]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_interior.h
Update bcachefs sources to 7bfc741f64 bcachefs: Fix a null ptr deref during journal...
[bcachefs-tools-debian] / libbcachefs / btree_update_interior.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8
9 struct btree_reserve {
10         struct disk_reservation disk_res;
11         unsigned                nr;
12         struct btree            *b[BTREE_RESERVE_MAX];
13 };
14
15 void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *);
16 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *,
17                                 struct bkey_format *);
18
19 /* Btree node freeing/allocation: */
20
21 /*
22  * Tracks a btree node that has been (or is about to be) freed in memory, but
23  * has _not_ yet been freed on disk (because the write that makes the new
24  * node(s) visible and frees the old hasn't completed yet)
25  */
26 struct pending_btree_node_free {
27         bool                    index_update_done;
28
29         __le64                  seq;
30         enum btree_id           btree_id;
31         unsigned                level;
32         __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
33 };
34
35 /*
36  * Tracks an in progress split/rewrite of a btree node and the update to the
37  * parent node:
38  *
39  * When we split/rewrite a node, we do all the updates in memory without
40  * waiting for any writes to complete - we allocate the new node(s) and update
41  * the parent node, possibly recursively up to the root.
42  *
43  * The end result is that we have one or more new nodes being written -
44  * possibly several, if there were multiple splits - and then a write (updating
45  * an interior node) which will make all these new nodes visible.
46  *
47  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
48  * nodes can't be freed (their space on disk can't be reclaimed) until the
49  * update to the interior node that makes the new node visible completes -
50  * until then, the old nodes are still reachable on disk.
51  *
52  */
53 struct btree_update {
54         struct closure                  cl;
55         struct bch_fs                   *c;
56
57         struct list_head                list;
58         struct list_head                unwritten_list;
59
60         /* What kind of update are we doing? */
61         enum {
62                 BTREE_INTERIOR_NO_UPDATE,
63                 BTREE_INTERIOR_UPDATING_NODE,
64                 BTREE_INTERIOR_UPDATING_ROOT,
65                 BTREE_INTERIOR_UPDATING_AS,
66         } mode;
67
68         unsigned                        must_rewrite:1;
69         unsigned                        nodes_written:1;
70
71         enum btree_id                   btree_id;
72         u8                              level;
73
74         struct btree_reserve            *reserve;
75         struct journal_preres           journal_preres;
76
77         /*
78          * BTREE_INTERIOR_UPDATING_NODE:
79          * The update that made the new nodes visible was a regular update to an
80          * existing interior node - @b. We can't write out the update to @b
81          * until the new nodes we created are finished writing, so we block @b
82          * from writing by putting this btree_interior update on the
83          * @b->write_blocked list with @write_blocked_list:
84          */
85         struct btree                    *b;
86         struct list_head                write_blocked_list;
87
88         /*
89          * We may be freeing nodes that were dirty, and thus had journal entries
90          * pinned: we need to transfer the oldest of those pins to the
91          * btree_update operation, and release it when the new node(s)
92          * are all persistent and reachable:
93          */
94         struct journal_entry_pin        journal;
95
96         /*
97          * Nodes being freed:
98          * Protected by c->btree_node_pending_free_lock
99          */
100         struct pending_btree_node_free  pending[BTREE_MAX_DEPTH + GC_MERGE_NODES];
101         unsigned                        nr_pending;
102
103         /* New nodes, that will be made reachable by this update: */
104         struct btree                    *new_nodes[BTREE_MAX_DEPTH * 2 + GC_MERGE_NODES];
105         unsigned                        nr_new_nodes;
106
107         unsigned                        journal_u64s;
108         u64                             journal_entries[
109                 (BKEY_BTREE_PTR_U64s_MAX + 1) * (BTREE_MAX_DEPTH - 1) * 2];
110
111         /* Only here to reduce stack usage on recursive splits: */
112         struct keylist                  parent_keys;
113         /*
114          * Enough room for btree_split's keys without realloc - btree node
115          * pointers never have crc/compression info, so we only need to acount
116          * for the pointers for three keys
117          */
118         u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
119 };
120
121 #define for_each_pending_btree_node_free(c, as, p)                      \
122         list_for_each_entry(as, &c->btree_interior_update_list, list)   \
123                 for (p = as->pending; p < as->pending + as->nr_pending; p++)
124
125 void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *,
126                                 struct btree_iter *);
127 void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *);
128
129 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
130                                                   struct btree *,
131                                                   struct bkey_format);
132
133 void bch2_btree_update_done(struct btree_update *);
134 struct btree_update *
135 bch2_btree_update_start(struct bch_fs *, enum btree_id, unsigned,
136                         unsigned, struct closure *);
137
138 void bch2_btree_interior_update_will_free_node(struct btree_update *,
139                                                struct btree *);
140
141 void bch2_btree_insert_node(struct btree_update *, struct btree *,
142                             struct btree_iter *, struct keylist *,
143                             unsigned);
144 int bch2_btree_split_leaf(struct bch_fs *, struct btree_iter *, unsigned);
145
146 void __bch2_foreground_maybe_merge(struct bch_fs *, struct btree_iter *,
147                                    unsigned, unsigned, enum btree_node_sibling);
148
149 static inline void bch2_foreground_maybe_merge_sibling(struct bch_fs *c,
