch2_trans_node_reinit_iter(trans, b);
1596
1597         bch2_btree_node_unlock_write(trans, path, b);
1598
1599         btree_node_interior_verify(c, b);
1600         return;
1601 split:
1602         btree_split(as, trans, path, b, keys, flags);
1603 }
1604
1605 int bch2_btree_split_leaf(struct btree_trans *trans,
1606                           struct btree_path *path,
1607                           unsigned flags)
1608 {
1609         struct btree *b = path_l(path)->b;
1610         struct btree_update *as;
1611         unsigned l;
1612         int ret = 0;
1613
1614         as = bch2_btree_update_start(trans, path, path->level,
1615                                      true, flags);
1616         if (IS_ERR(as))
1617                 return PTR_ERR(as);
1618
1619         btree_split(as, trans, path, b, NULL, flags);
1620         bch2_btree_update_done(as);
1621
1622         for (l = path->level + 1; btree_path_node(path, l) && !ret; l++)
1623                 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1624
1625         return ret;
1626 }
1627
1628 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1629                                   struct btree_path *path,
1630                                   unsigned level,
1631                                   unsigned flags,
1632                                   enum btree_node_sibling sib)
1633 {
1634         struct bch_fs *c = trans->c;
1635         struct btree_path *sib_path = NULL;
1636         struct btree_update *as;
1637         struct bkey_format_state new_s;
1638         struct bkey_format new_f;
1639         struct bkey_i delete;
1640         struct btree *b, *m, *n, *prev, *next, *parent;
1641         struct bpos sib_pos;
1642         size_t sib_u64s;
1643         u64 start_time = local_clock();
1644         int ret = 0;
1645
1646         BUG_ON(!path->should_be_locked);
1647         BUG_ON(!btree_node_locked(path, level));
1648
1649         b = path->l[level].b;
1650
1651         if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) ||
1652             (sib == btree_next_sib && !bpos_cmp(b->data->max_key, SPOS_MAX))) {
1653                 b->sib_u64s[sib] = U16_MAX;
1654                 return 0;
1655         }
1656
1657         sib_pos = sib == btree_prev_sib
1658                 ? bpos_predecessor(b->data->min_key)
1659                 : bpos_successor(b->data->max_key);
1660
1661         sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1662                                  U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1663         ret = bch2_btree_path_traverse(trans, sib_path, false);
1664         if (ret)
1665                 goto err;
1666
1667         btree_path_set_should_be_locked(sib_path);
1668
1669         m = sib_path->l[level].b;
1670
1671         if (btree_node_parent(path, b) !=
1672             btree_node_parent(sib_path, m)) {
1673                 b->sib_u64s[sib] = U16_MAX;
1674                 goto out;
1675         }
1676
1677         if (sib == btree_prev_sib) {
1678                 prev = m;
1679                 next = b;
1680         } else {
1681                 prev = b;
1682                 next = m;
1683         }
1684
1685         if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) {
1686                 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1687
1688                 bch2_bpos_to_text(&buf1, prev->data->max_key);
1689                 bch2_bpos_to_text(&buf2, next->data->min_key);
1690                 bch_err(c,
1691                         "btree topology error in btree merge:\n"
1692                         "  prev ends at   %s\n"
1693                         "  next starts at %s",
1694                         buf1.buf, buf2.buf);
1695                 printbuf_exit(&buf1);
1696                 printbuf_exit(&buf2);
1697                 bch2_topology_error(c);
1698                 ret = -EIO;
1699                 goto err;
1700         }
1701
1702         bch2_bkey_format_init(&new_s);
1703         bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1704         __bch2_btree_calc_format(&new_s, prev);
1705         __bch2_btree_calc_format(&new_s, next);
1706         bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1707         new_f = bch2_bkey_format_done(&new_s);
1708
1709         sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1710                 btree_node_u64s_with_format(m, &new_f);
1711
1712         if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1713                 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1714                 sib_u64s /= 2;
1715                 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1716         }
1717
1718         sib_u64s = min(sib_u64s, btree_max_u64s(c));
1719         sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1720         b->sib_u64s[sib] = sib_u64s;
1721
1722         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1723                 goto out;
1724
1725         parent = btree_node_parent(path, b);
1726         as = bch2_btree_update_start(trans, path, level, false,
1727                          BTREE_INSERT_NOFAIL|
1728                          BTREE_INSERT_USE_RESERVE|
1729                          flags);
1730         ret = PTR_ERR_OR_ZERO(as);
1731         if (ret)
1732                 goto err;
1733
1734         trace_btree_merge(c, b);
1735
1736         bch2_btree_interior_update_will_free_node(as, b);
1737         bch2_btree_interior_update_will_free_node(as, m);
1738
1739         n = bch2_btree_node_alloc(as, b->c.level);
1740
1741         SET_BTREE_NODE_SEQ(n->data,
1742                            max(BTREE_NODE_SEQ(b->data),
1743                                BTREE_NODE_SEQ(m->data)) + 1);
1744
1745         btree_set_min(n, prev->data->min_key);
1746         btree_set_max(n, next->data->max_key);
1747
1748         bch2_btree_update_add_new_node(as, n);
1749
1750         n->data->format  = new_f;
1751         btree_node_set_format(n, new_f);
1752
1753         bch2_btree_sort_into(c, n, prev);
1754         bch2_btree_sort_into(c, n, next);
1755
1756         bch2_btree_build_aux_trees(n);
1757         six_unlock_write(&n->c.lock);
1758
1759         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1760
1761         bkey_init(&delete.k);
1762         delete.k.p = prev->key.k.p;
1763         bch2_keylist_add(&as->parent_keys, &delete);
1764         bch2_keylist_add(&as->parent_keys, &n->key);
1765
1766         bch2_trans_verify_paths(trans);
1767
1768         bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1769
1770         bch2_trans_verify_paths(trans);
1771
1772         bch2_btree_update_get_open_buckets(as, n);
1773
1774         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1775         six_lock_increment(&m->c.lock, SIX_LOCK_intent);
1776
1777         bch2_trans_node_add(trans, n);
1778
1779         bch2_trans_verify_paths(trans);
1780
1781         bch2_btree_node_free_inmem(trans, b);
1782         bch2_btree_node_free_inmem(trans, m);
1783
1784         six_unlock_intent(&n->c.lock);
1785
1786         bch2_btree_update_done(as);
1787
1788         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1789 out:
1790 err:
1791         bch2_path_put(trans, sib_path, true);
1792         bch2_trans_verify_locks(trans);
1793         return ret;
1794 }
1795
1796 /**
1797  * bch_btree_node_rewrite - Rewrite/move a btree node
1798  */
1799 int bch2_btree_node_rewrite(struct btree_trans *trans,
1800                             struct btree_iter *iter,
1801                             struct btree *b,
1802                             unsigned flags)
1803 {
1804         struct bch_fs *c = trans->c;
1805         struct btree *n, *parent;
1806         struct btree_update *as;
1807         int ret;
1808
1809         flags |= BTREE_INSERT_NOFAIL;
1810
1811         parent = btree_node_parent(iter->path, b);
1812         as = bch2_btree_update_start(trans, iter->path, b->c.level,
1813                                      false, flags);
1814         ret = PTR_ERR_OR_ZERO(as);
1815         if (ret)
1816                 goto out;
1817
1818         bch2_btree_interior_update_will_free_node(as, b);
1819
1820         n = bch2_btree_node_alloc_replacement(as, b);
1821         bch2_btree_update_add_new_node(as, n);
1822
1823         bch2_btree_build_aux_trees(n);
1824         six_unlock_write(&n->c.lock);
1825
1826         trace_btree_rewrite(c, b);
1827
1828         bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1829
1830         if (parent) {
1831                 bch2_keylist_add(&as->parent_keys, &n->key);
1832                 bch2_btree_insert_node(as, trans, iter->path, parent,
1833                                        &as->parent_keys, flags);
1834         } else {
1835                 bch2_btree_set_root(as, trans, iter->path, n);
1836         }
1837
1838         bch2_btree_update_get_open_buckets(as, n);
1839
1840         six_lock_increment(&b->c.lock, SIX_LOCK_intent);
1841         bch2_trans_node_add(trans, n);
1842         bch2_btree_node_free_inmem(trans, b);
1843         six_unlock_intent(&n->c.lock);
1844
1845         bch2_btree_update_done(as);
1846 out:
1847         bch2_btree_path_downgrade(trans, iter->path);
1848         return ret;
1849 }
1850
1851 struct async_btree_rewrite {
1852         struct bch_fs           *c;
1853         struct work_struct      work;
1854         enum btree_id           btree_id;
1855         unsigned                level;
1856         struct bpos             pos;
1857         __le64                  seq;
1858 };
1859
1860 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
1861                                           struct async_btree_rewrite *a)
1862 {
1863         struct btree_iter iter;
1864         struct btree *b;
1865         int ret;
1866
1867         bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
1868                                   BTREE_MAX_DEPTH, a->level, 0);
