]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_write_buffer.c
Update bcachefs sources to 783085c3cc44 kbuild: Allow gcov to be enabled on the comma...
[bcachefs-tools-debian] / libbcachefs / btree_write_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_locking.h"
5 #include "btree_update.h"
6 #include "btree_update_interior.h"
7 #include "btree_write_buffer.h"
8 #include "error.h"
9 #include "journal.h"
10 #include "journal_io.h"
11 #include "journal_reclaim.h"
12
13 #include <linux/prefetch.h>
14
15 static int bch2_btree_write_buffer_journal_flush(struct journal *,
16                                 struct journal_entry_pin *, u64);
17
18 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
19
20 static inline bool __wb_key_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
21 {
22         return (cmp_int(l->hi, r->hi) ?:
23                 cmp_int(l->mi, r->mi) ?:
24                 cmp_int(l->lo, r->lo)) >= 0;
25 }
26
27 static inline bool wb_key_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
28 {
29 #ifdef CONFIG_X86_64
30         int cmp;
31
32         asm(".intel_syntax noprefix;"
33             "mov rax, [%[l]];"
34             "sub rax, [%[r]];"
35             "mov rax, [%[l] + 8];"
36             "sbb rax, [%[r] + 8];"
37             "mov rax, [%[l] + 16];"
38             "sbb rax, [%[r] + 16];"
39             ".att_syntax prefix;"
40             : "=@ccae" (cmp)
41             : [l] "r" (l), [r] "r" (r)
42             : "rax", "cc");
43
44         EBUG_ON(cmp != __wb_key_cmp(l, r));
45         return cmp;
46 #else
47         return __wb_key_cmp(l, r);
48 #endif
49 }
50
51 /* Compare excluding idx, the low 24 bits: */
52 static inline bool wb_key_eq(const void *_l, const void *_r)
53 {
54         const struct wb_key_ref *l = _l;
55         const struct wb_key_ref *r = _r;
56
57         return !((l->hi ^ r->hi)|
58                  (l->mi ^ r->mi)|
59                  ((l->lo >> 24) ^ (r->lo >> 24)));
60 }
61
62 static noinline void wb_sort(struct wb_key_ref *base, size_t num)
63 {
64         size_t n = num, a = num / 2;
65
66         if (!a)         /* num < 2 || size == 0 */
67                 return;
68
69         for (;;) {
70                 size_t b, c, d;
71
72                 if (a)                  /* Building heap: sift down --a */
73                         --a;
74                 else if (--n)           /* Sorting: Extract root to --n */
75                         swap(base[0], base[n]);
76                 else                    /* Sort complete */
77                         break;
78
79                 /*
80                  * Sift element at "a" down into heap.  This is the
81                  * "bottom-up" variant, which significantly reduces
82                  * calls to cmp_func(): we find the sift-down path all
83                  * the way to the leaves (one compare per level), then
84                  * backtrack to find where to insert the target element.
85                  *
86                  * Because elements tend to sift down close to the leaves,
87                  * this uses fewer compares than doing two per level
88                  * on the way down.  (A bit more than half as many on
89                  * average, 3/4 worst-case.)