150                                         struct btree_iter *iter,
151                                         unsigned level, unsigned flags,
152                                         enum btree_node_sibling sib)
153 {
154         struct btree *b;
155
156         if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE)
157                 return;
158
159         if (!bch2_btree_node_relock(iter, level))
160                 return;
161
162         b = iter->l[level].b;
163         if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
164                 return;
165
166         __bch2_foreground_maybe_merge(c, iter, level, flags, sib);
167 }
168
169 static inline void bch2_foreground_maybe_merge(struct bch_fs *c,
170                                                struct btree_iter *iter,
171                                                unsigned level,
172                                                unsigned flags)
173 {
174         bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
175                                             btree_prev_sib);
176         bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
177                                             btree_next_sib);
178 }
179
180 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
181 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
182
183 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
184                                                      struct btree *b)
185 {
186         unsigned depth = btree_node_root(c, b)->level + 1;
187
188         /*
189          * Number of nodes we might have to allocate in a worst case btree
190          * split operation - we split all the way up to the root, then allocate
191          * a new root, unless we're already at max depth:
192          */
193         if (depth < BTREE_MAX_DEPTH)
194                 return (depth - b->level) * 2 + 1;
195         else
196                 return (depth - b->level) * 2 - 1;
197 }
198
199 static inline void btree_node_reset_sib_u64s(struct btree *b)
200 {
201         b->sib_u64s[0] = b->nr.live_u64s;
202         b->sib_u64s[1] = b->nr.live_u64s;
203 }
204
205 static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
206 {
207         return (void *) b->data + btree_bytes(c);
208 }
209
210 static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
211                                                             struct btree *b)
212 {
213         return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
214 }
215
216 static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
217                                                           struct btree *b)
218 {
219         return btree_data_end(c, b);
220 }
221
222 static inline void *write_block(struct btree *b)
223 {
224         return (void *) b->data + (b->written << 9);
225 }
226
227 static inline bool __btree_addr_written(struct btree *b, void *p)
228 {
229         return p < write_block(b);
230 }
231
232 static inline bool bset_written(struct btree *b, struct bset *i)
233 {
234         return __btree_addr_written(b, i);
235 }
236
237 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
238 {
239         return __btree_addr_written(b, k);
240 }
241
242 static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
243                                                  struct btree *b,
244                                                  void *end)
245 {
246         ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
247                 b->whiteout_u64s;
248         ssize_t total = c->opts.btree_node_size << 6;
249
250         return total - used;
251 }
252
253 static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
254                                                    struct btree *b)
255 {
256         ssize_t remaining = __bch_btree_u64s_remaining(c, b,
257                                 btree_bkey_last(b, bset_tree_last(b)));
258
259         BUG_ON(remaining < 0);
260
261         if (bset_written(b, btree_bset_last(b)))
262                 return 0;
263
264         return remaining;
265 }
266
267 static inline unsigned btree_write_set_buffer(struct btree *b)
268 {
269         /*
270          * Could buffer up larger amounts of keys for btrees with larger keys,
271          * pending benchmarking:
272          */
273         return 4 << 10;
274 }
275
276 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
277                                                      struct btree *b)
278 {
279         struct bset_tree *t = bset_tree_last(b);
280         struct btree_node_entry *bne = max(write_block(b),
281                         (void *) btree_bkey_last(b, bset_tree_last(b)));
282         ssize_t remaining_space =
283                 __bch_btree_u64s_remaining(c, b, &bne->keys.start[0]);
284
285         if (unlikely(bset_written(b, bset(b, t)))) {
286                 if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
287                         return bne;
288         } else {
289                 if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
290                     remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
291                         return bne;
292         }
293
294         return NULL;
295 }
296
297 static inline void push_whiteout(struct bch_fs *c, struct btree *b,
298                                  struct bpos pos)
299 {
300         struct bkey_packed k;
301
302         BUG_ON(bch_btree_keys_u64s_remaining(c, b) < BKEY_U64s);
303
304         if (!bkey_pack_pos(&k, pos, b)) {
305                 struct bkey *u = (void *) &k;
306
307                 bkey_init(u);
308                 u->p = pos;
309         }
310
311         k.needs_whiteout = true;
312
313         b->whiteout_u64s += k.u64s;
314         bkey_copy(unwritten_whiteouts_start(c, b), &k);
315 }
316
317 /*
318  * write lock must be held on @b (else the dirty bset that we were going to
319  * insert into could be written out from under us)
320  */
321 static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
322                                                struct btree *b, unsigned u64s)
323 {
324         if (unlikely(btree_node_fake(b)))
325                 return false;
326
327         return u64s <= bch_btree_keys_u64s_remaining(c, b);
328 }
329
330 ssize_t bch2_btree_updates_print(struct bch_fs *, char *);
331
332 size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *);
333
334 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */