]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.h
031076e75fa1322a82a202e150a8eca9a75c063e
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8
9 void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *);
10 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *,
11                                 struct bkey_format *);
12
13 #define BTREE_UPDATE_NODES_MAX          ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
14
15 #define BTREE_UPDATE_JOURNAL_RES        (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
16
17 /*
18  * Tracks an in progress split/rewrite of a btree node and the update to the
19  * parent node:
20  *
21  * When we split/rewrite a node, we do all the updates in memory without
22  * waiting for any writes to complete - we allocate the new node(s) and update
23  * the parent node, possibly recursively up to the root.
24  *
25  * The end result is that we have one or more new nodes being written -
26  * possibly several, if there were multiple splits - and then a write (updating
27  * an interior node) which will make all these new nodes visible.
28  *
29  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
30  * nodes can't be freed (their space on disk can't be reclaimed) until the
31  * update to the interior node that makes the new node visible completes -
32  * until then, the old nodes are still reachable on disk.
33  *
34  */
35 struct btree_update {
36         struct closure                  cl;
37         struct bch_fs                   *c;
38         u64                             start_time;
39
40         struct list_head                list;
41         struct list_head                unwritten_list;
42
43         /* What kind of update are we doing? */
44         enum {
45                 BTREE_INTERIOR_NO_UPDATE,
46                 BTREE_INTERIOR_UPDATING_NODE,
47                 BTREE_INTERIOR_UPDATING_ROOT,
48                 BTREE_INTERIOR_UPDATING_AS,
49         } mode;
50
51         unsigned                        nodes_written:1;
52         unsigned                        took_gc_lock:1;
53
54         enum btree_id                   btree_id;
55         unsigned                        update_level;
56
57         struct disk_reservation         disk_res;
58
59         /*
60          * BTREE_INTERIOR_UPDATING_NODE:
61          * The update that made the new nodes visible was a regular update to an
62          * existing interior node - @b. We can't write out the update to @b
63          * until the new nodes we created are finished writing, so we block @b
64          * from writing by putting this btree_interior update on the
65          * @b->write_blocked list with @write_blocked_list:
66          */
67         struct btree                    *b;
68         struct list_head                write_blocked_list;
69
70         /*
71          * We may be freeing nodes that were dirty, and thus had journal entries
72          * pinned: we need to transfer the oldest of those pins to the
73          * btree_update operation, and release it when the new node(s)
74          * are all persistent and reachable:
75          */
76         struct journal_entry_pin        journal;
77
78         /* Preallocated nodes we reserve when we start the update: */
79         struct prealloc_nodes {
80                 struct btree            *b[BTREE_UPDATE_NODES_MAX];
81                 unsigned                nr;
82         }                               prealloc_nodes[2];
83
84         /* Nodes being freed: */
85         struct keylist                  old_keys;
86         u64                             _old_keys[BTREE_UPDATE_NODES_MAX *
87                                                   BKEY_BTREE_PTR_U64s_MAX];
88
89         /* Nodes being added: */
90         struct keylist                  new_keys;
91         u64                             _new_keys[BTREE_UPDATE_NODES_MAX *
92                                                   BKEY_BTREE_PTR_U64s_MAX];
93
94         /* New nodes, that will be made reachable by this update: */
95         struct btree                    *new_nodes[BTREE_UPDATE_NODES_MAX];
96         unsigned                        nr_new_nodes;
97
98         struct btree                    *old_nodes[BTREE_UPDATE_NODES_MAX];
99         __le64                          old_nodes_seq[BTREE_UPDATE_NODES_MAX];
100         unsigned                        nr_old_nodes;
101
102         open_bucket_idx_t               open_buckets[BTREE_UPDATE_NODES_MAX *
103                                                      BCH_REPLICAS_MAX];
104         open_bucket_idx_t               nr_open_buckets;
105
106         unsigned                        journal_u64s;
107         u64                             journal_entries[BTREE_UPDATE_JOURNAL_RES];
108
109         /* Only here to reduce stack usage on recursive splits: */
110         struct keylist                  parent_keys;
111         /*
112          * Enough room for btree_split's keys without realloc - btree node
113          * pointers never have crc/compression info, so we only need to acount
114          * for the pointers for three keys
115          */
116         u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
117 };
118
119 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
120                                                   struct btree_trans *,
121                                                   struct btree *,
122                                                   struct bkey_format);
123
124 int bch2_btree_split_leaf(struct btree_trans *, struct btree_path *, unsigned);
125
126 int __bch2_foreground_maybe_merge(struct btree_trans *, struct btree_path *,
127                                   unsigned, unsigned, enum btree_node_sibling);
128
129 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
130                                         struct btree_path *path,
131                                         unsigned level, unsigned flags,
132                                         enum btree_node_sibling sib)
133 {
134         struct btree *b;
135
136         EBUG_ON(!btree_node_locked(path, level));
137
138         b = path->l[level].b;
139         if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
140                 return 0;
141
142         return __bch2_foreground_maybe_merge(trans, path, level, flags, sib);
143 }
144
145 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
146                                               struct btree_path *path,
147                                               unsigned level,
148                                               unsigned flags)
149 {
150         return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
151                                                     btree_prev_sib) ?:
152                 bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
153                                                     btree_next_sib);
154 }
155
156 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
157                             struct btree *, unsigned);
158 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
159 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
160                                struct btree *, struct bkey_i *,
161                                unsigned, bool);
162 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
163                                         struct bkey_i *, unsigned, bool);
164
165 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
166 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
167
168 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
169                                                      struct btree *b)
170 {
171         unsigned depth = btree_node_root(c, b)->c.level + 1;
172
173         /*
174          * Number of nodes we might have to allocate in a worst case btree
175          * split operation - we split all the way up to the root, then allocate
176          * a new root, unless we're already at max depth:
177          */
178         if (depth < BTREE_MAX_DEPTH)
179                 return (depth - b->c.level) * 2 + 1;
180         else
181                 return (depth - b->c.level) * 2 - 1;
182 }
183
184 static inline void btree_node_reset_sib_u64s(struct btree *b)
185 {
186         b->sib_u64s[0] = b->nr.live_u64s;
187         b->sib_u64s[1] = b->nr.live_u64s;
188 }
189
190 static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
191 {
192         return (void *) b->data + btree_bytes(c);
193 }
194
195 static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
196                                                             struct btree *b)
197 {
198         return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
199 }
200
201 static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
202                                                           struct btree *b)
203 {
204         return btree_data_end(c, b);
205 }
206
207 static inline void *write_block(struct btree *b)
208 {
209         return (void *) b->data + (b->written << 9);
210 }
211
212 static inline bool __btree_addr_written(struct btree *b, void *p)
213 {
214         return p < write_block(b);
215 }
216
217 static inline bool bset_written(struct btree *b, struct bset *i)
218 {
219         return __btree_addr_written(b, i);
220 }
221
222 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
223 {
224         return __btree_addr_written(b, k);
225 }
226
227 static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
228                                                  struct btree *b,
229                                                  void *end)
230 {
231         ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
232                 b->whiteout_u64s;
233         ssize_t total = c->opts.btree_node_size >> 3;
234
235         /* Always leave one extra u64 for bch2_varint_decode: */
236         used++;
237
238         return total - used;
239 }
240
241 static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
242                                                    struct btree *b)
243 {
244         ssize_t remaining = __bch_btree_u64s_remaining(c, b,
245                                 btree_bkey_last(b, bset_tree_last(b)));
246
247         BUG_ON(remaining < 0);
248
249         if (bset_written(b, btree_bset_last(b)))
250                 return 0;
251
252         return remaining;
253 }
254
255 #define BTREE_WRITE_SET_U64s_BITS       9
256
257 static inline unsigned btree_write_set_buffer(struct btree *b)
258 {
259         /*
260          * Could buffer up larger amounts of keys for btrees with larger keys,
261          * pending benchmarking:
262          */
263         return 8 << BTREE_WRITE_SET_U64s_BITS;
264 }
265
266 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
267                                                      struct btree *b)
268 {
269         struct bset_tree *t = bset_tree_last(b);
270         struct btree_node_entry *bne = max(write_block(b),
271                         (void *) btree_bkey_last(b, bset_tree_last(b)));
272         ssize_t remaining_space =
273                 __bch_btree_u64s_remaining(c, b, bne->keys.start);
274
275         if (unlikely(bset_written(b, bset(b, t)))) {
276                 if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
277                         return bne;
278         } else {
279                 if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
280                     remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
281                         return bne;
282         }
283
284         return NULL;
285 }
286
287 static inline void push_whiteout(struct bch_fs *c, struct btree *b,
288                                  struct bpos pos)
289 {
290         struct bkey_packed k;
291
292         BUG_ON(bch_btree_keys_u64s_remaining(c, b) < BKEY_U64s);
293         EBUG_ON(btree_node_just_written(b));
294
295         if (!bkey_pack_pos(&k, pos, b)) {
296                 struct bkey *u = (void *) &k;
297
298                 bkey_init(u);
299                 u->p = pos;
300         }
301
302         k.needs_whiteout = true;
303
304         b->whiteout_u64s += k.u64s;
305         bkey_p_copy(unwritten_whiteouts_start(c, b), &k);
306 }
307
308 /*
309  * write lock must be held on @b (else the dirty bset that we were going to
310  * insert into could be written out from under us)
311  */
312 static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
313                                                struct btree *b, unsigned u64s)
314 {
315         if (unlikely(btree_node_need_rewrite(b)))
316                 return false;
317
318         return u64s <= bch_btree_keys_u64s_remaining(c, b);
319 }
320
321 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
322
323 bool bch2_btree_interior_updates_flush(struct bch_fs *);
324
325 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
326 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
327                                         struct jset_entry *, unsigned long);
328
329 void bch2_do_pending_node_rewrites(struct bch_fs *);
330 void bch2_free_pending_node_rewrites(struct bch_fs *);
331
332 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
333 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
334 int bch2_fs_btree_interior_update_init(struct bch_fs *);
335
336 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */