]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.h
fa30809d50f4364ae174b44bb053ddef0abafe0c
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.h
1 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
2 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3
4 #include "btree_cache.h"
5 #include "btree_locking.h"
6 #include "btree_update.h"
7
8 struct btree_reserve {
9         struct disk_reservation disk_res;
10         unsigned                nr;
11         struct btree            *b[BTREE_RESERVE_MAX];
12 };
13
14 void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *);
15 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *,
16                                 struct bkey_format *);
17
18 /* Btree node freeing/allocation: */
19
20 /*
21  * Tracks a btree node that has been (or is about to be) freed in memory, but
22  * has _not_ yet been freed on disk (because the write that makes the new
23  * node(s) visible and frees the old hasn't completed yet)
24  */
25 struct pending_btree_node_free {
26         bool                    index_update_done;
27
28         __le64                  seq;
29         enum btree_id           btree_id;
30         unsigned                level;
31         __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
32 };
33
34 /*
35  * Tracks an in progress split/rewrite of a btree node and the update to the
36  * parent node:
37  *
38  * When we split/rewrite a node, we do all the updates in memory without
39  * waiting for any writes to complete - we allocate the new node(s) and update
40  * the parent node, possibly recursively up to the root.
41  *
42  * The end result is that we have one or more new nodes being written -
43  * possibly several, if there were multiple splits - and then a write (updating
44  * an interior node) which will make all these new nodes visible.
45  *
46  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
47  * nodes can't be freed (their space on disk can't be reclaimed) until the
48  * update to the interior node that makes the new node visible completes -
49  * until then, the old nodes are still reachable on disk.
50  *
51  */
52 struct btree_update {
53         struct closure                  cl;
54         struct bch_fs                   *c;
55
56         struct list_head                list;
57
58         /* What kind of update are we doing? */
59         enum {
60                 BTREE_INTERIOR_NO_UPDATE,
61                 BTREE_INTERIOR_UPDATING_NODE,
62                 BTREE_INTERIOR_UPDATING_ROOT,
63                 BTREE_INTERIOR_UPDATING_AS,
64         } mode;
65
66         unsigned                        must_rewrite:1;
67         unsigned                        nodes_written:1;
68
69         enum btree_id                   btree_id;
70
71         struct btree_reserve            *reserve;
72
73         /*
74          * BTREE_INTERIOR_UPDATING_NODE:
75          * The update that made the new nodes visible was a regular update to an
76          * existing interior node - @b. We can't write out the update to @b
77          * until the new nodes we created are finished writing, so we block @b
78          * from writing by putting this btree_interior update on the
79          * @b->write_blocked list with @write_blocked_list:
80          */
81         struct btree                    *b;
82         struct list_head                write_blocked_list;
83
84         /*
85          * BTREE_INTERIOR_UPDATING_AS: btree node we updated was freed, so now
86          * we're now blocking another btree_update
87          * @parent_as - btree_update that's waiting on our nodes to finish
88          * writing, before it can make new nodes visible on disk
89          * @wait - list of child btree_updates that are waiting on this
90          * btree_update to make all the new nodes visible before they can free
91          * their old btree nodes
92          */
93         struct btree_update             *parent_as;
94         struct closure_waitlist         wait;
95
96         /*
97          * We may be freeing nodes that were dirty, and thus had journal entries
98          * pinned: we need to transfer the oldest of those pins to the
99          * btree_update operation, and release it when the new node(s)
100          * are all persistent and reachable:
101          */
102         struct journal_entry_pin        journal;
103
104         u64                             journal_seq;
105
106         /*
107          * Nodes being freed:
108          * Protected by c->btree_node_pending_free_lock
109          */
110         struct pending_btree_node_free  pending[BTREE_MAX_DEPTH + GC_MERGE_NODES];
111         unsigned                        nr_pending;
112
113         /* New nodes, that will be made reachable by this update: */
114         struct btree                    *new_nodes[BTREE_MAX_DEPTH * 2 + GC_MERGE_NODES];
115         unsigned                        nr_new_nodes;
116
117         /* Only here to reduce stack usage on recursive splits: */
118         struct keylist                  parent_keys;
119         /*
120          * Enough room for btree_split's keys without realloc - btree node
121          * pointers never have crc/compression info, so we only need to acount
122          * for the pointers for three keys
123          */
124         u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
125 };
126
127 #define for_each_pending_btree_node_free(c, as, p)                      \
128         list_for_each_entry(as, &c->btree_interior_update_list, list)   \
129                 for (p = as->pending; p < as->pending + as->nr_pending; p++)
130
131 void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *,
132                                 struct btree_iter *);
133 void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *);
134 void bch2_btree_open_bucket_put(struct bch_fs *, struct btree *);
135
136 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
137                                                   struct btree *,
138                                                   struct bkey_format);
139
140 void bch2_btree_update_done(struct btree_update *);
141 struct btree_update *
142 bch2_btree_update_start(struct bch_fs *, enum btree_id, unsigned,
143                         unsigned, struct closure *);
144
145 void bch2_btree_interior_update_will_free_node(struct btree_update *,
146                                                struct btree *);
147
148 void bch2_btree_insert_node(struct btree_update *, struct btree *,
149                             struct btree_iter *, struct keylist *,
150                             unsigned);
151 int bch2_btree_split_leaf(struct bch_fs *, struct btree_iter *, unsigned);
152
153 void __bch2_foreground_maybe_merge(struct bch_fs *, struct btree_iter *,
154                                    unsigned, unsigned, enum btree_node_sibling);
155
156 static inline void bch2_foreground_maybe_merge_sibling(struct bch_fs *c,
157                                         struct btree_iter *iter,
158                                         unsigned level, unsigned flags,
159                                         enum btree_node_sibling sib)
160 {
161         struct btree *b;
162
163         if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE)
164                 return;
165
166         if (!bch2_btree_node_relock(iter, level))
167                 return;
168
169         b = iter->l[level].b;
170         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
171                 return;
172
173         __bch2_foreground_maybe_merge(c, iter, level, flags, sib);
174 }
175
176 static inline void bch2_foreground_maybe_merge(struct bch_fs *c,
177                                                struct btree_iter *iter,
178                                                unsigned level,
179                                                unsigned flags)
180 {
181         bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
182                                             btree_prev_sib);
183         bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
184                                             btree_next_sib);
185 }
186
187 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
188 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
189
190 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
191                                                      struct btree *b)
192 {
193         unsigned depth = btree_node_root(c, b)->level + 1;
194
195         /*
196          * Number of nodes we might have to allocate in a worst case btree
197          * split operation - we split all the way up to the root, then allocate
198          * a new root, unless we're already at max depth:
199          */
200         if (depth < BTREE_MAX_DEPTH)
201                 return (depth - b->level) * 2 + 1;
202         else
203                 return (depth - b->level) * 2 - 1;
204 }
205
206 static inline void btree_node_reset_sib_u64s(struct btree *b)
207 {
208         b->sib_u64s[0] = b->nr.live_u64s;
209         b->sib_u64s[1] = b->nr.live_u64s;
210 }
211
212 static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
213 {
214         return (void *) b->data + btree_bytes(c);
215 }
216
217 static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
218                                                             struct btree *b)
219 {
220         return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
221 }
222
223 static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
224                                                           struct btree *b)
225 {
226         return btree_data_end(c, b);
227 }
228
229 static inline void *write_block(struct btree *b)
230 {
231         return (void *) b->data + (b->written << 9);
232 }
233
234 static inline bool __btree_addr_written(struct btree *b, void *p)
235 {
236         return p < write_block(b);
237 }
238
239 static inline bool bset_written(struct btree *b, struct bset *i)
240 {
241         return __btree_addr_written(b, i);
242 }
243
244 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
245 {
246         return __btree_addr_written(b, k);
247 }
248
249 static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
250                                                  struct btree *b,
251                                                  void *end)
252 {
253         ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
254                 b->whiteout_u64s +
255                 b->uncompacted_whiteout_u64s;
256         ssize_t total = c->opts.btree_node_size << 6;
257
258         return total - used;
259 }
260
261 static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
262                                                    struct btree *b)
263 {
264         ssize_t remaining = __bch_btree_u64s_remaining(c, b,
265                                 btree_bkey_last(b, bset_tree_last(b)));
266
267         BUG_ON(remaining < 0);
268
269         if (bset_written(b, btree_bset_last(b)))
270                 return 0;
271
272         return remaining;
273 }
274
275 static inline unsigned btree_write_set_buffer(struct btree *b)
276 {
277         /*
278          * Could buffer up larger amounts of keys for btrees with larger keys,
279          * pending benchmarking:
280          */
281         return 4 << 10;
282 }
283
284 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
285                                                      struct btree *b)
286 {
287         struct bset *i = btree_bset_last(b);
288         struct btree_node_entry *bne = max(write_block(b),
289                         (void *) btree_bkey_last(b, bset_tree_last(b)));
290         ssize_t remaining_space =
291                 __bch_btree_u64s_remaining(c, b, &bne->keys.start[0]);
292
293         if (unlikely(bset_written(b, i))) {
294                 if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
295                         return bne;
296         } else {
297                 if (unlikely(vstruct_bytes(i) > btree_write_set_buffer(b)) &&
298                     remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
299                         return bne;
300         }
301
302         return NULL;
303 }
304
305 static inline void unreserve_whiteout(struct btree *b, struct bkey_packed *k)
306 {
307         if (bkey_written(b, k)) {
308                 EBUG_ON(b->uncompacted_whiteout_u64s <
309                         bkeyp_key_u64s(&b->format, k));
310                 b->uncompacted_whiteout_u64s -=
311                         bkeyp_key_u64s(&b->format, k);
312         }
313 }
314
315 static inline void reserve_whiteout(struct btree *b, struct bkey_packed *k)
316 {
317         if (bkey_written(b, k)) {
318                 BUG_ON(!k->needs_whiteout);
319                 b->uncompacted_whiteout_u64s +=
320                         bkeyp_key_u64s(&b->format, k);
321         }
322 }
323
324 /*
325  * write lock must be held on @b (else the dirty bset that we were going to
326  * insert into could be written out from under us)
327  */
328 static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
329                                                struct btree *b, unsigned u64s)
330 {
331         if (unlikely(btree_node_fake(b)))
332                 return false;
333
334         return u64s <= bch_btree_keys_u64s_remaining(c, b);
335 }
336
337 ssize_t bch2_btree_updates_print(struct bch_fs *, char *);
338
339 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *);
340
341 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */