]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.h
Update bcachefs sources to bdf6d7c135 fixup! bcachefs: Kill journal buf bloom filter
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8
9 void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *);
10 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *,
11                                 struct bkey_format *);
12
13 #define BTREE_UPDATE_NODES_MAX          ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
14
15 #define BTREE_UPDATE_JOURNAL_RES        (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
16
17 /*
18  * Tracks an in progress split/rewrite of a btree node and the update to the
19  * parent node:
20  *
21  * When we split/rewrite a node, we do all the updates in memory without
22  * waiting for any writes to complete - we allocate the new node(s) and update
23  * the parent node, possibly recursively up to the root.
24  *
25  * The end result is that we have one or more new nodes being written -
26  * possibly several, if there were multiple splits - and then a write (updating
27  * an interior node) which will make all these new nodes visible.
28  *
29  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
30  * nodes can't be freed (their space on disk can't be reclaimed) until the
31  * update to the interior node that makes the new node visible completes -
32  * until then, the old nodes are still reachable on disk.
33  *
34  */
35 struct btree_update {
36         struct closure                  cl;
37         struct bch_fs                   *c;
38         u64                             start_time;
39
40         struct list_head                list;
41         struct list_head                unwritten_list;
42
43         /* What kind of update are we doing? */
44         enum {
45                 BTREE_INTERIOR_NO_UPDATE,
46                 BTREE_INTERIOR_UPDATING_NODE,
47                 BTREE_INTERIOR_UPDATING_ROOT,
48                 BTREE_INTERIOR_UPDATING_AS,
49         } mode;
50
51         unsigned                        nodes_written:1;
52         unsigned                        took_gc_lock:1;
53
54         enum btree_id                   btree_id;
55
56         struct disk_reservation         disk_res;
57         struct journal_preres           journal_preres;
58
59         /*
60          * BTREE_INTERIOR_UPDATING_NODE:
61          * The update that made the new nodes visible was a regular update to an
62          * existing interior node - @b. We can't write out the update to @b
63          * until the new nodes we created are finished writing, so we block @b
64          * from writing by putting this btree_interior update on the
65          * @b->write_blocked list with @write_blocked_list:
66          */
67         struct btree                    *b;
68         struct list_head                write_blocked_list;
69
70         /*
71          * We may be freeing nodes that were dirty, and thus had journal entries
72          * pinned: we need to transfer the oldest of those pins to the
73          * btree_update operation, and release it when the new node(s)
74          * are all persistent and reachable:
75          */
76         struct journal_entry_pin        journal;
77
78         /* Preallocated nodes we reserve when we start the update: */
79         struct prealloc_nodes {
80                 struct btree            *b[BTREE_UPDATE_NODES_MAX];
81                 unsigned                nr;
82         }                               prealloc_nodes[2];
83
84         /* Nodes being freed: */
85         struct keylist                  old_keys;
86         u64                             _old_keys[BTREE_UPDATE_NODES_MAX *
87                                                   BKEY_BTREE_PTR_U64s_MAX];
88
89         /* Nodes being added: */
90         struct keylist                  new_keys;
91         u64                             _new_keys[BTREE_UPDATE_NODES_MAX *
92                                                   BKEY_BTREE_PTR_U64s_MAX];
93
94         /* New nodes, that will be made reachable by this update: */
95         struct btree                    *new_nodes[BTREE_UPDATE_NODES_MAX];
96         unsigned                        nr_new_nodes;
97
98         struct btree                    *old_nodes[BTREE_UPDATE_NODES_MAX];
99         __le64                          old_nodes_seq[BTREE_UPDATE_NODES_MAX];
100         unsigned                        nr_old_nodes;
101
102         open_bucket_idx_t               open_buckets[BTREE_UPDATE_NODES_MAX *
103                                                      BCH_REPLICAS_MAX];
104         open_bucket_idx_t               nr_open_buckets;
105
106         unsigned                        journal_u64s;
107         u64                             journal_entries[BTREE_UPDATE_JOURNAL_RES];
108
109         /* Only here to reduce stack usage on recursive splits: */
110         struct keylist                  parent_keys;
111         /*
112          * Enough room for btree_split's keys without realloc - btree node
113          * pointers never have crc/compression info, so we only need to acount
114          * for the pointers for three keys
115          */
116         u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
117 };
118
119 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
120                                                   struct btree *,
121                                                   struct bkey_format);
122
123 int bch2_btree_split_leaf(struct btree_trans *, struct btree_path *, unsigned);
124
125 int __bch2_foreground_maybe_merge(struct btree_trans *, struct btree_path *,
126                                   unsigned, unsigned, enum btree_node_sibling);
127
128 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
129                                         struct btree_path *path,
130                                         unsigned level, unsigned flags,
131                                         enum btree_node_sibling sib)
132 {
133         struct btree *b;
134
135         EBUG_ON(!btree_node_locked(path, level));
136
137         b = path->l[level].b;
138         if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
139                 return 0;
140
141         return __bch2_foreground_maybe_merge(trans, path, level, flags, sib);
142 }
143
144 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
145                                               struct btree_path *path,
146                                               unsigned level,
147                                               unsigned flags)
148 {
149         return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
150                                                     btree_prev_sib) ?:
151                 bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
152                                                     btree_next_sib);
153 }
154
155 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
156 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
157
158 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
159                                                      struct btree *b)
160 {
161         unsigned depth = btree_node_root(c, b)->c.level + 1;
162
163         /*
164          * Number of nodes we might have to allocate in a worst case btree
165          * split operation - we split all the way up to the root, then allocate
166          * a new root, unless we're already at max depth:
167          */
168         if (depth < BTREE_MAX_DEPTH)
169                 return (depth - b->c.level) * 2 + 1;
170         else
171                 return (depth - b->c.level) * 2 - 1;
172 }
173
174 static inline void btree_node_reset_sib_u64s(struct btree *b)
175 {
176         b->sib_u64s[0] = b->nr.live_u64s;
177         b->sib_u64s[1] = b->nr.live_u64s;
178 }
179
180 static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
181 {
182         return (void *) b->data + btree_bytes(c);
183 }
184
185 static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
186                                                             struct btree *b)
187 {
188         return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
189 }
190
191 static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
192                                                           struct btree *b)
193 {
194         return btree_data_end(c, b);
195 }
196
197 static inline void *write_block(struct btree *b)
198 {
199         return (void *) b->data + (b->written << 9);
200 }
201
202 static inline bool __btree_addr_written(struct btree *b, void *p)
203 {
204         return p < write_block(b);
205 }
206
207 static inline bool bset_written(struct btree *b, struct bset *i)
208 {
209         return __btree_addr_written(b, i);
210 }
211
212 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
213 {
214         return __btree_addr_written(b, k);
215 }
216
217 static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
218                                                  struct btree *b,
219                                                  void *end)
220 {
221         ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
222                 b->whiteout_u64s;
223         ssize_t total = c->opts.btree_node_size >> 3;
224
225         /* Always leave one extra u64 for bch2_varint_decode: */
226         used++;
227
228         return total - used;
229 }
230
231 static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
232                                                    struct btree *b)
233 {
234         ssize_t remaining = __bch_btree_u64s_remaining(c, b,
235                                 btree_bkey_last(b, bset_tree_last(b)));
236
237         BUG_ON(remaining < 0);
238
239         if (bset_written(b, btree_bset_last(b)))
240                 return 0;
241
242         return remaining;
243 }
244
245 #define BTREE_WRITE_SET_U64s_BITS       9
246
247 static inline unsigned btree_write_set_buffer(struct btree *b)
248 {
249         /*
250          * Could buffer up larger amounts of keys for btrees with larger keys,
251          * pending benchmarking:
252          */
253         return 8 << BTREE_WRITE_SET_U64s_BITS;
254 }
255
256 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
257                                                      struct btree *b)
258 {
259         struct bset_tree *t = bset_tree_last(b);
260         struct btree_node_entry *bne = max(write_block(b),
261                         (void *) btree_bkey_last(b, bset_tree_last(b)));
262         ssize_t remaining_space =
263                 __bch_btree_u64s_remaining(c, b, &bne->keys.start[0]);
264
265         if (unlikely(bset_written(b, bset(b, t)))) {
266                 if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
267                         return bne;
268         } else {
269                 if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
270                     remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
271                         return bne;
272         }
273
274         return NULL;
275 }
276
277 static inline void push_whiteout(struct bch_fs *c, struct btree *b,
278                                  struct bpos pos)
279 {
280         struct bkey_packed k;
281
282         BUG_ON(bch_btree_keys_u64s_remaining(c, b) < BKEY_U64s);
283
284         if (!bkey_pack_pos(&k, pos, b)) {
285                 struct bkey *u = (void *) &k;
286
287                 bkey_init(u);
288                 u->p = pos;
289         }
290
291         k.needs_whiteout = true;
292
293         b->whiteout_u64s += k.u64s;
294         bkey_copy(unwritten_whiteouts_start(c, b), &k);
295 }
296
297 /*
298  * write lock must be held on @b (else the dirty bset that we were going to
299  * insert into could be written out from under us)
300  */
301 static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
302                                                struct btree *b, unsigned u64s)
303 {
304         if (unlikely(btree_node_need_rewrite(b)))
305                 return false;
306
307         return u64s <= bch_btree_keys_u64s_remaining(c, b);
308 }
309
310 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
311
312 bool bch2_btree_interior_updates_flush(struct bch_fs *);
313
314 void bch2_journal_entries_to_btree_roots(struct bch_fs *, struct jset *);
315 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
316                                         struct jset_entry *, struct jset_entry *);
317
318 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
319 int bch2_fs_btree_interior_update_init(struct bch_fs *);
320
321 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */