]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_leaf.c
Update bcachefs sources to e99d29e402 bcachefs: zstd support, compression refactoring
[bcachefs-tools-debian] / libbcachefs / btree_update_leaf.c
1
2 #include "bcachefs.h"
3 #include "btree_update.h"
4 #include "btree_update_interior.h"
5 #include "btree_io.h"
6 #include "btree_iter.h"
7 #include "btree_locking.h"
8 #include "debug.h"
9 #include "extents.h"
10 #include "journal.h"
11 #include "keylist.h"
12
13 #include <linux/sort.h>
14 #include <trace/events/bcachefs.h>
15
16 /* Inserting into a given leaf node (last stage of insert): */
17
18 /* Handle overwrites and do insert, for non extents: */
19 bool bch2_btree_bset_insert_key(struct btree_iter *iter,
20                                 struct btree *b,
21                                 struct btree_node_iter *node_iter,
22                                 struct bkey_i *insert)
23 {
24         const struct bkey_format *f = &b->format;
25         struct bkey_packed *k;
26         struct bset_tree *t;
27         unsigned clobber_u64s;
28
29         EBUG_ON(btree_node_just_written(b));
30         EBUG_ON(bset_written(b, btree_bset_last(b)));
31         EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
32         EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 ||
33                 bkey_cmp(insert->k.p, b->data->max_key) > 0);
34
35         k = bch2_btree_node_iter_peek_all(node_iter, b);
36         if (k && !bkey_cmp_packed(b, k, &insert->k)) {
37                 BUG_ON(bkey_whiteout(k));
38
39                 t = bch2_bkey_to_bset(b, k);
40
41                 if (bset_unwritten(b, bset(b, t)) &&
42                     bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k) &&
43                     !bkey_whiteout(&insert->k)) {
44                         k->type = insert->k.type;
45                         memcpy_u64s(bkeyp_val(f, k), &insert->v,
46                                     bkey_val_u64s(&insert->k));
47                         return true;
48                 }
49
50                 insert->k.needs_whiteout = k->needs_whiteout;
51
52                 btree_keys_account_key_drop(&b->nr, t - b->set, k);
53
54                 if (t == bset_tree_last(b)) {
55                         clobber_u64s = k->u64s;
56
57                         /*
58                          * If we're deleting, and the key we're deleting doesn't
59                          * need a whiteout (it wasn't overwriting a key that had
60                          * been written to disk) - just delete it:
61                          */
62                         if (bkey_whiteout(&insert->k) && !k->needs_whiteout) {
63                                 bch2_bset_delete(b, k, clobber_u64s);
64                                 bch2_btree_node_iter_fix(iter, b, node_iter, t,
65                                                         k, clobber_u64s, 0);
66                                 return true;
67                         }
68
69                         goto overwrite;
70                 }
71
72                 k->type = KEY_TYPE_DELETED;
73                 bch2_btree_node_iter_fix(iter, b, node_iter, t, k,
74                                         k->u64s, k->u64s);
75
76                 if (bkey_whiteout(&insert->k)) {
77                         reserve_whiteout(b, t, k);
78                         return true;
79                 } else {
80                         k->needs_whiteout = false;
81                 }
82         } else {
83                 /*
84                  * Deleting, but the key to delete wasn't found - nothing to do:
85                  */
86                 if (bkey_whiteout(&insert->k))
87                         return false;
88
89                 insert->k.needs_whiteout = false;
90         }
91
92         t = bset_tree_last(b);
93         k = bch2_btree_node_iter_bset_pos(node_iter, b, t);
94         clobber_u64s = 0;
95 overwrite:
96         bch2_bset_insert(b, node_iter, k, insert, clobber_u64s);
97         if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k))
98                 bch2_btree_node_iter_fix(iter, b, node_iter, t, k,
99                                         clobber_u64s, k->u64s);
100         return true;
101 }
102
103 static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
104                                unsigned i, u64 seq)
105 {
106         struct bch_fs *c = container_of(j, struct bch_fs, journal);
107         struct btree_write *w = container_of(pin, struct btree_write, journal);
108         struct btree *b = container_of(w, struct btree, writes[i]);
109
110         six_lock_read(&b->lock);
111         bch2_btree_node_write_cond(c, b,
112                         (btree_current_write(b) == w &&
113                          w->journal.pin_list == journal_seq_pin(j, seq)));
114         six_unlock_read(&b->lock);
115 }
116
117 static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq)
118 {
119         return __btree_node_flush(j, pin, 0, seq);
120 }
121
122 static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq)
123 {
124         return __btree_node_flush(j, pin, 1, seq);
125 }
126
127 void bch2_btree_journal_key(struct btree_insert *trans,
128                            struct btree_iter *iter,
129                            struct bkey_i *insert)
130 {
131         struct bch_fs *c = trans->c;
132         struct journal *j = &c->journal;
133         struct btree *b = iter->l[0].b;
134         struct btree_write *w = btree_current_write(b);
135
136         EBUG_ON(iter->level || b->level);
137         EBUG_ON(trans->journal_res.ref !=
138                 !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY));
139
140         if (likely(trans->journal_res.ref)) {
141                 u64 seq = trans->journal_res.seq;
142                 bool needs_whiteout = insert->k.needs_whiteout;
143
144                 /* ick */
145                 insert->k.needs_whiteout = false;
146                 bch2_journal_add_keys(j, &trans->journal_res,
147                                       iter->btree_id, insert);
148                 insert->k.needs_whiteout = needs_whiteout;
149
150                 bch2_journal_set_has_inode(j, &trans->journal_res,
151                                            insert->k.p.inode);
152
153                 if (trans->journal_seq)
154                         *trans->journal_seq = seq;
155                 btree_bset_last(b)->journal_seq = cpu_to_le64(seq);
156         }
157
158         if (unlikely(!journal_pin_active(&w->journal)))
159                 bch2_journal_pin_add(j, &trans->journal_res,
160                                      &w->journal,
161                                      btree_node_write_idx(b) == 0
162                                      ? btree_node_flush0
163                                      : btree_node_flush1);
164
165         if (unlikely(!btree_node_dirty(b)))
166                 set_btree_node_dirty(b);
167 }
168
169 static enum btree_insert_ret
170 bch2_insert_fixup_key(struct btree_insert *trans,
171                      struct btree_insert_entry *insert)
172 {
173         struct btree_iter *iter = insert->iter;
174         struct btree_iter_level *l = &iter->l[0];
175
176         EBUG_ON(iter->level);
177         EBUG_ON(insert->k->k.u64s >
178                 bch_btree_keys_u64s_remaining(trans->c, l->b));
179
180         if (bch2_btree_bset_insert_key(iter, l->b, &l->iter,
181                                        insert->k))
182                 bch2_btree_journal_key(trans, iter, insert->k);
183
184         trans->did_work = true;
185         return BTREE_INSERT_OK;
186 }
187
188 /**
189  * btree_insert_key - insert a key one key into a leaf node
190  */
191 static enum btree_insert_ret
192 btree_insert_key_leaf(struct btree_insert *trans,
193                       struct btree_insert_entry *insert)
194 {
195         struct bch_fs *c = trans->c;
196         struct btree_iter *iter = insert->iter;
197         struct btree *b = iter->l[0].b;
198         enum btree_insert_ret ret;
199         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
200         int old_live_u64s = b->nr.live_u64s;
201         int live_u64s_added, u64s_added;
202
203         btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK);
204
205         ret = !btree_node_is_extents(b)
206                 ? bch2_insert_fixup_key(trans, insert)
207                 : bch2_insert_fixup_extent(trans, insert);
208
209         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
210         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
211
212         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
213                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
214         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
215                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
216
217         if (u64s_added > live_u64s_added &&
218             bch2_maybe_compact_whiteouts(c, b))
219                 bch2_btree_iter_reinit_node(iter, b);
220
221         trace_btree_insert_key(c, b, insert->k);
222         return ret;
223 }
224
225 static bool same_leaf_as_prev(struct btree_insert *trans,
226                               struct btree_insert_entry *i)
227 {
228         /*
229          * Because we sorted the transaction entries, if multiple iterators
230          * point to the same leaf node they'll always be adjacent now:
231          */
232         return i != trans->entries &&
233                 i[0].iter->l[0].b == i[-1].iter->l[0].b;
234 }
235
236 #define trans_for_each_entry(trans, i)                                  \