90                  */
91                 for (b = a; c = 2*b + 1, (d = c + 1) < n;)
92                         b = wb_key_cmp(base + c, base + d) ? c : d;
93                 if (d == n)             /* Special case last leaf with no sibling */
94                         b = c;
95
96                 /* Now backtrack from "b" to the correct location for "a" */
97                 while (b != a && wb_key_cmp(base + a, base + b))
98                         b = (b - 1) / 2;
99                 c = b;                  /* Where "a" belongs */
100                 while (b != a) {        /* Shift it into place */
101                         b = (b - 1) / 2;
102                         swap(base[b], base[c]);
103                 }
104         }
105 }
106
107 static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
108                                           struct btree_iter *iter,
109                                           struct btree_write_buffered_key *wb)
110 {
111         bch2_btree_node_unlock_write(trans, iter->path, iter->path->l[0].b);
112
113         trans->journal_res.seq = wb->journal_seq;
114
115         return bch2_trans_update(trans, iter, &wb->k,
116                                  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?:
117                 bch2_trans_commit(trans, NULL, NULL,
118                                   BCH_TRANS_COMMIT_no_enospc|
119                                   BCH_TRANS_COMMIT_no_check_rw|
120                                   BCH_TRANS_COMMIT_no_journal_res|
121                                   BCH_TRANS_COMMIT_journal_reclaim);
122 }
123
124 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
125                                struct btree_write_buffered_key *wb,
126                                bool *write_locked, size_t *fast)
127 {
128         struct bch_fs *c = trans->c;
129         struct btree_path *path;
130         int ret;
131
132         EBUG_ON(!wb->journal_seq);
133         EBUG_ON(!c->btree_write_buffer.flushing.pin.seq);
134         EBUG_ON(c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
135
136         ret = bch2_btree_iter_traverse(iter);
137         if (ret)
138                 return ret;
139
140         /*
141          * We can't clone a path that has write locks: unshare it now, before
142          * set_pos and traverse():
143          */
144         if (iter->path->ref > 1)
145                 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
146
147         path = iter->path;
148
149         if (!*write_locked) {
150                 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
151                 if (ret)
152                         return ret;
153
154                 bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
155                 *write_locked = true;
156         }
157
158         if (unlikely(!bch2_btree_node_insert_fits(c, path->l[0].b, wb->k.k.u64s))) {
159                 *write_locked = false;
160                 return wb_flush_one_slowpath(trans, iter, wb);
161         }
162
163         bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
164         (*fast)++;
165         return 0;
166 }
167
168 /*
169  * Update a btree with a write buffered key using the journal seq of the
170  * original write buffer insert.
171  *
172  * It is not safe to rejournal the key once it has been inserted into the write
173  * buffer because that may break recovery ordering. For example, the key may
174  * have already been modified in the active write buffer in a seq that comes
175  * before the current transaction. If we were to journal this key again and
176  * crash, recovery would process updates in the wrong order.
177  */
178 static int
179 btree_write_buffered_insert(struct btree_trans *trans,
180                           struct btree_write_buffered_key *wb)
181 {
182         struct btree_iter iter;
183         int ret;
184
185         bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
186                              BTREE_ITER_CACHED|BTREE_ITER_INTENT);
187
188         trans->journal_res.seq = wb->journal_seq;
189
190         ret   = bch2_btree_iter_traverse(&iter) ?:
191                 bch2_trans_update(trans, &iter, &wb->k,
192                                   BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
193         bch2_trans_iter_exit(trans, &iter);
194         return ret;
195 }
196
197 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
198 {
199         struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
200         struct journal *j = &c->journal;
201
202         if (!wb->inc.keys.nr)
203                 return;
204
205         bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
206                              bch2_btree_write_buffer_journal_flush);
207
208         darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
209         darray_resize(&wb->sorted, wb->flushing.keys.size);
210
211         if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
212                 swap(wb->flushing.keys, wb->inc.keys);
213                 goto out;
214         }
215
216         size_t nr = min(darray_room(wb->flushing.keys),
217                         wb->sorted.size - wb->flushing.keys.nr);
218         nr = min(nr, wb->inc.keys.nr);
219
220         memcpy(&darray_top(wb->flushing.keys),
221                wb->inc.keys.data,
222                sizeof(wb->inc.keys.data[0]) * nr);
223
224         memmove(wb->inc.keys.data,
225                 wb->inc.keys.data + nr,
226                sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
227
228         wb->flushing.keys.nr    += nr;
229         wb->inc.keys.nr         -= nr;
230 out:
231         if (!wb->inc.keys.nr)
232                 bch2_journal_pin_drop(j, &wb->inc.pin);
233         else
234                 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
235                                         bch2_btree_write_buffer_journal_flush);
236
237         if (j->watermark) {
238                 spin_lock(&j->lock);
239                 bch2_journal_set_watermark(j);
240                 spin_unlock(&j->lock);
241         }
242
243         BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
244 }
245
246 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
247 {
248         struct bch_fs *c = trans->c;
249         struct journal *j = &c->journal;
250         struct btree_write_buffer *wb = &c->btree_write_buffer;
251         struct wb_key_ref *i;
252         struct btree_iter iter = { NULL };
253         size_t skipped = 0, fast = 0, slowpath = 0;
254         bool write_locked = false;
255         int ret = 0;
256
257         bch2_trans_unlock(trans);
258         bch2_trans_begin(trans);
259
260         mutex_lock(&wb->inc.lock);
261         move_keys_from_inc_to_flushing(wb);
262         mutex_unlock(&wb->inc.lock);
263
264         for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
265                 wb->sorted.data[i].idx = i;
266                 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
267                 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
268         }
269         wb->sorted.nr = wb->flushing.keys.nr;
270
271         /*
272          * We first sort so that we can detect and skip redundant updates, and
273          * then we attempt to flush in sorted btree order, as this is most
274          * efficient.
