]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_write_buffer.c
Move c_src dirs back to toplevel
[bcachefs-tools-debian] / libbcachefs / btree_write_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_locking.h"
5 #include "btree_update.h"
6 #include "btree_update_interior.h"
7 #include "btree_write_buffer.h"
8 #include "error.h"
9 #include "journal.h"
10 #include "journal_io.h"
11 #include "journal_reclaim.h"
12
13 #include <linux/prefetch.h>
14
15 static int bch2_btree_write_buffer_journal_flush(struct journal *,
16                                 struct journal_entry_pin *, u64);
17
18 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
19
20 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
21 {
22         return (cmp_int(l->hi, r->hi) ?:
23                 cmp_int(l->mi, r->mi) ?:
24                 cmp_int(l->lo, r->lo)) >= 0;
25 }
26
27 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
28 {
29 #ifdef CONFIG_X86_64
30         int cmp;
31
32         asm("mov   (%[l]), %%rax;"
33             "sub   (%[r]), %%rax;"
34             "mov  8(%[l]), %%rax;"
35             "sbb  8(%[r]), %%rax;"
36             "mov 16(%[l]), %%rax;"
37             "sbb 16(%[r]), %%rax;"
38             : "=@ccae" (cmp)
39             : [l] "r" (l), [r] "r" (r)
40             : "rax", "cc");
41
42         EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
43         return cmp;
44 #else
45         return __wb_key_ref_cmp(l, r);
46 #endif
47 }
48
49 /* Compare excluding idx, the low 24 bits: */
50 static inline bool wb_key_eq(const void *_l, const void *_r)
51 {
52         const struct wb_key_ref *l = _l;
53         const struct wb_key_ref *r = _r;
54
55         return !((l->hi ^ r->hi)|
56                  (l->mi ^ r->mi)|
57                  ((l->lo >> 24) ^ (r->lo >> 24)));
58 }
59
60 static noinline void wb_sort(struct wb_key_ref *base, size_t num)
61 {
62         size_t n = num, a = num / 2;
63
64         if (!a)         /* num < 2 || size == 0 */
65                 return;
66
67         for (;;) {
68                 size_t b, c, d;
69
70                 if (a)                  /* Building heap: sift down --a */
71                         --a;
72                 else if (--n)           /* Sorting: Extract root to --n */
73                         swap(base[0], base[n]);
74                 else                    /* Sort complete */
75                         break;
76
77                 /*
78                  * Sift element at "a" down into heap.  This is the
79                  * "bottom-up" variant, which significantly reduces
80                  * calls to cmp_func(): we find the sift-down path all
81                  * the way to the leaves (one compare per level), then
82                  * backtrack to find where to insert the target element.
83                  *
84                  * Because elements tend to sift down close to the leaves,
85                  * this uses fewer compares than doing two per level
86                  * on the way down.  (A bit more than half as many on
87                  * average, 3/4 worst-case.)
88                  */
89                 for (b = a; c = 2*b + 1, (d = c + 1) < n;)
90                         b = wb_key_ref_cmp(base + c, base + d) ? c : d;
91                 if (d == n)             /* Special case last leaf with no sibling */
92                         b = c;
93
94                 /* Now backtrack from "b" to the correct location for "a" */
95                 while (b != a && wb_key_ref_cmp(base + a, base + b))
96                         b = (b - 1) / 2;
97                 c = b;                  /* Where "a" belongs */
98                 while (b != a) {        /* Shift it into place */
99                         b = (b - 1) / 2;
100                         swap(base[b], base[c]);
101                 }
102         }
103 }
104
105 static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
106                                           struct btree_iter *iter,
107                                           struct btree_write_buffered_key *wb)
108 {
109         struct btree_path *path = btree_iter_path(trans, iter);
110
111         bch2_btree_node_unlock_write(trans, path, path->l[0].b);
112
113         trans->journal_res.seq = wb->journal_seq;
114
115         return bch2_trans_update(trans, iter, &wb->k,
116                                  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?:
117                 bch2_trans_commit(trans, NULL, NULL,
118                                   BCH_TRANS_COMMIT_no_enospc|
119                                   BCH_TRANS_COMMIT_no_check_rw|
120                                   BCH_TRANS_COMMIT_no_journal_res|
121                                   BCH_TRANS_COMMIT_journal_reclaim);
122 }
123
124 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
125                                struct btree_write_buffered_key *wb,
126                                bool *write_locked, size_t *fast)
127 {
128         struct bch_fs *c = trans->c;
129         struct btree_path *path;
130         int ret;
131
132         EBUG_ON(!wb->journal_seq);
133         EBUG_ON(!c->btree_write_buffer.flushing.pin.seq);
134         EBUG_ON(c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
135
136         ret = bch2_btree_iter_traverse(iter);
137         if (ret)
138                 return ret;
139
140         /*
141          * We can't clone a path that has write locks: unshare it now, before
142          * set_pos and traverse():
143          */
144         if (btree_iter_path(trans, iter)->ref > 1)
145                 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
146
147         path = btree_iter_path(trans, iter);
148
149         if (!*write_locked) {
150                 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
151                 if (ret)
152                         return ret;
153
154                 bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
155                 *write_locked = true;
156         }
157
158         if (unlikely(!bch2_btree_node_insert_fits(c, path->l[0].b, wb->k.k.u64s))) {
159                 *write_locked = false;
160                 return wb_flush_one_slowpath(trans, iter, wb);
161         }
162
163         bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
164         (*fast)++;
165         return 0;
166 }
167
168 /*
169  * Update a btree with a write buffered key using the journal seq of the
170  * original write buffer insert.
171  *
172  * It is not safe to rejournal the key once it has been inserted into the write
173  * buffer because that may break recovery ordering. For example, the key may
174  * have already been modified in the active write buffer in a seq that comes
175  * before the current transaction. If we were to journal this key again and
176  * crash, recovery would process updates in the wrong order.
177  */
178 static int
179 btree_write_buffered_insert(struct btree_trans *trans,
180                           struct btree_write_buffered_key *wb)
181 {
182         struct btree_iter iter;
183         int ret;
184
185         bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
186                              BTREE_ITER_CACHED|BTREE_ITER_INTENT);
187
188         trans->journal_res.seq = wb->journal_seq;
189
190         ret   = bch2_btree_iter_traverse(&iter) ?:
191                 bch2_trans_update(trans, &iter, &wb->k,
192                                   BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
193         bch2_trans_iter_exit(trans, &iter);
194         return ret;
195 }
196
197 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
198 {
199         struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
200         struct journal *j = &c->journal;
201
202         if (!wb->inc.keys.nr)
203                 return;
204
205         bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
206                              bch2_btree_write_buffer_journal_flush);
207
208         darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
209         darray_resize(&wb->sorted, wb->flushing.keys.size);
210
211         if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
212                 swap(wb->flushing.keys, wb->inc.keys);
213                 goto out;
214         }
215
216         size_t nr = min(darray_room(wb->flushing.keys),
217                         wb->sorted.size - wb->flushing.keys.nr);
218         nr = min(nr, wb->inc.keys.nr);
219
220         memcpy(&darray_top(wb->flushing.keys),
221                wb->inc.keys.data,
222                sizeof(wb->inc.keys.data[0]) * nr);
223
224         memmove(wb->inc.keys.data,
225                 wb->inc.keys.data + nr,
226                sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
227
228         wb->flushing.keys.nr    += nr;
229         wb->inc.keys.nr         -= nr;
230 out:
231         if (!wb->inc.keys.nr)
232                 bch2_journal_pin_drop(j, &wb->inc.pin);
233         else
234                 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
235                                         bch2_btree_write_buffer_journal_flush);
236
237         if (j->watermark) {
238                 spin_lock(&j->lock);
239                 bch2_journal_set_watermark(j);
240                 spin_unlock(&j->lock);
241         }
242
243         BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
244 }
245
246 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
247 {
248         struct bch_fs *c = trans->c;
249         struct journal *j = &c->journal;
250         struct btree_write_buffer *wb = &c->btree_write_buffer;
251         struct btree_iter iter = { NULL };
252         size_t skipped = 0, fast = 0, slowpath = 0;
253         bool write_locked = false;
254         int ret = 0;
255
256         bch2_trans_unlock(trans);
257         bch2_trans_begin(trans);
258
259         mutex_lock(&wb->inc.lock);
260         move_keys_from_inc_to_flushing(wb);
261         mutex_unlock(&wb->inc.lock);
262
263         for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
264                 wb->sorted.data[i].idx = i;
265                 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
266                 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
267         }
268         wb->sorted.nr = wb->flushing.keys.nr;
269
270         /*
271          * We first sort so that we can detect and skip redundant updates, and
272          * then we attempt to flush in sorted btree order, as this is most
273          * efficient.
274          *
275          * However, since we're not flushing in the order they appear in the
276          * journal we won't be able to drop our journal pin until everything is
277          * flushed - which means this could deadlock the journal if we weren't
278          * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
279          * if it would block taking a journal reservation.
280          *
281          * If that happens, simply skip the key so we can optimistically insert
282          * as many keys as possible in the fast path.
283          */
284         wb_sort(wb->sorted.data, wb->sorted.nr);
285
286         darray_for_each(wb->sorted, i) {
287                 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
288
289                 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
290                         prefetch(&wb->flushing.keys.data[n->idx]);
291
292                 BUG_ON(!k->journal_seq);
293
294                 if (i + 1 < &darray_top(wb->sorted) &&
295                     wb_key_eq(i, i + 1)) {
296                         struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
297
298                         skipped++;
299                         n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
300                         k->journal_seq = 0;
301                         continue;
302                 }
303
304                 if (write_locked) {
305                         struct btree_path *path = btree_iter_path(trans, &iter);
306
307                         if (path->btree_id != i->btree ||
308                             bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
309                                 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
310                                 write_locked = false;
311                         }
312                 }
313
314                 if (!iter.path || iter.btree_id != k->btree) {
315                         bch2_trans_iter_exit(trans, &iter);
316                         bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
317                                              BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS);
318                 }
319
320                 bch2_btree_iter_set_pos(&iter, k->k.k.p);
321                 btree_iter_path(trans, &iter)->preserve = false;
322
323                 do {
324                         if (race_fault()) {
325                                 ret = -BCH_ERR_journal_reclaim_would_deadlock;
326                                 break;
327                         }
328
329                         ret = wb_flush_one(trans, &iter, k, &write_locked, &fast);
330                         if (!write_locked)
331                                 bch2_trans_begin(trans);
332                 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
333
334                 if (!ret) {
335                         k->journal_seq = 0;
336                 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
337                         slowpath++;
338                         ret = 0;
339                 } else
340                         break;
341         }
342
343         if (write_locked) {
344                 struct btree_path *path = btree_iter_path(trans, &iter);
345                 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
346         }
347         bch2_trans_iter_exit(trans, &iter);
348
349         if (ret)
350                 goto err;
351
352         if (slowpath) {
353                 /*
354                  * Flush in the order they were present in the journal, so that
355                  * we can release journal pins:
356                  * The fastpath zapped the seq of keys that were successfully flushed so
357                  * we can skip those here.
358                  */
359                 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
360
361                 darray_for_each(wb->flushing.keys, i) {
362                         if (!i->journal_seq)
363                                 continue;
364
365                         bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
366                                                 bch2_btree_write_buffer_journal_flush);
367
368                         bch2_trans_begin(trans);
369
370                         ret = commit_do(trans, NULL, NULL,
371                                         BCH_WATERMARK_reclaim|
372                                         BCH_TRANS_COMMIT_no_check_rw|
373                                         BCH_TRANS_COMMIT_no_enospc|
374                                         BCH_TRANS_COMMIT_no_journal_res|
375                                         BCH_TRANS_COMMIT_journal_reclaim,
376                                         btree_write_buffered_insert(trans, i));
377                         if (ret)
378                                 goto err;
379                 }
380         }
381 err:
382         bch2_fs_fatal_err_on(ret, c, "%s: insert error %s", __func__, bch2_err_str(ret));
383         trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0);
384         bch2_journal_pin_drop(j, &wb->flushing.pin);
385         wb->flushing.keys.nr = 0;
386         return ret;
387 }
388
389 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
390 {
391         struct journal *j = &c->journal;
392         struct journal_buf *buf;
393         int ret = 0;
394
395         while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
396                 ret = bch2_journal_keys_to_write_buffer(c, buf);
397                 mutex_unlock(&j->buf_lock);
398         }
399
400         return ret;
401 }
402
403 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq)
404 {
405         struct bch_fs *c = trans->c;
406         struct btree_write_buffer *wb = &c->btree_write_buffer;
407         int ret = 0, fetch_from_journal_err;
408
409         do {
410                 bch2_trans_unlock(trans);
411
412                 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
413
414                 /*
415                  * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
416                  * is not guaranteed to empty wb->inc:
417                  */
418                 mutex_lock(&wb->flushing.lock);
419                 ret = bch2_btree_write_buffer_flush_locked(trans);
420                 mutex_unlock(&wb->flushing.lock);
421         } while (!ret &&
422                  (fetch_from_journal_err ||
423                   (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
424                   (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
425
426         return ret;
427 }
428
429 static int bch2_btree_write_buffer_journal_flush(struct journal *j,
430                                 struct journal_entry_pin *_pin, u64 seq)
431 {
432         struct bch_fs *c = container_of(j, struct bch_fs, journal);
433
434         return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq));
435 }
436
437 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
438 {
439         struct bch_fs *c = trans->c;
440
441         trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
442
443         return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal));
444 }
445
446 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
447 {
448         struct bch_fs *c = trans->c;
449         struct btree_write_buffer *wb = &c->btree_write_buffer;
450         int ret = 0;
451
452         if (mutex_trylock(&wb->flushing.lock)) {
453                 ret = bch2_btree_write_buffer_flush_locked(trans);
454                 mutex_unlock(&wb->flushing.lock);
455         }
456
457         return ret;
458 }
459
460 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
461 {
462         struct bch_fs *c = trans->c;
463
464         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
465                 return -BCH_ERR_erofs_no_writes;
466
467         int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
468         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
469         return ret;
470 }
471
472 static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
473 {
474         struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
475         struct btree_write_buffer *wb = &c->btree_write_buffer;
476         int ret;
477
478         mutex_lock(&wb->flushing.lock);
479         do {
480                 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
481         } while (!ret && bch2_btree_write_buffer_should_flush(c));
482         mutex_unlock(&wb->flushing.lock);
483
484         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
485 }
486
487 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
488                              struct journal_keys_to_wb *dst,
489                              enum btree_id btree, struct bkey_i *k)
490 {
491         struct btree_write_buffer *wb = &c->btree_write_buffer;
492         int ret;
493 retry:
494         ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
495         if (!ret && dst->wb == &wb->flushing)
496                 ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
497
498         if (unlikely(ret)) {
499                 if (dst->wb == &c->btree_write_buffer.flushing) {
500                         mutex_unlock(&dst->wb->lock);
501                         dst->wb = &c->btree_write_buffer.inc;
502                         bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
503                                              bch2_btree_write_buffer_journal_flush);
504                         goto retry;
505                 }
506
507                 return ret;
508         }
509
510         dst->room = darray_room(dst->wb->keys);
511         if (dst->wb == &wb->flushing)
512                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
513         BUG_ON(!dst->room);
514         BUG_ON(!dst->seq);
515
516         struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
517         wb_k->journal_seq       = dst->seq;
518         wb_k->btree             = btree;
519         bkey_copy(&wb_k->k, k);
520         dst->wb->keys.nr++;
521         dst->room--;
522         return 0;
523 }
524
525 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
526 {
527         struct btree_write_buffer *wb = &c->btree_write_buffer;
528
529         if (mutex_trylock(&wb->flushing.lock)) {
530                 mutex_lock(&wb->inc.lock);
531                 move_keys_from_inc_to_flushing(wb);
532
533                 /*
534                  * Attempt to skip wb->inc, and add keys directly to
535                  * wb->flushing, saving us a copy later:
536                  */
537
538                 if (!wb->inc.keys.nr) {
539                         dst->wb = &wb->flushing;
540                 } else {
541                         mutex_unlock(&wb->flushing.lock);
542                         dst->wb = &wb->inc;
543                 }
544         } else {
545                 mutex_lock(&wb->inc.lock);
546                 dst->wb = &wb->inc;
547         }
548
549         dst->room = darray_room(dst->wb->keys);
550         if (dst->wb == &wb->flushing)
551                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
552         dst->seq = seq;
553
554         bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
555                              bch2_btree_write_buffer_journal_flush);
556 }
557
558 void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
559 {
560         struct btree_write_buffer *wb = &c->btree_write_buffer;
561
562         if (!dst->wb->keys.nr)
563                 bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
564
565         if (bch2_btree_write_buffer_should_flush(c) &&
566             __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
567             !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
568                 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
569
570         if (dst->wb == &wb->flushing)
571                 mutex_unlock(&wb->flushing.lock);
572         mutex_unlock(&wb->inc.lock);
573 }
574
575 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
576 {
577         struct journal_keys_to_wb dst;
578         struct jset_entry *entry;
579         struct bkey_i *k;
580         int ret = 0;
581
582         bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
583
584         for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
585                 jset_entry_for_each_key(entry, k) {
586                         ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
587                         if (ret)
588                                 goto out;
589                 }
590
591                 entry->type = BCH_JSET_ENTRY_btree_keys;
592         }
593
594         buf->need_flush_to_write_buffer = false;
595 out:
596         bch2_journal_keys_to_write_buffer_end(c, &dst);
597         return ret;
598 }
599
600 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
601 {
602         if (wb->keys.size >= new_size)
603                 return 0;
604
605         if (!mutex_trylock(&wb->lock))
606                 return -EINTR;
607
608         int ret = darray_resize(&wb->keys, new_size);
609         mutex_unlock(&wb->lock);
610         return ret;
611 }
612
613 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
614 {
615         struct btree_write_buffer *wb = &c->btree_write_buffer;
616
617         return wb_keys_resize(&wb->flushing, new_size) ?:
618                 wb_keys_resize(&wb->inc, new_size);
619 }
620
621 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
622 {
623         struct btree_write_buffer *wb = &c->btree_write_buffer;
624
625         BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
626                !bch2_journal_error(&c->journal));
627
628         darray_exit(&wb->sorted);
629         darray_exit(&wb->flushing.keys);
630         darray_exit(&wb->inc.keys);
631 }
632
633 int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
634 {
635         struct btree_write_buffer *wb = &c->btree_write_buffer;
636
637         mutex_init(&wb->inc.lock);
638         mutex_init(&wb->flushing.lock);
639         INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
640
641         /* Will be resized by journal as needed: */
642         unsigned initial_size = 1 << 16;
643
644         return  darray_make_room(&wb->inc.keys, initial_size) ?:
645                 darray_make_room(&wb->flushing.keys, initial_size) ?:
646                 darray_make_room(&wb->sorted, initial_size);
647 }