1869         b = bch2_btree_iter_peek_node(&iter);
1870         ret = PTR_ERR_OR_ZERO(b);
1871         if (ret)
1872                 goto out;
1873
1874         if (!b || b->data->keys.seq != a->seq)
1875                 goto out;
1876
1877         ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
1878 out :
1879         bch2_trans_iter_exit(trans, &iter);
1880
1881         return ret;
1882 }
1883
1884 void async_btree_node_rewrite_work(struct work_struct *work)
1885 {
1886         struct async_btree_rewrite *a =
1887                 container_of(work, struct async_btree_rewrite, work);
1888         struct bch_fs *c = a->c;
1889
1890         bch2_trans_do(c, NULL, NULL, 0,
1891                       async_btree_node_rewrite_trans(&trans, a));
1892         percpu_ref_put(&c->writes);
1893         kfree(a);
1894 }
1895
1896 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
1897 {
1898         struct async_btree_rewrite *a;
1899
1900         if (!percpu_ref_tryget_live(&c->writes))
1901                 return;
1902
1903         a = kmalloc(sizeof(*a), GFP_NOFS);
1904         if (!a) {
1905                 percpu_ref_put(&c->writes);
1906                 return;
1907         }
1908
1909         a->c            = c;
1910         a->btree_id     = b->c.btree_id;
1911         a->level        = b->c.level;
1912         a->pos          = b->key.k.p;
1913         a->seq          = b->data->keys.seq;
1914
1915         INIT_WORK(&a->work, async_btree_node_rewrite_work);
1916         queue_work(c->btree_interior_update_worker, &a->work);
1917 }
1918
1919 static int __bch2_btree_node_update_key(struct btree_trans *trans,
1920                                         struct btree_iter *iter,
1921                                         struct btree *b, struct btree *new_hash,
1922                                         struct bkey_i *new_key,
1923                                         bool skip_triggers)
1924 {
1925         struct bch_fs *c = trans->c;
1926         struct btree_iter iter2 = { NULL };
1927         struct btree *parent;
1928         int ret;
1929
1930         if (!skip_triggers) {
1931                 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1,
1932                                           bkey_i_to_s_c(&b->key), 0);
1933                 if (ret)
1934                         return ret;
1935
1936                 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1,
1937                                           new_key, 0);
1938                 if (ret)
1939                         return ret;
1940         }
1941
1942         if (new_hash) {
1943                 bkey_copy(&new_hash->key, new_key);
1944                 ret = bch2_btree_node_hash_insert(&c->btree_cache,
1945                                 new_hash, b->c.level, b->c.btree_id);
1946                 BUG_ON(ret);
1947         }
1948
1949         parent = btree_node_parent(iter->path, b);
1950         if (parent) {
1951                 bch2_trans_copy_iter(&iter2, iter);
1952
1953                 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
1954                                 iter2.flags & BTREE_ITER_INTENT,
1955                                 _THIS_IP_);
1956
1957                 BUG_ON(iter2.path->level != b->c.level);
1958                 BUG_ON(bpos_cmp(iter2.path->pos, new_key->k.p));
1959
1960                 btree_path_set_level_up(trans, iter2.path);
1961
1962                 bch2_btree_path_check_sort(trans, iter2.path, 0);
1963
1964                 ret   = bch2_btree_iter_traverse(&iter2) ?:
1965                         bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
1966                 if (ret)
1967                         goto err;
1968         } else {
1969                 BUG_ON(btree_node_root(c, b) != b);
1970
1971                 ret = darray_make_room(&trans->extra_journal_entries,
1972                                        jset_u64s(new_key->k.u64s));
1973                 if (ret)
1974                         return ret;
1975
1976                 journal_entry_set((void *) &darray_top(trans->extra_journal_entries),
1977                                   BCH_JSET_ENTRY_btree_root,
1978                                   b->c.btree_id, b->c.level,
1979                                   new_key, new_key->k.u64s);
1980                 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s);
1981         }
1982
1983         ret = bch2_trans_commit(trans, NULL, NULL,
1984                                 BTREE_INSERT_NOFAIL|
1985                                 BTREE_INSERT_NOCHECK_RW|
1986                                 BTREE_INSERT_USE_RESERVE|
1987                                 BTREE_INSERT_JOURNAL_RECLAIM|
1988                                 JOURNAL_WATERMARK_reserved);
1989         if (ret)
1990                 goto err;
1991
1992         bch2_btree_node_lock_write(trans, iter->path, b);
1993
1994         if (new_hash) {
1995                 mutex_lock(&c->btree_cache.lock);
1996                 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
1997                 bch2_btree_node_hash_remove(&c->btree_cache, b);
1998
1999                 bkey_copy(&b->key, new_key);
2000                 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2001                 BUG_ON(ret);
2002                 mutex_unlock(&c->btree_cache.lock);
2003         } else {
2004                 bkey_copy(&b->key, new_key);
2005         }
2006
2007         bch2_btree_node_unlock_write(trans, iter->path, b);
2008 out:
2009         bch2_trans_iter_exit(trans, &iter2);
2010         return ret;
2011 err:
2012         if (new_hash) {
2013                 mutex_lock(&c->btree_cache.lock);
2014                 bch2_btree_node_hash_remove(&c->btree_cache, b);
2015                 mutex_unlock(&c->btree_cache.lock);
2016         }
2017         goto out;
2018 }
2019
2020 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2021                                struct btree *b, struct bkey_i *new_key,
2022                                bool skip_triggers)
2023 {
2024         struct bch_fs *c = trans->c;
2025         struct btree *new_hash = NULL;
2026         struct btree_path *path = iter->path;
2027         struct closure cl;
2028         int ret = 0;
2029
2030         if (!btree_node_intent_locked(path, b->c.level) &&
2031             !bch2_btree_path_upgrade(trans, path, b->c.level + 1))
2032                 return btree_trans_restart(trans, BCH_ERR_transaction_restart_upgrade);
2033
2034         closure_init_stack(&cl);
2035
2036         /*
2037          * check btree_ptr_hash_val() after @b is locked by
2038          * btree_iter_traverse():
2039          */
2040         if (btree_ptr_hash_val(new_key) != b->hash_val) {
2041                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2042                 if (ret) {
2043                         bch2_trans_unlock(trans);
2044                         closure_sync(&cl);
2045                         ret = bch2_trans_relock(trans);
2046                         if (ret)
2047                                 return ret;
2048                 }
2049
2050                 new_hash = bch2_btree_node_mem_alloc(c, false);
2051         }
2052
2053         path->intent_ref++;
2054         ret = __bch2_btree_node_update_key(trans, iter, b, new_hash,
2055                                            new_key, skip_triggers);
2056         --path->intent_ref;
2057
2058         if (new_hash) {
2059                 mutex_lock(&c->btree_cache.lock);
2060                 list_move(&new_hash->list, &c->btree_cache.freeable);
2061                 mutex_unlock(&c->btree_cache.lock);
2062
2063                 six_unlock_write(&new_hash->c.lock);
2064                 six_unlock_intent(&new_hash->c.lock);
2065         }
2066         closure_sync(&cl);
2067         bch2_btree_cache_cannibalize_unlock(c);
2068         return ret;
2069 }
2070
2071 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2072                                         struct btree *b, struct bkey_i *new_key,
2073                                         bool skip_triggers)
2074 {
2075         struct btree_iter iter;
2076         int ret;
2077
2078         bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2079                                   BTREE_MAX_DEPTH, b->c.level,
2080                                   BTREE_ITER_INTENT);
2081         ret = bch2_btree_iter_traverse(&iter);
2082         if (ret)
2083                 goto out;
2084
2085         /* has node been freed? */
2086         if (iter.path->l[b->c.level].b != b) {
2087                 /* node has been freed: */
2088                 BUG_ON(!btree_node_dying(b));
2089                 goto out;
2090         }
2091
2092         BUG_ON(!btree_node_hashed(b));
2093
2094         ret = bch2_btree_node_update_key(trans, &iter, b, new_key, skip_triggers);
2095 out:
2096         bch2_trans_iter_exit(trans, &iter);
2097         return ret;
2098 }
2099
2100 /* Init code: */
2101
2102 /*
2103  * Only for filesystem bringup, when first reading the btree roots or allocating
2104  * btree roots when initializing a new filesystem:
2105  */
2106 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2107 {
2108         BUG_ON(btree_node_root(c, b));
2109
2110         bch2_btree_set_root_inmem(c, b);
2111 }
2112
2113 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2114 {
2115         struct closure cl;
2116         struct btree *b;
2117         int ret;
2118
2119         closure_init_stack(&cl);
2120
2121         do {
2122                 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2123                 closure_sync(&cl);
2124         } while (ret);
2125
2126         b = bch2_btree_node_mem_alloc(c, false);
2127         bch2_btree_cache_cannibalize_unlock(c);
2128
2129         set_btree_node_fake(b);
2130         set_btree_node_need_rewrite(b);
2131         b->c.level      = 0;
2132         b->c.btree_id   = id;
2133
2134         bkey_btree_ptr_init(&b->key);
2135         b->key.k.p = SPOS_MAX;
2136         *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2137
2138         bch2_bset_init_first(b, &b->data->keys);
2139         bch2_btree_build_aux_trees(b);
2140
2141         b->data->flags = 0;
2142         btree_set_min(b, POS_MIN);
2143         btree_set_max(b, SPOS_MAX);
2144         b->data->format = bch2_btree_calc_format(b);
2145         btree_node_set_format(b, b->data->format);
2146
2147         ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2148                                           b->c.level, b->c.btree_id);
2149         BUG_ON(ret);
2150
2151         bch2_btree_set_root_inmem(c, b);
2152
2153         six_unlock_write(&b->c.lock);
2154         six_unlock_intent(&b->c.lock);
2155 }
2156
2157 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2158 {
2159         struct btree_update *as;
2160
2161         mutex_lock(&c->btree_interior_update_lock);
2162         list_for_each_entry(as, &c->btree_interior_update_list, list)
2163                 prt_printf(out, "%p m %u w %u r %u j %llu\n",
2164                        as,
2165                        as->mode,
2166                        as->nodes_written,
2167                        atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
2168                        as->journal.seq);
2169         mutex_unlock(&c->btree_interior_update_lock);
2170 }
2171
2172 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2173 {
2174         bool ret;
2175
2176         mutex_lock(&c->btree_interior_update_lock);
2177         ret = !list_empty(&c->btree_interior_update_list);
2178         mutex_unlock(&c->btree_interior_update_lock);
2179
2180         return ret;
2181 }
2182
2183 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2184 {
2185         bool ret = bch2_btree_interior_updates_pending(c);
2186
2187         if (ret)
2188                 closure_wait_event(&c->btree_interior_update_wait,
2189                                    !bch2_btree_interior_updates_pending(c));
2190         return ret;
2191 }
2192
2193 void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset)
2194 {
2195         struct btree_root *r;
2196         struct jset_entry *entry;
2197
2198         mutex_lock(&c->btree_root_lock);
2199
2200         vstruct_for_each(jset, entry)
2201                 if (entry->type == BCH_JSET_ENTRY_btree_root) {
2202                         r = &c->btree_roots[entry->btree_id];
2203                         r->level = entry->level;
2204                         r->alive = true;
2205                         bkey_copy(&r->key, &entry->start[0]);
2206                 }
2207
2208         mutex_unlock(&c->btree_root_lock);
2209 }
2210
2211 struct jset_entry *
2212 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2213                                     struct jset_entry *start,
2214                                     struct jset_entry *end)
2215 {
2216         struct jset_entry *entry;
2217         unsigned long have = 0;
2218         unsigned i;
2219
2220         for (entry = start; entry < end; entry = vstruct_next(entry))
2221                 if (entry->type == BCH_JSET_ENTRY_btree_root)
2222                         __set_bit(entry->btree_id, &have);
2223
2224         mutex_lock(&c->btree_root_lock);
2225
2226         for (i = 0; i < BTREE_ID_NR; i++)
2227                 if (c->btree_roots[i].alive && !test_bit(i, &have)) {
2228                         journal_entry_set(end,
2229                                           BCH_JSET_ENTRY_btree_root,
2230                                           i, c->btree_roots[i].level,
2231                                           &c->btree_roots[i].key,
2232                                           c->btree_roots[i].key.u64s);
2233                         end = vstruct_next(end);
2234                 }
2235
2236         mutex_unlock(&c->btree_root_lock);
2237
2238         return end;
2239 }
2240
2241 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2242 {
2243         if (c->btree_interior_update_worker)
2244                 destroy_workqueue(c->btree_interior_update_worker);
2245         mempool_exit(&c->btree_interior_update_pool);
2246 }
2247
2248 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2249 {
2250         mutex_init(&c->btree_reserve_cache_lock);
2251         INIT_LIST_HEAD(&c->btree_interior_update_list);
2252         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2253         mutex_init(&c->btree_interior_update_lock);
2254         INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2255
2256         c->btree_interior_update_worker =
2257                 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2258         if (!c->btree_interior_update_worker)
2259                 return -ENOMEM;
2260
2261         return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2262                                          sizeof(struct btree_update));
2263 }