275          *
276          * However, since we're not flushing in the order they appear in the
277          * journal we won't be able to drop our journal pin until everything is
278          * flushed - which means this could deadlock the journal if we weren't
279          * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
280          * if it would block taking a journal reservation.
281          *
282          * If that happens, simply skip the key so we can optimistically insert
283          * as many keys as possible in the fast path.
284          */
285         wb_sort(wb->sorted.data, wb->sorted.nr);
286
287         darray_for_each(wb->sorted, i) {
288                 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
289
290                 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
291                         prefetch(&wb->flushing.keys.data[n->idx]);
292
293                 BUG_ON(!k->journal_seq);
294
295                 if (i + 1 < &darray_top(wb->sorted) &&
296                     wb_key_eq(i, i + 1)) {
297                         struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
298
299                         skipped++;
300                         n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);;
301                         k->journal_seq = 0;
302                         continue;
303                 }
304
305                 if (write_locked &&
306                     (iter.path->btree_id != k->btree ||
307                      bpos_gt(k->k.k.p, iter.path->l[0].b->key.k.p))) {
308                         bch2_btree_node_unlock_write(trans, iter.path, iter.path->l[0].b);
309                         write_locked = false;
310                 }
311
312                 if (!iter.path || iter.path->btree_id != k->btree) {
313                         bch2_trans_iter_exit(trans, &iter);
314                         bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
315                                              BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS);
316                 }
317
318                 bch2_btree_iter_set_pos(&iter, k->k.k.p);
319                 iter.path->preserve = false;
320
321                 do {
322                         if (race_fault()) {
323                                 ret = -BCH_ERR_journal_reclaim_would_deadlock;
324                                 break;
325                         }
326
327                         ret = wb_flush_one(trans, &iter, k, &write_locked, &fast);
328                         if (!write_locked)
329                                 bch2_trans_begin(trans);
330                 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
331
332                 if (!ret) {
333                         k->journal_seq = 0;
334                 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
335                         slowpath++;
336                         ret = 0;
337                 } else
338                         break;
339         }
340
341         if (write_locked)
342                 bch2_btree_node_unlock_write(trans, iter.path, iter.path->l[0].b);
343         bch2_trans_iter_exit(trans, &iter);
344
345         if (ret)
346                 goto err;
347
348         if (slowpath) {
349                 /*
350                  * Flush in the order they were present in the journal, so that
351                  * we can release journal pins:
352                  * The fastpath zapped the seq of keys that were successfully flushed so
353                  * we can skip those here.
354                  */
355                 trace_write_buffer_flush_slowpath(trans, slowpath, wb->flushing.keys.nr);
356
357                 struct btree_write_buffered_key *i;
358                 darray_for_each(wb->flushing.keys, i) {
359                         if (!i->journal_seq)
360                                 continue;
361
362                         bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
363                                                 bch2_btree_write_buffer_journal_flush);
364
365                         bch2_trans_begin(trans);
366
367                         ret = commit_do(trans, NULL, NULL,
368                                         BCH_WATERMARK_reclaim|
369                                         BCH_TRANS_COMMIT_no_check_rw|
370                                         BCH_TRANS_COMMIT_no_enospc|
371                                         BCH_TRANS_COMMIT_no_journal_res|
372                                         BCH_TRANS_COMMIT_journal_reclaim,
373                                         btree_write_buffered_insert(trans, i));
374                         if (ret)
375                                 goto err;
376                 }
377         }
378 err:
379         bch2_fs_fatal_err_on(ret, c, "%s: insert error %s", __func__, bch2_err_str(ret));
380         trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0);
381         bch2_journal_pin_drop(j, &wb->flushing.pin);
382         wb->flushing.keys.nr = 0;
383         return ret;
384 }
385
386 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
387 {
388         struct journal *j = &c->journal;
389         struct journal_buf *buf;
390         int ret = 0;
391
392         mutex_lock(&j->buf_lock);
393         while ((buf = bch2_next_write_buffer_flush_journal_buf(j, seq)))
394                 if (bch2_journal_keys_to_write_buffer(c, buf)) {
395                         ret = -ENOMEM;
396                         break;
397                 }
398         mutex_unlock(&j->buf_lock);
399
400         return ret;
401 }
402
403 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
404 {
405         struct bch_fs *c = trans->c;
406         struct btree_write_buffer *wb = &c->btree_write_buffer;
407         int ret = 0, fetch_from_journal_err;
408
409         trace_write_buffer_flush_sync(trans, _RET_IP_);
410 retry:
411         bch2_trans_unlock(trans);
412
413         bch2_journal_block_reservations(&c->journal);
414         fetch_from_journal_err = fetch_wb_keys_from_journal(c, U64_MAX);
415         bch2_journal_unblock(&c->journal);
416
417         /*
418          * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
419          * is not guaranteed to empty wb->inc:
420          */
421         mutex_lock(&wb->flushing.lock);
422         while (!ret &&
423                (wb->flushing.keys.nr || wb->inc.keys.nr))
424                 ret = bch2_btree_write_buffer_flush_locked(trans);
425         mutex_unlock(&wb->flushing.lock);
426
427         if (!ret && fetch_from_journal_err)
428                 goto retry;
429
430         return ret;
431 }
432
433 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
434 {
435         struct bch_fs *c = trans->c;
436         struct btree_write_buffer *wb = &c->btree_write_buffer;
437         int ret = 0;
438
439         if (mutex_trylock(&wb->flushing.lock)) {
440                 ret = bch2_btree_write_buffer_flush_locked(trans);
441                 mutex_unlock(&wb->flushing.lock);
442         }
443
444         return ret;
445 }
446
447 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
448 {
449         struct bch_fs *c = trans->c;
450
451         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
452                 return -BCH_ERR_erofs_no_writes;
453
454         int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
455         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
456         return ret;
457 }
458
459 static int bch2_btree_write_buffer_journal_flush(struct journal *j,
460                                 struct journal_entry_pin *_pin, u64 seq)
461 {
462         struct bch_fs *c = container_of(j, struct bch_fs, journal);
463         struct btree_write_buffer *wb = &c->btree_write_buffer;
464         int ret, fetch_from_journal_err;
465
466         do {
467                 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
468
469                 mutex_lock(&wb->flushing.lock);
470                 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
471                 mutex_unlock(&wb->flushing.lock);
472         } while (!ret &&
473                  (fetch_from_journal_err ||
474                   (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq) ||
475                   (wb->inc.pin.seq && wb->inc.pin.seq <= seq)));
476
477         return ret;
478 }
479
480 static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
481 {
482         struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
483         struct btree_write_buffer *wb = &c->btree_write_buffer;
484         int ret;
485
486         mutex_lock(&wb->flushing.lock);
487         do {
488                 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
489         } while (!ret && bch2_btree_write_buffer_should_flush(c));
490         mutex_unlock(&wb->flushing.lock);
491
492         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
493 }
494
495 int __bch2_journal_key_to_wb(struct bch_fs *c,
496                              struct journal_keys_to_wb *dst,
497                              enum btree_id btree, struct bkey_i *k)
498 {
499         struct btree_write_buffer *wb = &c->btree_write_buffer;
500         int ret;
501 retry:
502         ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
503         if (!ret && dst->wb == &wb->flushing)
504                 ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
505
506         if (unlikely(ret)) {
507                 if (dst->wb == &c->btree_write_buffer.flushing) {
508                         mutex_unlock(&dst->wb->lock);
509                         dst->wb = &c->btree_write_buffer.inc;
510                         bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
511                                              bch2_btree_write_buffer_journal_flush);
512                         goto retry;
513                 }
514
515                 return ret;
516         }
517
518         dst->room = darray_room(dst->wb->keys);
519         if (dst->wb == &wb->flushing)
520                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
521         BUG_ON(!dst->room);
522         BUG_ON(!dst->seq);
523
524         struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
525         wb_k->journal_seq       = dst->seq;
526         wb_k->btree             = btree;
527         bkey_copy(&wb_k->k, k);
528         dst->wb->keys.nr++;
529         dst->room--;
530         return 0;
531 }
532
533 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
534 {
535         struct btree_write_buffer *wb = &c->btree_write_buffer;
536
537         if (mutex_trylock(&wb->flushing.lock)) {
538                 mutex_lock(&wb->inc.lock);
539                 move_keys_from_inc_to_flushing(wb);
540
541                 /*
542                  * Attempt to skip wb->inc, and add keys directly to
543                  * wb->flushing, saving us a copy later:
544                  */
545
546                 if (!wb->inc.keys.nr) {
547                         dst->wb = &wb->flushing;
548                 } else {
549                         mutex_unlock(&wb->flushing.lock);
550                         dst->wb = &wb->inc;
551                 }
552         } else {
553                 mutex_lock(&wb->inc.lock);
554                 dst->wb = &wb->inc;
555         }
556
557         dst->room = darray_room(dst->wb->keys);
558         if (dst->wb == &wb->flushing)
559                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
560         dst->seq = seq;
561
562         bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
563                              bch2_btree_write_buffer_journal_flush);
564 }
565
566 void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
567 {
568         struct btree_write_buffer *wb = &c->btree_write_buffer;
569
570         if (!dst->wb->keys.nr)
571                 bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
572
573         if (bch2_btree_write_buffer_should_flush(c) &&
574             __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
575             !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
576                 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
577
578         if (dst->wb == &wb->flushing)
579                 mutex_unlock(&wb->flushing.lock);
580         mutex_unlock(&wb->inc.lock);
581 }
582
583 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
584 {
585         struct journal_keys_to_wb dst;
586         struct jset_entry *entry;
587         struct bkey_i *k;
588         int ret = 0;
589
590         bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
591
592         for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
593                 jset_entry_for_each_key(entry, k) {
594                         ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
595                         if (ret)
596                                 goto out;
597                 }
598
599                 entry->type = BCH_JSET_ENTRY_btree_keys;
600         }
601
602         buf->need_flush_to_write_buffer = false;
603 out:
604         bch2_journal_keys_to_write_buffer_end(c, &dst);
605         return ret;
606 }
607
608 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
609 {
610         if (wb->keys.size >= new_size)
611                 return 0;
612
613         if (!mutex_trylock(&wb->lock))
614                 return -EINTR;
615
616         int ret = darray_resize(&wb->keys, new_size);
617         mutex_unlock(&wb->lock);
618         return ret;
619 }
620
621 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
622 {
623         struct btree_write_buffer *wb = &c->btree_write_buffer;
624
625         return wb_keys_resize(&wb->flushing, new_size) ?:
626                 wb_keys_resize(&wb->inc, new_size);
627 }
628
629 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
630 {
631         struct btree_write_buffer *wb = &c->btree_write_buffer;
632
633         BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
634                !bch2_journal_error(&c->journal));
635
636         darray_exit(&wb->sorted);
637         darray_exit(&wb->flushing.keys);
638         darray_exit(&wb->inc.keys);
639 }
640
641 int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
642 {
643         struct btree_write_buffer *wb = &c->btree_write_buffer;
644
645         mutex_init(&wb->inc.lock);
646         mutex_init(&wb->flushing.lock);
647         INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
648
649         /* Will be resized by journal as needed: */
650         unsigned initial_size = 1 << 16;
651
652         return  darray_make_room(&wb->inc.keys, initial_size) ?:
653                 darray_make_room(&wb->flushing.keys, initial_size) ?:
654                 darray_make_room(&wb->sorted, initial_size);
655 }