]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.h
New upstream release
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8
9 void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *);
10 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *,
11                                 struct bkey_format *);
12
13 #define BTREE_UPDATE_NODES_MAX          ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
14
15 #define BTREE_UPDATE_JOURNAL_RES        (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
16
17 /*
18  * Tracks an in progress split/rewrite of a btree node and the update to the
19  * parent node:
20  *
21  * When we split/rewrite a node, we do all the updates in memory without
22  * waiting for any writes to complete - we allocate the new node(s) and update
23  * the parent node, possibly recursively up to the root.
24  *
25  * The end result is that we have one or more new nodes being written -
26  * possibly several, if there were multiple splits - and then a write (updating
27  * an interior node) which will make all these new nodes visible.
28  *
29  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
30  * nodes can't be freed (their space on disk can't be reclaimed) until the
31  * update to the interior node that makes the new node visible completes -
32  * until then, the old nodes are still reachable on disk.
33  *
34  */
35 struct btree_update {
36         struct closure                  cl;
37         struct bch_fs                   *c;
38
39         struct list_head                list;
40         struct list_head                unwritten_list;
41
42         /* What kind of update are we doing? */
43         enum {
44                 BTREE_INTERIOR_NO_UPDATE,
45                 BTREE_INTERIOR_UPDATING_NODE,
46                 BTREE_INTERIOR_UPDATING_ROOT,
47                 BTREE_INTERIOR_UPDATING_AS,
48         } mode;
49
50         unsigned                        nodes_written:1;
51         unsigned                        took_gc_lock:1;
52
53         enum btree_id                   btree_id;
54
55         struct disk_reservation         disk_res;
56         struct journal_preres           journal_preres;
57
58         /*
59          * BTREE_INTERIOR_UPDATING_NODE:
60          * The update that made the new nodes visible was a regular update to an
61          * existing interior node - @b. We can't write out the update to @b
62          * until the new nodes we created are finished writing, so we block @b
63          * from writing by putting this btree_interior update on the
64          * @b->write_blocked list with @write_blocked_list:
65          */
66         struct btree                    *b;
67         struct list_head                write_blocked_list;
68
69         /*
70          * We may be freeing nodes that were dirty, and thus had journal entries
71          * pinned: we need to transfer the oldest of those pins to the
72          * btree_update operation, and release it when the new node(s)
73          * are all persistent and reachable:
74          */
75         struct journal_entry_pin        journal;
76
77         /* Preallocated nodes we reserve when we start the update: */
78         struct btree                    *prealloc_nodes[BTREE_UPDATE_NODES_MAX];
79         unsigned                        nr_prealloc_nodes;
80
81         /* Nodes being freed: */
82         struct keylist                  old_keys;
83         u64                             _old_keys[BTREE_UPDATE_NODES_MAX *
84                                                   BKEY_BTREE_PTR_VAL_U64s_MAX];
85
86         /* Nodes being added: */
87         struct keylist                  new_keys;
88         u64                             _new_keys[BTREE_UPDATE_NODES_MAX *
89                                                   BKEY_BTREE_PTR_VAL_U64s_MAX];
90
91         /* New nodes, that will be made reachable by this update: */
92         struct btree                    *new_nodes[BTREE_UPDATE_NODES_MAX];
93         unsigned                        nr_new_nodes;
94
95         struct btree                    *old_nodes[BTREE_UPDATE_NODES_MAX];
96         __le64                          old_nodes_seq[BTREE_UPDATE_NODES_MAX];
97         unsigned                        nr_old_nodes;
98
99         open_bucket_idx_t               open_buckets[BTREE_UPDATE_NODES_MAX *
100                                                      BCH_REPLICAS_MAX];
101         open_bucket_idx_t               nr_open_buckets;
102
103         unsigned                        journal_u64s;
104         u64                             journal_entries[BTREE_UPDATE_JOURNAL_RES];
105
106         /* Only here to reduce stack usage on recursive splits: */
107         struct keylist                  parent_keys;
108         /*
109          * Enough room for btree_split's keys without realloc - btree node
110          * pointers never have crc/compression info, so we only need to acount
111          * for the pointers for three keys
112          */
113         u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
114 };
115
116 void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *,
117                                 struct btree_iter *);
118 void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *);
119
120 void bch2_btree_update_get_open_buckets(struct btree_update *, struct btree *);
121
122 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
123                                                   struct btree *,
124                                                   struct bkey_format);
125
126 void bch2_btree_update_done(struct btree_update *);
127 struct btree_update *
128 bch2_btree_update_start(struct btree_iter *, unsigned, unsigned, unsigned);
129
130 void bch2_btree_interior_update_will_free_node(struct btree_update *,
131                                                struct btree *);
132 void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
133
134 int bch2_btree_split_leaf(struct btree_trans *, struct btree_iter *, unsigned);
135
136 int __bch2_foreground_maybe_merge(struct btree_trans *, struct btree_iter *,
137                                   unsigned, unsigned, enum btree_node_sibling);
138
139 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
140                                         struct btree_iter *iter,
141                                         unsigned level, unsigned flags,
142                                         enum btree_node_sibling sib)
143 {
144         struct btree *b;
145
146         if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE)
147                 return 0;
148
149         if (!bch2_btree_node_relock(iter, level))
150                 return 0;
151
152         b = iter->l[level].b;
153         if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
154                 return 0;
155
156         return __bch2_foreground_maybe_merge(trans, iter, level, flags, sib);
157 }
158
159 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
160                                               struct btree_iter *iter,
161                                               unsigned level,
162                                               unsigned flags)
163 {
164         return  bch2_foreground_maybe_merge_sibling(trans, iter, level, flags,
165                                                     btree_prev_sib) ?:
166                 bch2_foreground_maybe_merge_sibling(trans, iter, level, flags,
167                                                     btree_next_sib);
168 }
169
170 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
171 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
172
173 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
174                                                      struct btree *b)
175 {
176         unsigned depth = btree_node_root(c, b)->c.level + 1;
177
178         /*
179          * Number of nodes we might have to allocate in a worst case btree
180          * split operation - we split all the way up to the root, then allocate
181          * a new root, unless we're already at max depth:
182          */
183         if (depth < BTREE_MAX_DEPTH)
184                 return (depth - b->c.level) * 2 + 1;
185         else
186                 return (depth - b->c.level) * 2 - 1;
187 }
188
189 static inline void btree_node_reset_sib_u64s(struct btree *b)
190 {
191         b->sib_u64s[0] = b->nr.live_u64s;
192         b->sib_u64s[1] = b->nr.live_u64s;
193 }
194
195 static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
196 {
197         return (void *) b->data + btree_bytes(c);
198 }
199
200 static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
201                                                             struct btree *b)
202 {
203         return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
204 }
205
206 static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
207                                                           struct btree *b)
208 {
209         return btree_data_end(c, b);
210 }
211
212 static inline void *write_block(struct btree *b)
213 {
214         return (void *) b->data + (b->written << 9);
215 }
216
217 static inline bool __btree_addr_written(struct btree *b, void *p)
218 {
219         return p < write_block(b);
220 }
221
222 static inline bool bset_written(struct btree *b, struct bset *i)
223 {
224         return __btree_addr_written(b, i);
225 }
226
227 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
228 {
229         return __btree_addr_written(b, k);
230 }
231
232 static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
233                                                  struct btree *b,
234                                                  void *end)
235 {
236         ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
237                 b->whiteout_u64s;
238         ssize_t total = c->opts.btree_node_size << 6;
239
240         /* Always leave one extra u64 for bch2_varint_decode: */
241         used++;
242
243         return total - used;
244 }
245
246 static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
247                                                    struct btree *b)
248 {
249         ssize_t remaining = __bch_btree_u64s_remaining(c, b,
250                                 btree_bkey_last(b, bset_tree_last(b)));
251
252         BUG_ON(remaining < 0);
253
254         if (bset_written(b, btree_bset_last(b)))
255                 return 0;
256
257         return remaining;
258 }
259
260 #define BTREE_WRITE_SET_U64s_BITS       9
261
262 static inline unsigned btree_write_set_buffer(struct btree *b)
263 {
264         /*
265          * Could buffer up larger amounts of keys for btrees with larger keys,
266          * pending benchmarking:
267          */
268         return 8 << BTREE_WRITE_SET_U64s_BITS;
269 }
270
271 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
272                                                      struct btree *b)
273 {
274         struct bset_tree *t = bset_tree_last(b);
275         struct btree_node_entry *bne = max(write_block(b),
276                         (void *) btree_bkey_last(b, bset_tree_last(b)));
277         ssize_t remaining_space =
278                 __bch_btree_u64s_remaining(c, b, &bne->keys.start[0]);
279
280         if (unlikely(bset_written(b, bset(b, t)))) {
281                 if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
282                         return bne;
283         } else {
284                 if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
285                     remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
286                         return bne;
287         }
288
289         return NULL;
290 }
291
292 static inline void push_whiteout(struct bch_fs *c, struct btree *b,
293                                  struct bpos pos)
294 {
295         struct bkey_packed k;
296
297         BUG_ON(bch_btree_keys_u64s_remaining(c, b) < BKEY_U64s);
298
299         if (!bkey_pack_pos(&k, pos, b)) {
300                 struct bkey *u = (void *) &k;
301
302                 bkey_init(u);
303                 u->p = pos;
304         }
305
306         k.needs_whiteout = true;
307
308         b->whiteout_u64s += k.u64s;
309         bkey_copy(unwritten_whiteouts_start(c, b), &k);
310 }
311
312 /*
313  * write lock must be held on @b (else the dirty bset that we were going to
314  * insert into could be written out from under us)
315  */
316 static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
317                                                struct btree *b, unsigned u64s)
318 {
319         if (unlikely(btree_node_need_rewrite(b)))
320                 return false;
321
322         return u64s <= bch_btree_keys_u64s_remaining(c, b);
323 }
324
325 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
326
327 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *);
328
329 void bch2_journal_entries_to_btree_roots(struct bch_fs *, struct jset *);
330 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
331                                         struct jset_entry *, struct jset_entry *);
332
333 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
334 int bch2_fs_btree_interior_update_init(struct bch_fs *);
335
336 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */