]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update_leaf.c
Update bcachefs sources to 2cb70a82bc bcachefs: delete some debug code
[bcachefs-tools-debian] / libbcachefs / btree_update_leaf.c
1
2 #include "bcachefs.h"
3 #include "btree_update.h"
4 #include "btree_update_interior.h"
5 #include "btree_io.h"
6 #include "btree_iter.h"
7 #include "btree_locking.h"
8 #include "debug.h"
9 #include "extents.h"
10 #include "journal.h"
11 #include "journal_reclaim.h"
12 #include "keylist.h"
13
14 #include <linux/sort.h>
15 #include <trace/events/bcachefs.h>
16
17 /* Inserting into a given leaf node (last stage of insert): */
18
19 /* Handle overwrites and do insert, for non extents: */
20 bool bch2_btree_bset_insert_key(struct btree_iter *iter,
21                                 struct btree *b,
22                                 struct btree_node_iter *node_iter,
23                                 struct bkey_i *insert)
24 {
25         const struct bkey_format *f = &b->format;
26         struct bkey_packed *k;
27         struct bset_tree *t;
28         unsigned clobber_u64s;
29
30         EBUG_ON(btree_node_just_written(b));
31         EBUG_ON(bset_written(b, btree_bset_last(b)));
32         EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
33         EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 ||
34                 bkey_cmp(insert->k.p, b->data->max_key) > 0);
35
36         k = bch2_btree_node_iter_peek_all(node_iter, b);
37         if (k && !bkey_cmp_packed(b, k, &insert->k)) {
38                 BUG_ON(bkey_whiteout(k));
39
40                 t = bch2_bkey_to_bset(b, k);
41
42                 if (bset_unwritten(b, bset(b, t)) &&
43                     bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k) &&
44                     !bkey_whiteout(&insert->k)) {
45                         k->type = insert->k.type;
46                         memcpy_u64s(bkeyp_val(f, k), &insert->v,
47                                     bkey_val_u64s(&insert->k));
48                         return true;
49                 }
50
51                 insert->k.needs_whiteout = k->needs_whiteout;
52
53                 btree_keys_account_key_drop(&b->nr, t - b->set, k);
54
55                 if (t == bset_tree_last(b)) {
56                         clobber_u64s = k->u64s;
57
58                         /*
59                          * If we're deleting, and the key we're deleting doesn't
60                          * need a whiteout (it wasn't overwriting a key that had
61                          * been written to disk) - just delete it:
62                          */
63                         if (bkey_whiteout(&insert->k) && !k->needs_whiteout) {
64                                 bch2_bset_delete(b, k, clobber_u64s);
65                                 bch2_btree_node_iter_fix(iter, b, node_iter, t,
66                                                         k, clobber_u64s, 0);
67                                 return true;
68                         }
69
70                         goto overwrite;
71                 }
72
73                 k->type = KEY_TYPE_DELETED;
74                 bch2_btree_node_iter_fix(iter, b, node_iter, t, k,
75                                         k->u64s, k->u64s);
76
77                 if (bkey_whiteout(&insert->k)) {
78                         reserve_whiteout(b, t, k);
79                         return true;
80                 } else {
81                         k->needs_whiteout = false;
82                 }
83         } else {
84                 /*
85                  * Deleting, but the key to delete wasn't found - nothing to do:
86                  */
87                 if (bkey_whiteout(&insert->k))
88                         return false;
89
90                 insert->k.needs_whiteout = false;
91         }
92
93         t = bset_tree_last(b);
94         k = bch2_btree_node_iter_bset_pos(node_iter, b, t);
95         clobber_u64s = 0;
96 overwrite:
97         bch2_bset_insert(b, node_iter, k, insert, clobber_u64s);
98         if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k))
99                 bch2_btree_node_iter_fix(iter, b, node_iter, t, k,
100                                         clobber_u64s, k->u64s);
101         return true;
102 }
103
104 static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
105                                unsigned i, u64 seq)
106 {
107         struct bch_fs *c = container_of(j, struct bch_fs, journal);
108         struct btree_write *w = container_of(pin, struct btree_write, journal);