237         for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++)
238
239 inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b,
240                                             struct btree_iter *iter)
241 {
242         bch2_btree_node_lock_write(b, iter);
243
244         if (btree_node_just_written(b) &&
245             bch2_btree_post_write_cleanup(c, b))
246                 bch2_btree_iter_reinit_node(iter, b);
247
248         /*
249          * If the last bset has been written, or if it's gotten too big - start
250          * a new bset to insert into:
251          */
252         if (want_new_bset(c, b))
253                 bch2_btree_init_next(c, b, iter);
254 }
255
256 static void multi_lock_write(struct bch_fs *c, struct btree_insert *trans)
257 {
258         struct btree_insert_entry *i;
259
260         trans_for_each_entry(trans, i)
261                 if (!same_leaf_as_prev(trans, i))
262                         bch2_btree_node_lock_for_insert(c, i->iter->l[0].b,
263                                                         i->iter);
264 }
265
266 static void multi_unlock_write(struct btree_insert *trans)
267 {
268         struct btree_insert_entry *i;
269
270         trans_for_each_entry(trans, i)
271                 if (!same_leaf_as_prev(trans, i))
272                         bch2_btree_node_unlock_write(i->iter->l[0].b, i->iter);
273 }
274
275 static inline int btree_trans_cmp(struct btree_insert_entry l,
276                                   struct btree_insert_entry r)
277 {
278         return btree_iter_cmp(l.iter, r.iter);
279 }
280
281 /* Normal update interface: */
282
283 /**
284  * __bch_btree_insert_at - insert keys at given iterator positions
285  *
286  * This is main entry point for btree updates.
287  *
288  * Return values:
289  * -EINTR: locking changed, this function should be called again. Only returned
290  *  if passed BTREE_INSERT_ATOMIC.
291  * -EROFS: filesystem read only
292  * -EIO: journal or btree node IO error
293  */
294 int __bch2_btree_insert_at(struct btree_insert *trans)
295 {
296         struct bch_fs *c = trans->c;
297         struct btree_insert_entry *i;
298         struct btree_iter *split = NULL;
299         bool cycle_gc_lock = false;
300         unsigned u64s;
301         int ret;
302
303         trans_for_each_entry(trans, i) {
304                 BUG_ON(i->iter->level);
305                 BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos));
306                 BUG_ON(debug_check_bkeys(c) &&
307                        bch2_bkey_invalid(c, i->iter->btree_id,
308                                          bkey_i_to_s_c(i->k)));
309         }
310
311         bubble_sort(trans->entries, trans->nr, btree_trans_cmp);
312
313         if (unlikely(!percpu_ref_tryget(&c->writes)))
314                 return -EROFS;
315 retry_locks:
316         ret = -EINTR;
317         trans_for_each_entry(trans, i) {
318                 if (!bch2_btree_iter_set_locks_want(i->iter, 1))
319                         goto err;
320
321                 if (i->iter->uptodate == BTREE_ITER_NEED_TRAVERSE) {
322                         ret = bch2_btree_iter_traverse(i->iter);
323                         if (ret)
324                                 goto err;
325                 }
326         }
327 retry:
328         trans->did_work = false;
329         u64s = 0;
330         trans_for_each_entry(trans, i)
331                 if (!i->done)
332                         u64s += jset_u64s(i->k->k.u64s + i->extra_res);
333
334         memset(&trans->journal_res, 0, sizeof(trans->journal_res));
335
336         ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)
337                 ? bch2_journal_res_get(&c->journal,
338                                       &trans->journal_res,
339                                       u64s, u64s)
340                 : 0;
341         if (ret)
342                 goto err;
343
344         multi_lock_write(c, trans);
345
346         if (race_fault()) {
347                 ret = -EINTR;
348                 goto unlock;
349         }
350
351         u64s = 0;
352         trans_for_each_entry(trans, i) {
353                 /* Multiple inserts might go to same leaf: */
354                 if (!same_leaf_as_prev(trans, i))
355                         u64s = 0;
356
357                 /*
358                  * bch2_btree_node_insert_fits() must be called under write lock:
359                  * with only an intent lock, another thread can still call
360                  * bch2_btree_node_write(), converting an unwritten bset to a
361                  * written one
362                  */
363                 if (!i->done) {
364                         u64s += i->k->k.u64s + i->extra_res;
365                         if (!bch2_btree_node_insert_fits(c,
366                                         i->iter->l[0].b, u64s)) {
367                                 split = i->iter;
368                                 goto unlock;
369                         }
370                 }
371         }
372
373         ret = 0;
374         split = NULL;
375         cycle_gc_lock = false;
376
377         trans_for_each_entry(trans, i) {
378                 if (i->done)
379                         continue;
380
381                 switch (btree_insert_key_leaf(trans, i)) {
382                 case BTREE_INSERT_OK:
383                         i->done = true;
384                         break;
385                 case BTREE_INSERT_JOURNAL_RES_FULL:
386                 case BTREE_INSERT_NEED_TRAVERSE:
387                         ret = -EINTR;
388                         break;
389                 case BTREE_INSERT_NEED_RESCHED:
390                         ret = -EAGAIN;
391                         break;
392                 case BTREE_INSERT_BTREE_NODE_FULL:
393                         split = i->iter;
394                         break;
395                 case BTREE_INSERT_ENOSPC:
396                         ret = -ENOSPC;
397                         break;
398                 case BTREE_INSERT_NEED_GC_LOCK:
399                         cycle_gc_lock = true;
400                         ret = -EINTR;
401                         break;
402                 default:
403                         BUG();
404                 }
405
406                 if (!trans->did_work && (ret || split))
407                         break;
408         }
409 unlock:
410         multi_unlock_write(trans);
411         bch2_journal_res_put(&c->journal, &trans->journal_res);
412
413         if (split)
414                 goto split;
415         if (ret)
416                 goto err;
417
418         trans_for_each_entry(trans, i)
419                 if (i->iter->flags & BTREE_ITER_AT_END_OF_LEAF)
420                         goto out;
421
422         trans_for_each_entry(trans, i) {
423                 /*
424                  * iterators are inconsistent when they hit end of leaf, until
425                  * traversed again
426                  */
427                 if (i->iter->uptodate < BTREE_ITER_NEED_TRAVERSE &&
428                     !same_leaf_as_prev(trans, i))
429                         bch2_foreground_maybe_merge(c, i->iter, 0);
430         }
431 out:
432         /* make sure we didn't lose an error: */
433         if (!ret && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
434                 trans_for_each_entry(trans, i)
435                         BUG_ON(!i->done);
436
437         percpu_ref_put(&c->writes);
438         return ret;
439 split:
440         /*
441          * have to drop journal res before splitting, because splitting means
442          * allocating new btree nodes, and holding a journal reservation
443          * potentially blocks the allocator:
444          */
445         ret = bch2_btree_split_leaf(c, split, trans->flags);
446         if (ret)
447                 goto err;
448         /*
449          * if the split didn't have to drop locks the insert will still be
450          * atomic (in the BTREE_INSERT_ATOMIC sense, what the caller peeked()
451          * and is overwriting won't have changed)
452          */
453         goto retry_locks;
454 err:
455         if (cycle_gc_lock) {
456                 down_read(&c->gc_lock);
457                 up_read(&c->gc_lock);
458         }
459
460         if (ret == -EINTR) {
461                 trans_for_each_entry(trans, i) {
462                         int ret2 = bch2_btree_iter_traverse(i->iter);
463                         if (ret2) {
464                                 ret = ret2;
465                                 goto out;
466                         }
467                 }
468
469                 /*
470                  * BTREE_ITER_ATOMIC means we have to return -EINTR if we
471                  * dropped locks:
472                  */
473                 if (!(trans->flags & BTREE_INSERT_ATOMIC))
474                         goto retry;
475         }
476
477         goto out;
478 }
479
480 int bch2_btree_delete_at(struct btree_iter *iter, unsigned flags)
481 {
482         struct bkey_i k;
483
484         bkey_init(&k.k);
485         k.k.p = iter->pos;
486
487         return bch2_btree_insert_at(iter->c, NULL, NULL, NULL,
488                                     BTREE_INSERT_NOFAIL|
489                                     BTREE_INSERT_USE_RESERVE|flags,
490                                     BTREE_INSERT_ENTRY(iter, &k));
491 }
492
493 int bch2_btree_insert_list_at(struct btree_iter *iter,
494                              struct keylist *keys,
495                              struct disk_reservation *disk_res,
496                              struct extent_insert_hook *hook,
497                              u64 *journal_seq, unsigned flags)
498 {
499         BUG_ON(flags & BTREE_INSERT_ATOMIC);
500         BUG_ON(bch2_keylist_empty(keys));
501         bch2_verify_keylist_sorted(keys);
502
503         while (!bch2_keylist_empty(keys)) {
504                 int ret = bch2_btree_insert_at(iter->c, disk_res, hook,
505                                 journal_seq, flags,
506                                 BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys)));
507                 if (ret)
508                         return ret;
509
510                 bch2_keylist_pop_front(keys);
511         }
512
513         return 0;
514 }
515
516 /**
517  * bch_btree_insert - insert keys into the extent btree
518  * @c:                  pointer to struct bch_fs
519  * @id:                 btree to insert into
520  * @insert_keys:        list of keys to insert
521  * @hook:               insert callback
522  */
523 int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
524                      struct bkey_i *k,
525                      struct disk_reservation *disk_res,
526                      struct extent_insert_hook *hook,
527                      u64 *journal_seq, int flags)
528 {
529         struct btree_iter iter;
530         int ret;
531
532         bch2_btree_iter_init(&iter, c, id, bkey_start_pos(&k->k),
533                              BTREE_ITER_INTENT);
534         ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, flags,
535                                   BTREE_INSERT_ENTRY(&iter, k));
536         bch2_btree_iter_unlock(&iter);
537
538         return ret;
539 }
540
541 /*
542  * bch_btree_delete_range - delete everything within a given range
543  *
544  * Range is a half open interval - [start, end)
545  */
546 int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
547                            struct bpos start,
548                            struct bpos end,
549                            struct bversion version,
550                            struct disk_reservation *disk_res,
551                            struct extent_insert_hook *hook,
552                            u64 *journal_seq)
553 {
554         struct btree_iter iter;
555         struct bkey_s_c k;
556         int ret = 0;
557
558         bch2_btree_iter_init(&iter, c, id, start,
559                              BTREE_ITER_INTENT);
560
561         while ((k = bch2_btree_iter_peek(&iter)).k &&
562                !(ret = btree_iter_err(k))) {
563                 unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
564                 /* really shouldn't be using a bare, unpadded bkey_i */
565                 struct bkey_i delete;
566
567                 if (bkey_cmp(iter.pos, end) >= 0)
568                         break;
569
570                 bkey_init(&delete.k);
571
572                 /*
573                  * For extents, iter.pos won't necessarily be the same as
574                  * bkey_start_pos(k.k) (for non extents they always will be the
575                  * same). It's important that we delete starting from iter.pos
576                  * because the range we want to delete could start in the middle
577                  * of k.
578                  *
579                  * (bch2_btree_iter_peek() does guarantee that iter.pos >=
580                  * bkey_start_pos(k.k)).
581                  */
582                 delete.k.p = iter.pos;
583                 delete.k.version = version;
584
585                 if (iter.flags & BTREE_ITER_IS_EXTENTS) {
586                         /*
587                          * The extents btree is special - KEY_TYPE_DISCARD is
588                          * used for deletions, not KEY_TYPE_DELETED. This is an
589                          * internal implementation detail that probably
590                          * shouldn't be exposed (internally, KEY_TYPE_DELETED is
591                          * used as a proxy for k->size == 0):
592                          */
593                         delete.k.type = KEY_TYPE_DISCARD;
594
595                         /* create the biggest key we can */
596                         bch2_key_resize(&delete.k, max_sectors);
597                         bch2_cut_back(end, &delete.k);
598                 }
599
600                 ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq,
601                                           BTREE_INSERT_NOFAIL,
602                                           BTREE_INSERT_ENTRY(&iter, &delete));
603                 if (ret)
604                         break;
605
606                 bch2_btree_iter_cond_resched(&iter);
607         }
608
609         bch2_btree_iter_unlock(&iter);
610         return ret;
611 }