109         struct btree *b = container_of(w, struct btree, writes[i]);
110
111         btree_node_lock_type(c, b, SIX_LOCK_read);
112         bch2_btree_node_write_cond(c, b,
113                         (btree_current_write(b) == w &&
114                          w->journal.pin_list == journal_seq_pin(j, seq)));
115         six_unlock_read(&b->lock);
116 }
117
118 static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq)
119 {
120         return __btree_node_flush(j, pin, 0, seq);
121 }
122
123 static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq)
124 {
125         return __btree_node_flush(j, pin, 1, seq);
126 }
127
128 void bch2_btree_journal_key(struct btree_insert *trans,
129                            struct btree_iter *iter,
130                            struct bkey_i *insert)
131 {
132         struct bch_fs *c = trans->c;
133         struct journal *j = &c->journal;
134         struct btree *b = iter->l[0].b;
135         struct btree_write *w = btree_current_write(b);
136
137         EBUG_ON(iter->level || b->level);
138         EBUG_ON(trans->journal_res.ref !=
139                 !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY));
140
141         if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) {
142                 u64 seq = trans->journal_res.seq;
143                 bool needs_whiteout = insert->k.needs_whiteout;
144
145                 /* ick */
146                 insert->k.needs_whiteout = false;
147                 bch2_journal_add_keys(j, &trans->journal_res,
148                                       iter->btree_id, insert);
149                 insert->k.needs_whiteout = needs_whiteout;
150
151                 bch2_journal_set_has_inode(j, &trans->journal_res,
152                                            insert->k.p.inode);
153
154                 if (trans->journal_seq)
155                         *trans->journal_seq = seq;
156                 btree_bset_last(b)->journal_seq = cpu_to_le64(seq);
157         }
158
159         if (unlikely(!journal_pin_active(&w->journal))) {
160                 u64 seq = likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))
161                         ? trans->journal_res.seq
162                         : j->replay_journal_seq;
163
164                 bch2_journal_pin_add(j, seq, &w->journal,
165                                      btree_node_write_idx(b) == 0
166                                      ? btree_node_flush0
167                                      : btree_node_flush1);
168         }
169
170         if (unlikely(!btree_node_dirty(b)))
171                 set_btree_node_dirty(b);
172 }
173
174 static enum btree_insert_ret
175 bch2_insert_fixup_key(struct btree_insert *trans,
176                      struct btree_insert_entry *insert)
177 {
178         struct btree_iter *iter = insert->iter;
179         struct btree_iter_level *l = &iter->l[0];
180
181         EBUG_ON(iter->level);
182         EBUG_ON(insert->k->k.u64s >
183                 bch_btree_keys_u64s_remaining(trans->c, l->b));
184
185         if (bch2_btree_bset_insert_key(iter, l->b, &l->iter,
186                                        insert->k))
187                 bch2_btree_journal_key(trans, iter, insert->k);
188
189         trans->did_work = true;
190         return BTREE_INSERT_OK;
191 }
192
193 /**
194  * btree_insert_key - insert a key one key into a leaf node
195  */
196 static enum btree_insert_ret
197 btree_insert_key_leaf(struct btree_insert *trans,
198                       struct btree_insert_entry *insert)
199 {
200         struct bch_fs *c = trans->c;
201         struct btree_iter *iter = insert->iter;
202         struct btree *b = iter->l[0].b;
203         enum btree_insert_ret ret;
204         int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
205         int old_live_u64s = b->nr.live_u64s;
206         int live_u64s_added, u64s_added;
207
208         btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK);
209
210         ret = !btree_node_is_extents(b)
211                 ? bch2_insert_fixup_key(trans, insert)
212                 : bch2_insert_fixup_extent(trans, insert);
213
214         live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
215         u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
216
217         if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
218                 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
219         if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
220                 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
221
222         if (u64s_added > live_u64s_added &&
223             bch2_maybe_compact_whiteouts(c, b))
224                 bch2_btree_iter_reinit_node(iter, b);
225
226         trace_btree_insert_key(c, b, insert->k);
227         return ret;
228 }
229
230 #define trans_for_each_entry(trans, i)                                  \
231         for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++)
232
233 /*
234  * We sort transaction entries so that if multiple iterators point to the same
235  * leaf node they'll be adjacent:
236  */
237 static bool same_leaf_as_prev(struct btree_insert *trans,
238                               struct btree_insert_entry *i)
239 {
240         return i != trans->entries &&
241                 i[0].iter->l[0].b == i[-1].iter->l[0].b;
242 }
243
244 static inline struct btree_insert_entry *trans_next_leaf(struct btree_insert *trans,
245                                                          struct btree_insert_entry *i)
246 {
247         struct btree *b = i->iter->l[0].b;
248
249         do {
250                 i++;
251         } while (i < trans->entries + trans->nr && b == i->iter->l[0].b);
252
253         return i;
254 }
255
256 #define trans_for_each_leaf(trans, i)                                   \
257         for ((i) = (trans)->entries;                                    \
258              (i) < (trans)->entries + (trans)->nr;                      \
259              (i) = trans_next_leaf(trans, i))
260
261 inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b,
262                                             struct btree_iter *iter)
263 {
264         bch2_btree_node_lock_write(b, iter);
265
266         if (btree_node_just_written(b) &&
267             bch2_btree_post_write_cleanup(c, b))
268                 bch2_btree_iter_reinit_node(iter, b);
269
270         /*
271          * If the last bset has been written, or if it's gotten too big - start
272          * a new bset to insert into:
273          */
274         if (want_new_bset(c, b))
275                 bch2_btree_init_next(c, b, iter);
276 }
277
278 static void multi_lock_write(struct bch_fs *c, struct btree_insert *trans)
279 {
280         struct btree_insert_entry *i;
281
282         trans_for_each_leaf(trans, i)
283                 bch2_btree_node_lock_for_insert(c, i->iter->l[0].b, i->iter);
284 }
285
286 static void multi_unlock_write(struct btree_insert *trans)
287 {
288         struct btree_insert_entry *i;
289
290         trans_for_each_leaf(trans, i)
291                 bch2_btree_node_unlock_write(i->iter->l[0].b, i->iter);
292 }
293
294 static inline int btree_trans_cmp(struct btree_insert_entry l,
295                                   struct btree_insert_entry r)
296 {
297         return btree_iter_cmp(l.iter, r.iter);
298 }
299
300 /* Normal update interface: */
301
302 /*
303  * Get journal reservation, take write locks, and attempt to do btree update(s):
304  */
305 static inline int do_btree_insert_at(struct btree_insert *trans,
306                                      struct btree_iter **split,
307                                      bool *cycle_gc_lock)
308 {
309         struct bch_fs *c = trans->c;
310         struct btree_insert_entry *i;
311         unsigned u64s;
312         int ret;
313
314         trans_for_each_entry(trans, i)
315                 BUG_ON(i->done);
316
317         u64s = 0;
318         trans_for_each_entry(trans, i)
319                 u64s += jset_u64s(i->k->k.u64s + i->extra_res);
320
321         memset(&trans->journal_res, 0, sizeof(trans->journal_res));
322
323         ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)
324                 ? bch2_journal_res_get(&c->journal,
325                                       &trans->journal_res,
326                                       u64s, u64s)
327                 : 0;
328         if (ret)
329                 return ret;
330
331         multi_lock_write(c, trans);
332
333         if (race_fault()) {
334                 ret = -EINTR;
335                 goto out;
336         }
337
338         u64s = 0;
339         trans_for_each_entry(trans, i) {
340                 /* Multiple inserts might go to same leaf: */
341                 if (!same_leaf_as_prev(trans, i))
342                         u64s = 0;
343
344                 /*
345                  * bch2_btree_node_insert_fits() must be called under write lock:
346                  * with only an intent lock, another thread can still call
347                  * bch2_btree_node_write(), converting an unwritten bset to a
348                  * written one
349                  */
350                 u64s += i->k->k.u64s + i->extra_res;
351                 if (!bch2_btree_node_insert_fits(c,
352                                 i->iter->l[0].b, u64s)) {
353                         ret = -EINTR;
354                         *split = i->iter;
355                         goto out;
356                 }
357         }
358
359         if (journal_seq_verify(c) &&
360             !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))
361                 trans_for_each_entry(trans, i)
362                         i->k->k.version.lo = trans->journal_res.seq;
363
364         trans_for_each_entry(trans, i) {
365                 switch (btree_insert_key_leaf(trans, i)) {
366                 case BTREE_INSERT_OK:
367                         i->done = true;
368                         break;
369                 case BTREE_INSERT_JOURNAL_RES_FULL:
370                 case BTREE_INSERT_NEED_TRAVERSE:
371                 case BTREE_INSERT_NEED_RESCHED:
372                         ret = -EINTR;
373                         break;
374                 case BTREE_INSERT_BTREE_NODE_FULL:
375                         ret = -EINTR;
376                         *split = i->iter;
377                         break;
378                 case BTREE_INSERT_ENOSPC:
379                         ret = -ENOSPC;
380                         break;
381                 case BTREE_INSERT_NEED_GC_LOCK:
382                         ret = -EINTR;
383                         *cycle_gc_lock = true;
384                         break;
385                 default:
386                         BUG();
387                 }
388
389                 /*
390                  * If we did some work (i.e. inserted part of an extent),
391                  * we have to do all the other updates as well:
392                  */
393                 if (!trans->did_work && (ret || *split))
394                         break;
395         }
396 out:
397         multi_unlock_write(trans);
398         bch2_journal_res_put(&c->journal, &trans->journal_res);
399
400         return ret;
401 }
402
403 /**
404  * __bch_btree_insert_at - insert keys at given iterator positions
405  *
406  * This is main entry point for btree updates.
407  *
408  * Return values:
409  * -EINTR: locking changed, this function should be called again. Only returned
410  *  if passed BTREE_INSERT_ATOMIC.
411  * -EROFS: filesystem read only
412  * -EIO: journal or btree node IO error
413  */
414 int __bch2_btree_insert_at(struct btree_insert *trans)
415 {
416         struct bch_fs *c = trans->c;
417         struct btree_insert_entry *i;
418         struct btree_iter *linked, *split = NULL;
419         bool cycle_gc_lock = false;
420         unsigned flags;
421         int ret;
422
423         for_each_btree_iter(trans->entries[0].iter, linked)
424                 bch2_btree_iter_verify_locks(linked);
425
426         /* for the sake of sanity: */
427         BUG_ON(trans->nr > 1 && !(trans->flags & BTREE_INSERT_ATOMIC));
428
429         trans_for_each_entry(trans, i) {
430                 BUG_ON(i->iter->level);
431                 BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos));
432                 BUG_ON(debug_check_bkeys(c) &&
433                        bch2_bkey_invalid(c, i->iter->btree_id,
434                                          bkey_i_to_s_c(i->k)));
435                 BUG_ON(i->iter->uptodate == BTREE_ITER_END);
436         }
437
438         bubble_sort(trans->entries, trans->nr, btree_trans_cmp);
439
440         if (unlikely(!percpu_ref_tryget(&c->writes)))
441                 return -EROFS;
442 retry:
443         split = NULL;
444         cycle_gc_lock = false;
445
446         trans_for_each_entry(trans, i) {
447                 if (!bch2_btree_iter_upgrade(i->iter, 1)) {
448                         ret = -EINTR;
449                         goto err;
450                 }
451
452                 if (i->iter->flags & BTREE_ITER_ERROR) {
453                         ret = -EIO;
454                         goto err;
455                 }
456         }
457
458         ret = do_btree_insert_at(trans, &split, &cycle_gc_lock);
459         if (unlikely(ret))
460                 goto err;
461
462         trans_for_each_leaf(trans, i)
463                 bch2_foreground_maybe_merge(c, i->iter, 0, trans->flags);
464
465         trans_for_each_entry(trans, i)
466                 bch2_btree_iter_downgrade(i->iter);
467 out:
468         percpu_ref_put(&c->writes);
469
470         if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) {
471                 /* make sure we didn't drop or screw up locks: */
472                 for_each_btree_iter(trans->entries[0].iter, linked) {
473                         bch2_btree_iter_verify_locks(linked);
474                         BUG_ON((trans->flags & BTREE_INSERT_NOUNLOCK) &&
475                                trans->did_work &&
476                                linked->uptodate >= BTREE_ITER_NEED_RELOCK);
477                 }
478
479                 /* make sure we didn't lose an error: */
480                 if (!ret)
481                         trans_for_each_entry(trans, i)
482                                 BUG_ON(!i->done);
483         }
484
485         BUG_ON(!(trans->flags & BTREE_INSERT_ATOMIC) && ret == -EINTR);
486
487         return ret;
488 err:
489         flags = trans->flags;
490
491         /*
492          * BTREE_INSERT_NOUNLOCK means don't unlock _after_ successful btree
493          * update; if we haven't done anything yet it doesn't apply
494          */
495         if (!trans->did_work)
496                 flags &= ~BTREE_INSERT_NOUNLOCK;
497
498         if (split) {
499                 ret = bch2_btree_split_leaf(c, split, flags);
500
501                 /*
502                  * if the split succeeded without dropping locks the insert will
503                  * still be atomic (in the BTREE_INSERT_ATOMIC sense, what the
504                  * caller peeked() and is overwriting won't have changed)
505                  */
506 #if 0
507                 /*
508                  * XXX:
509                  * split -> btree node merging (of parent node) might still drop
510                  * locks when we're not passing it BTREE_INSERT_NOUNLOCK
511                  */
512                 if (!ret && !trans->did_work)
513                         goto retry;
514 #endif
515
516                 /*
517                  * don't care if we got ENOSPC because we told split it
518                  * couldn't block:
519                  */
520                 if (!ret || (flags & BTREE_INSERT_NOUNLOCK))
521                         ret = -EINTR;
522         }
523
524         if (cycle_gc_lock) {
525                 if (!down_read_trylock(&c->gc_lock)) {
526                         if (flags & BTREE_INSERT_NOUNLOCK)
527                                 goto out;
528
529                         bch2_btree_iter_unlock(trans->entries[0].iter);
530                         down_read(&c->gc_lock);
531                 }
532                 up_read(&c->gc_lock);
533         }
534
535         if (ret == -EINTR) {
536                 if (flags & BTREE_INSERT_NOUNLOCK)
537                         goto out;
538
539                 trans_for_each_entry(trans, i) {
540                         int ret2 = bch2_btree_iter_traverse(i->iter);
541                         if (ret2) {
542                                 ret = ret2;
543                                 goto out;
544                         }
545
546                         BUG_ON(i->iter->uptodate > BTREE_ITER_NEED_PEEK);
547                 }
548
549                 /*
550                  * BTREE_ITER_ATOMIC means we have to return -EINTR if we
551                  * dropped locks:
552                  */
553                 if (!(flags & BTREE_INSERT_ATOMIC))
554                         goto retry;
555         }
556
557         goto out;
558 }
559
560 int bch2_btree_delete_at(struct btree_iter *iter, unsigned flags)
561 {
562         struct bkey_i k;
563
564         bkey_init(&k.k);
565         k.k.p = iter->pos;
566
567         return bch2_btree_insert_at(iter->c, NULL, NULL, NULL,
568                                     BTREE_INSERT_NOFAIL|
569                                     BTREE_INSERT_USE_RESERVE|flags,
570                                     BTREE_INSERT_ENTRY(iter, &k));
571 }
572
573 int bch2_btree_insert_list_at(struct btree_iter *iter,
574                              struct keylist *keys,
575                              struct disk_reservation *disk_res,
576                              struct extent_insert_hook *hook,
577                              u64 *journal_seq, unsigned flags)
578 {
579         BUG_ON(flags & BTREE_INSERT_ATOMIC);
580         BUG_ON(bch2_keylist_empty(keys));
581         bch2_verify_keylist_sorted(keys);
582
583         while (!bch2_keylist_empty(keys)) {
584                 int ret = bch2_btree_insert_at(iter->c, disk_res, hook,
585                                 journal_seq, flags,
586                                 BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys)));
587                 if (ret)
588                         return ret;
589
590                 bch2_keylist_pop_front(keys);
591         }
592
593         return 0;
594 }
595
596 /**
597  * bch_btree_insert - insert keys into the extent btree
598  * @c:                  pointer to struct bch_fs
599  * @id:                 btree to insert into
600  * @insert_keys:        list of keys to insert
601  * @hook:               insert callback
602  */
603 int bch2_btree_insert(struct bch_fs *c, enum btree_id id,
604                      struct bkey_i *k,
605                      struct disk_reservation *disk_res,
606                      struct extent_insert_hook *hook,
607                      u64 *journal_seq, int flags)
608 {
609         struct btree_iter iter;
610         int ret;
611
612         bch2_btree_iter_init(&iter, c, id, bkey_start_pos(&k->k),
613                              BTREE_ITER_INTENT);
614         ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, flags,
615                                    BTREE_INSERT_ENTRY(&iter, k));
616         bch2_btree_iter_unlock(&iter);
617
618         return ret;
619 }
620
621 /*
622  * bch_btree_delete_range - delete everything within a given range
623  *
624  * Range is a half open interval - [start, end)
625  */
626 int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
627                            struct bpos start,
628                            struct bpos end,
629                            struct bversion version,
630                            struct disk_reservation *disk_res,
631                            struct extent_insert_hook *hook,
632                            u64 *journal_seq)
633 {
634         struct btree_iter iter;
635         struct bkey_s_c k;
636         int ret = 0;
637
638         bch2_btree_iter_init(&iter, c, id, start,
639                              BTREE_ITER_INTENT);
640
641         while ((k = bch2_btree_iter_peek(&iter)).k &&
642                !(ret = btree_iter_err(k))) {
643                 unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
644                 /* really shouldn't be using a bare, unpadded bkey_i */
645                 struct bkey_i delete;
646
647                 if (bkey_cmp(iter.pos, end) >= 0)
648                         break;
649
650                 if (k.k->type == KEY_TYPE_DISCARD) {
651                         bch2_btree_iter_next(&iter);
652                         continue;
653                 }
654
655                 bkey_init(&delete.k);
656
657                 /*
658                  * For extents, iter.pos won't necessarily be the same as
659                  * bkey_start_pos(k.k) (for non extents they always will be the
660                  * same). It's important that we delete starting from iter.pos
661                  * because the range we want to delete could start in the middle
662                  * of k.
663                  *
664                  * (bch2_btree_iter_peek() does guarantee that iter.pos >=
665                  * bkey_start_pos(k.k)).
666                  */
667                 delete.k.p = iter.pos;
668                 delete.k.version = version;
669
670                 if (iter.flags & BTREE_ITER_IS_EXTENTS) {
671                         /*
672                          * The extents btree is special - KEY_TYPE_DISCARD is
673                          * used for deletions, not KEY_TYPE_DELETED. This is an
674                          * internal implementation detail that probably
675                          * shouldn't be exposed (internally, KEY_TYPE_DELETED is
676                          * used as a proxy for k->size == 0):
677                          */
678                         delete.k.type = KEY_TYPE_DISCARD;
679
680                         /* create the biggest key we can */
681                         bch2_key_resize(&delete.k, max_sectors);
682                         bch2_cut_back(end, &delete.k);
683                 }
684
685                 ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq,
686                                            BTREE_INSERT_NOFAIL,
687                                            BTREE_INSERT_ENTRY(&iter, &delete));
688                 if (ret)
689                         break;
690
691                 bch2_btree_iter_cond_resched(&iter);
692         }
693
694         bch2_btree_iter_unlock(&iter);
695         return ret;
696 }