]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/buckets.c
72cc11b220d1d569bf50819fb411c03cdbd7c93d
[bcachefs-tools-debian] / libbcachefs / buckets.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for manipulating bucket marks for garbage collection.
4  *
5  * Copyright 2014 Datera, Inc.
6  *
7  * Bucket states:
8  * - free bucket: mark == 0
9  *   The bucket contains no data and will not be read
10  *
11  * - allocator bucket: owned_by_allocator == 1
12  *   The bucket is on a free list, or it is an open bucket
13  *
14  * - cached bucket: owned_by_allocator == 0 &&
15  *                  dirty_sectors == 0 &&
16  *                  cached_sectors > 0
17  *   The bucket contains data but may be safely discarded as there are
18  *   enough replicas of the data on other cache devices, or it has been
19  *   written back to the backing device
20  *
21  * - dirty bucket: owned_by_allocator == 0 &&
22  *                 dirty_sectors > 0
23  *   The bucket contains data that we must not discard (either only copy,
24  *   or one of the 'main copies' for data requiring multiple replicas)
25  *
26  * - metadata bucket: owned_by_allocator == 0 && is_metadata == 1
27  *   This is a btree node, journal or gen/prio bucket
28  *
29  * Lifecycle:
30  *
31  * bucket invalidated => bucket on freelist => open bucket =>
32  *     [dirty bucket =>] cached bucket => bucket invalidated => ...
33  *
34  * Note that cache promotion can skip the dirty bucket step, as data
35  * is copied from a deeper tier to a shallower tier, onto a cached
36  * bucket.
37  * Note also that a cached bucket can spontaneously become dirty --
38  * see below.
39  *
40  * Only a traversal of the key space can determine whether a bucket is
41  * truly dirty or cached.
42  *
43  * Transitions:
44  *
45  * - free => allocator: bucket was invalidated
46  * - cached => allocator: bucket was invalidated
47  *
48  * - allocator => dirty: open bucket was filled up
49  * - allocator => cached: open bucket was filled up
50  * - allocator => metadata: metadata was allocated
51  *
52  * - dirty => cached: dirty sectors were copied to a deeper tier
53  * - dirty => free: dirty sectors were overwritten or moved (copy gc)
54  * - cached => free: cached sectors were overwritten
55  *
56  * - metadata => free: metadata was freed
57  *
58  * Oddities:
59  * - cached => dirty: a device was removed so formerly replicated data
60  *                    is no longer sufficiently replicated
61  * - free => cached: cannot happen
62  * - free => dirty: cannot happen
63  * - free => metadata: cannot happen
64  */
65
66 #include "bcachefs.h"
67 #include "alloc_background.h"
68 #include "bset.h"
69 #include "btree_gc.h"
70 #include "btree_update.h"
71 #include "buckets.h"
72 #include "ec.h"
73 #include "error.h"
74 #include "movinggc.h"
75 #include "replicas.h"
76
77 #include <linux/preempt.h>
78 #include <trace/events/bcachefs.h>
79
80 /*
81  * Clear journal_seq_valid for buckets for which it's not needed, to prevent
82  * wraparound:
83  */
84 void bch2_bucket_seq_cleanup(struct bch_fs *c)
85 {
86         u64 journal_seq = atomic64_read(&c->journal.seq);
87         u16 last_seq_ondisk = c->journal.last_seq_ondisk;
88         struct bch_dev *ca;
89         struct bucket_array *buckets;
90         struct bucket *g;
91         struct bucket_mark m;
92         unsigned i;
93
94         if (journal_seq - c->last_bucket_seq_cleanup <
95             (1U << (BUCKET_JOURNAL_SEQ_BITS - 2)))
96                 return;
97
98         c->last_bucket_seq_cleanup = journal_seq;
99
100         for_each_member_device(ca, c, i) {
101                 down_read(&ca->bucket_lock);
102                 buckets = bucket_array(ca);
103
104                 for_each_bucket(g, buckets) {
105                         bucket_cmpxchg(g, m, ({
106                                 if (!m.journal_seq_valid ||
107                                     bucket_needs_journal_commit(m, last_seq_ondisk))
108                                         break;
109
110                                 m.journal_seq_valid = 0;
111                         }));
112                 }
113                 up_read(&ca->bucket_lock);
114         }
115 }
116
117 void bch2_fs_usage_initialize(struct bch_fs *c)
118 {
119         struct bch_fs_usage *usage;
120         unsigned i;
121
122         percpu_down_write(&c->mark_lock);
123         usage = c->usage_base;
124
125         bch2_fs_usage_acc_to_base(c, 0);
126         bch2_fs_usage_acc_to_base(c, 1);
127
128         for (i = 0; i < BCH_REPLICAS_MAX; i++)
129                 usage->reserved += usage->persistent_reserved[i];
130
131         for (i = 0; i < c->replicas.nr; i++) {
132                 struct bch_replicas_entry *e =
133                         cpu_replicas_entry(&c->replicas, i);
134
135                 switch (e->data_type) {
136                 case BCH_DATA_BTREE:
137                         usage->btree    += usage->replicas[i];
138                         break;
139                 case BCH_DATA_USER:
140                         usage->data     += usage->replicas[i];
141                         break;
142                 case BCH_DATA_CACHED:
143                         usage->cached   += usage->replicas[i];
144                         break;
145                 }
146         }
147
148         percpu_up_write(&c->mark_lock);
149 }
150
151 void bch2_fs_usage_scratch_put(struct bch_fs *c, struct bch_fs_usage *fs_usage)
152 {
153         if (fs_usage == c->usage_scratch)
154                 mutex_unlock(&c->usage_scratch_lock);
155         else
156                 kfree(fs_usage);
157 }
158
159 struct bch_fs_usage *bch2_fs_usage_scratch_get(struct bch_fs *c)
160 {
161         struct bch_fs_usage *ret;
162         unsigned bytes = fs_usage_u64s(c) * sizeof(u64);
163
164         ret = kzalloc(bytes, GFP_NOWAIT);
165         if (ret)
166                 return ret;
167
168         if (mutex_trylock(&c->usage_scratch_lock))
169                 goto out_pool;
170
171         ret = kzalloc(bytes, GFP_NOFS);
172         if (ret)
173                 return ret;
174
175         mutex_lock(&c->usage_scratch_lock);
176 out_pool:
177         ret = c->usage_scratch;
178         memset(ret, 0, bytes);
179         return ret;
180 }
181
182 struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca)
183 {
184         struct bch_dev_usage ret;
185
186         memset(&ret, 0, sizeof(ret));
187         acc_u64s_percpu((u64 *) &ret,
188                         (u64 __percpu *) ca->usage[0],
189                         sizeof(ret) / sizeof(u64));
190
191         return ret;
192 }
193
194 static inline struct bch_fs_usage *fs_usage_ptr(struct bch_fs *c,
195                                                 unsigned journal_seq,
196                                                 bool gc)
197 {
198         return this_cpu_ptr(gc
199                             ? c->usage_gc
200                             : c->usage[journal_seq & 1]);
201 }
202
203 u64 bch2_fs_usage_read_one(struct bch_fs *c, u64 *v)
204 {
205         ssize_t offset = v - (u64 *) c->usage_base;
206         unsigned seq;
207         u64 ret;
208
209         BUG_ON(offset < 0 || offset >= fs_usage_u64s(c));
210         percpu_rwsem_assert_held(&c->mark_lock);
211
212         do {
213                 seq = read_seqcount_begin(&c->usage_lock);
214                 ret = *v +
215                         percpu_u64_get((u64 __percpu *) c->usage[0] + offset) +
216                         percpu_u64_get((u64 __percpu *) c->usage[1] + offset);
217         } while (read_seqcount_retry(&c->usage_lock, seq));
218
219         return ret;
220 }
221
222 struct bch_fs_usage *bch2_fs_usage_read(struct bch_fs *c)
223 {
224         struct bch_fs_usage *ret;
225         unsigned seq, v, u64s = fs_usage_u64s(c);
226 retry:
227         ret = kmalloc(u64s * sizeof(u64), GFP_NOFS);
228         if (unlikely(!ret))
229                 return NULL;
230
231         percpu_down_read(&c->mark_lock);
232
233         v = fs_usage_u64s(c);
234         if (unlikely(u64s != v)) {
235                 u64s = v;
236                 percpu_up_read(&c->mark_lock);
237                 kfree(ret);
238                 goto retry;
239         }
240
241         do {
242                 seq = read_seqcount_begin(&c->usage_lock);
243                 memcpy(ret, c->usage_base, u64s * sizeof(u64));
244                 acc_u64s_percpu((u64 *) ret, (u64 __percpu *) c->usage[0], u64s);
245                 acc_u64s_percpu((u64 *) ret, (u64 __percpu *) c->usage[1], u64s);
246         } while (read_seqcount_retry(&c->usage_lock, seq));
247
248         return ret;
249 }
250
251 void bch2_fs_usage_acc_to_base(struct bch_fs *c, unsigned idx)
252 {
253         unsigned u64s = fs_usage_u64s(c);
254
255         BUG_ON(idx >= 2);
256
257         write_seqcount_begin(&c->usage_lock);
258
259         acc_u64s_percpu((u64 *) c->usage_base,
260                         (u64 __percpu *) c->usage[idx], u64s);
261         percpu_memset(c->usage[idx], 0, u64s * sizeof(u64));
262
263         write_seqcount_end(&c->usage_lock);
264 }
265
266 void bch2_fs_usage_to_text(struct printbuf *out,
267                            struct bch_fs *c,
268                            struct bch_fs_usage *fs_usage)
269 {
270         unsigned i;
271
272         pr_buf(out, "capacity:\t\t\t%llu\n", c->capacity);
273
274         pr_buf(out, "hidden:\t\t\t\t%llu\n",
275                fs_usage->hidden);
276         pr_buf(out, "data:\t\t\t\t%llu\n",
277                fs_usage->data);
278         pr_buf(out, "cached:\t\t\t\t%llu\n",
279                fs_usage->cached);
280         pr_buf(out, "reserved:\t\t\t%llu\n",
281                fs_usage->reserved);
282         pr_buf(out, "nr_inodes:\t\t\t%llu\n",
283                fs_usage->nr_inodes);
284         pr_buf(out, "online reserved:\t\t%llu\n",
285                fs_usage->online_reserved);
286
287         for (i = 0;
288              i < ARRAY_SIZE(fs_usage->persistent_reserved);
289              i++) {
290                 pr_buf(out, "%u replicas:\n", i + 1);
291                 pr_buf(out, "\treserved:\t\t%llu\n",
292                        fs_usage->persistent_reserved[i]);
293         }
294
295         for (i = 0; i < c->replicas.nr; i++) {
296                 struct bch_replicas_entry *e =
297                         cpu_replicas_entry(&c->replicas, i);
298
299                 pr_buf(out, "\t");
300                 bch2_replicas_entry_to_text(out, e);
301                 pr_buf(out, ":\t%llu\n", fs_usage->replicas[i]);
302         }
303 }
304
305 #define RESERVE_FACTOR  6
306
307 static u64 reserve_factor(u64 r)
308 {
309         return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR);
310 }
311
312 static u64 avail_factor(u64 r)
313 {
314         return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1);
315 }
316
317 u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage *fs_usage)
318 {
319         return min(fs_usage->hidden +
320                    fs_usage->btree +
321                    fs_usage->data +
322                    reserve_factor(fs_usage->reserved +
323                                   fs_usage->online_reserved),
324                    c->capacity);
325 }
326
327 static struct bch_fs_usage_short
328 __bch2_fs_usage_read_short(struct bch_fs *c)
329 {
330         struct bch_fs_usage_short ret;
331         u64 data, reserved;
332
333         ret.capacity = c->capacity -
334                 bch2_fs_usage_read_one(c, &c->usage_base->hidden);
335
336         data            = bch2_fs_usage_read_one(c, &c->usage_base->data) +
337                 bch2_fs_usage_read_one(c, &c->usage_base->btree);
338         reserved        = bch2_fs_usage_read_one(c, &c->usage_base->reserved) +
339                 bch2_fs_usage_read_one(c, &c->usage_base->online_reserved);
340
341         ret.used        = min(ret.capacity, data + reserve_factor(reserved));
342         ret.free        = ret.capacity - ret.used;
343
344         ret.nr_inodes   = bch2_fs_usage_read_one(c, &c->usage_base->nr_inodes);
345
346         return ret;
347 }
348
349 struct bch_fs_usage_short
350 bch2_fs_usage_read_short(struct bch_fs *c)
351 {
352         struct bch_fs_usage_short ret;
353
354         percpu_down_read(&c->mark_lock);
355         ret = __bch2_fs_usage_read_short(c);
356         percpu_up_read(&c->mark_lock);
357
358         return ret;
359 }
360
361 static inline int is_unavailable_bucket(struct bucket_mark m)
362 {
363         return !is_available_bucket(m);
364 }
365
366 static inline int is_fragmented_bucket(struct bucket_mark m,
367                                        struct bch_dev *ca)
368 {
369         if (!m.owned_by_allocator &&
370             m.data_type == BCH_DATA_USER &&
371             bucket_sectors_used(m))
372                 return max_t(int, 0, (int) ca->mi.bucket_size -
373                              bucket_sectors_used(m));
374         return 0;
375 }
376
377 static inline enum bch_data_type bucket_type(struct bucket_mark m)
378 {
379         return m.cached_sectors && !m.dirty_sectors
380                 ? BCH_DATA_CACHED
381                 : m.data_type;
382 }
383
384 static bool bucket_became_unavailable(struct bucket_mark old,
385                                       struct bucket_mark new)
386 {
387         return is_available_bucket(old) &&
388                !is_available_bucket(new);
389 }
390
391 int bch2_fs_usage_apply(struct bch_fs *c,
392                         struct bch_fs_usage *fs_usage,
393                         struct disk_reservation *disk_res,
394                         unsigned journal_seq)
395 {
396         s64 added = fs_usage->data + fs_usage->reserved;
397         s64 should_not_have_added;
398         int ret = 0;
399
400         percpu_rwsem_assert_held(&c->mark_lock);
401
402         /*
403          * Not allowed to reduce sectors_available except by getting a
404          * reservation:
405          */
406         should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0);
407         if (WARN_ONCE(should_not_have_added > 0,
408                       "disk usage increased by %lli without a reservation",
409                       should_not_have_added)) {
410                 atomic64_sub(should_not_have_added, &c->sectors_available);
411                 added -= should_not_have_added;
412                 ret = -1;
413         }
414
415         if (added > 0) {
416                 disk_res->sectors               -= added;
417                 fs_usage->online_reserved       -= added;
418         }
419
420         preempt_disable();
421         acc_u64s((u64 *) fs_usage_ptr(c, journal_seq, false),
422                  (u64 *) fs_usage, fs_usage_u64s(c));
423         preempt_enable();
424
425         return ret;
426 }
427
428 static inline void account_bucket(struct bch_fs_usage *fs_usage,
429                                   struct bch_dev_usage *dev_usage,
430                                   enum bch_data_type type,
431                                   int nr, s64 size)
432 {
433         if (type == BCH_DATA_SB || type == BCH_DATA_JOURNAL)
434                 fs_usage->hidden        += size;
435
436         dev_usage->buckets[type]        += nr;
437 }
438
439 static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca,
440                                   struct bch_fs_usage *fs_usage,
441                                   struct bucket_mark old, struct bucket_mark new,
442                                   bool gc)
443 {
444         struct bch_dev_usage *dev_usage;
445
446         percpu_rwsem_assert_held(&c->mark_lock);
447
448         preempt_disable();
449         dev_usage = this_cpu_ptr(ca->usage[gc]);
450
451         if (bucket_type(old))
452                 account_bucket(fs_usage, dev_usage, bucket_type(old),
453                                -1, -ca->mi.bucket_size);
454
455         if (bucket_type(new))
456                 account_bucket(fs_usage, dev_usage, bucket_type(new),
457                                1, ca->mi.bucket_size);
458
459         dev_usage->buckets_alloc +=
460                 (int) new.owned_by_allocator - (int) old.owned_by_allocator;
461         dev_usage->buckets_ec +=
462                 (int) new.stripe - (int) old.stripe;
463         dev_usage->buckets_unavailable +=
464                 is_unavailable_bucket(new) - is_unavailable_bucket(old);
465
466         dev_usage->sectors[old.data_type] -= old.dirty_sectors;
467         dev_usage->sectors[new.data_type] += new.dirty_sectors;
468         dev_usage->sectors[BCH_DATA_CACHED] +=
469                 (int) new.cached_sectors - (int) old.cached_sectors;
470         dev_usage->sectors_fragmented +=
471                 is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca);
472         preempt_enable();
473
474         if (!is_available_bucket(old) && is_available_bucket(new))
475                 bch2_wake_allocator(ca);
476 }
477
478 void bch2_dev_usage_from_buckets(struct bch_fs *c)
479 {
480         struct bch_dev *ca;
481         struct bucket_mark old = { .v.counter = 0 };
482         struct bucket_array *buckets;
483         struct bucket *g;
484         unsigned i;
485         int cpu;
486
487         c->usage_base->hidden = 0;
488
489         for_each_member_device(ca, c, i) {
490                 for_each_possible_cpu(cpu)
491                         memset(per_cpu_ptr(ca->usage[0], cpu), 0,
492                                sizeof(*ca->usage[0]));
493
494                 buckets = bucket_array(ca);
495
496                 for_each_bucket(g, buckets)
497                         bch2_dev_usage_update(c, ca, c->usage_base,
498                                               old, g->mark, false);
499         }
500 }
501
502 static inline void update_replicas(struct bch_fs *c,
503                                    struct bch_fs_usage *fs_usage,
504                                    struct bch_replicas_entry *r,
505                                    s64 sectors)
506 {
507         int idx = bch2_replicas_entry_idx(c, r);
508
509         BUG_ON(idx < 0);
510
511         switch (r->data_type) {
512         case BCH_DATA_BTREE:
513                 fs_usage->btree         += sectors;
514                 break;
515         case BCH_DATA_USER:
516                 fs_usage->data          += sectors;
517                 break;
518         case BCH_DATA_CACHED:
519                 fs_usage->cached        += sectors;
520                 break;
521         }
522         fs_usage->replicas[idx]         += sectors;
523 }
524
525 static inline void update_cached_sectors(struct bch_fs *c,
526                                          struct bch_fs_usage *fs_usage,
527                                          unsigned dev, s64 sectors)
528 {
529         struct bch_replicas_padded r;
530
531         bch2_replicas_entry_cached(&r.e, dev);
532
533         update_replicas(c, fs_usage, &r.e, sectors);
534 }
535
536 static struct replicas_delta_list *
537 replicas_deltas_realloc(struct btree_trans *trans, unsigned more)
538 {
539         struct replicas_delta_list *d = trans->fs_usage_deltas;
540         unsigned new_size = d ? (d->size + more) * 2 : 128;
541
542         if (!d || d->used + more > d->size) {
543                 d = krealloc(d, sizeof(*d) + new_size, GFP_NOIO|__GFP_ZERO);
544                 BUG_ON(!d);
545
546                 d->size = new_size;
547                 trans->fs_usage_deltas = d;
548         }
549         return d;
550 }
551
552 static inline void update_replicas_list(struct btree_trans *trans,
553                                         struct bch_replicas_entry *r,
554                                         s64 sectors)
555 {
556         struct replicas_delta_list *d;
557         struct replicas_delta *n;
558         unsigned b;
559
560         if (!sectors)
561                 return;
562
563         b = replicas_entry_bytes(r) + 8;
564         d = replicas_deltas_realloc(trans, b);
565
566         n = (void *) d->d + d->used;
567         n->delta = sectors;
568         memcpy(&n->r, r, replicas_entry_bytes(r));
569         d->used += b;
570 }
571
572 static inline void update_cached_sectors_list(struct btree_trans *trans,
573                                               unsigned dev, s64 sectors)
574 {
575         struct bch_replicas_padded r;
576
577         bch2_replicas_entry_cached(&r.e, dev);
578
579         update_replicas_list(trans, &r.e, sectors);
580 }
581
582 void bch2_replicas_delta_list_apply(struct bch_fs *c,
583                                     struct bch_fs_usage *fs_usage,
584                                     struct replicas_delta_list *r)
585 {
586         struct replicas_delta *d = r->d;
587         struct replicas_delta *top = (void *) r->d + r->used;
588
589         acc_u64s((u64 *) fs_usage,
590                  (u64 *) &r->fs_usage, sizeof(*fs_usage) / sizeof(u64));
591
592         while (d != top) {
593                 BUG_ON((void *) d > (void *) top);
594
595                 update_replicas(c, fs_usage, &d->r, d->delta);
596
597                 d = (void *) d + replicas_entry_bytes(&d->r) + 8;
598         }
599 }
600
601 #define do_mark_fn(fn, c, pos, flags, ...)                              \
602 ({                                                                      \
603         int gc, ret = 0;                                                \
604                                                                         \
605         percpu_rwsem_assert_held(&c->mark_lock);                        \
606                                                                         \
607         for (gc = 0; gc < 2 && !ret; gc++)                              \
608                 if (!gc == !(flags & BCH_BUCKET_MARK_GC) ||             \
609                     (gc && gc_visited(c, pos)))                         \
610                         ret = fn(c, __VA_ARGS__, gc);                   \
611         ret;                                                            \
612 })
613
614 static int __bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
615                                     size_t b, struct bucket_mark *ret,
616                                     bool gc)
617 {
618         struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc);
619         struct bucket *g = __bucket(ca, b, gc);
620         struct bucket_mark old, new;
621
622         old = bucket_cmpxchg(g, new, ({
623                 BUG_ON(!is_available_bucket(new));
624
625                 new.owned_by_allocator  = true;
626                 new.data_type           = 0;
627                 new.cached_sectors      = 0;
628                 new.dirty_sectors       = 0;
629                 new.gen++;
630         }));
631
632         bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
633
634         if (old.cached_sectors)
635                 update_cached_sectors(c, fs_usage, ca->dev_idx,
636                                       -((s64) old.cached_sectors));
637
638         if (!gc)
639                 *ret = old;
640         return 0;
641 }
642
643 void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
644                             size_t b, struct bucket_mark *old)
645 {
646         do_mark_fn(__bch2_invalidate_bucket, c, gc_phase(GC_PHASE_START), 0,
647                    ca, b, old);
648
649         if (!old->owned_by_allocator && old->cached_sectors)
650                 trace_invalidate(ca, bucket_to_sector(ca, b),
651                                  old->cached_sectors);
652 }
653
654 static int __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
655                                     size_t b, bool owned_by_allocator,
656                                     bool gc)
657 {
658         struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc);
659         struct bucket *g = __bucket(ca, b, gc);
660         struct bucket_mark old, new;
661
662         old = bucket_cmpxchg(g, new, ({
663                 new.owned_by_allocator  = owned_by_allocator;
664         }));
665
666         bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
667
668         BUG_ON(!gc &&
669                !owned_by_allocator && !old.owned_by_allocator);
670
671         return 0;
672 }
673
674 void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
675                             size_t b, bool owned_by_allocator,
676                             struct gc_pos pos, unsigned flags)
677 {
678         preempt_disable();
679
680         do_mark_fn(__bch2_mark_alloc_bucket, c, pos, flags,
681                    ca, b, owned_by_allocator);
682
683         preempt_enable();
684 }
685
686 static int bch2_mark_alloc(struct bch_fs *c, struct bkey_s_c k,
687                            struct bch_fs_usage *fs_usage,
688                            u64 journal_seq, unsigned flags)
689 {
690         bool gc = flags & BCH_BUCKET_MARK_GC;
691         struct bkey_alloc_unpacked u;
692         struct bch_dev *ca;
693         struct bucket *g;
694         struct bucket_mark old, m;
695
696         /*
697          * alloc btree is read in by bch2_alloc_read, not gc:
698          */
699         if ((flags & BCH_BUCKET_MARK_GC) &&
700             !(flags & BCH_BUCKET_MARK_BUCKET_INVALIDATE))
701                 return 0;
702
703         ca = bch_dev_bkey_exists(c, k.k->p.inode);
704
705         if (k.k->p.offset >= ca->mi.nbuckets)
706                 return 0;
707
708         g = __bucket(ca, k.k->p.offset, gc);
709         u = bch2_alloc_unpack(k);
710
711         old = bucket_cmpxchg(g, m, ({
712                 m.gen                   = u.gen;
713                 m.data_type             = u.data_type;
714                 m.dirty_sectors         = u.dirty_sectors;
715                 m.cached_sectors        = u.cached_sectors;
716
717                 if (journal_seq) {
718                         m.journal_seq_valid     = 1;
719                         m.journal_seq           = journal_seq;
720                 }
721         }));
722
723         if (!(flags & BCH_BUCKET_MARK_ALLOC_READ))
724                 bch2_dev_usage_update(c, ca, fs_usage, old, m, gc);
725
726         g->io_time[READ]        = u.read_time;
727         g->io_time[WRITE]       = u.write_time;
728         g->oldest_gen           = u.oldest_gen;
729         g->gen_valid            = 1;
730
731         /*
732          * need to know if we're getting called from the invalidate path or
733          * not:
734          */
735
736         if ((flags & BCH_BUCKET_MARK_BUCKET_INVALIDATE) &&
737             old.cached_sectors) {
738                 update_cached_sectors(c, fs_usage, ca->dev_idx,
739                                       -old.cached_sectors);
740                 trace_invalidate(ca, bucket_to_sector(ca, k.k->p.offset),
741                                  old.cached_sectors);
742         }
743
744         return 0;
745 }
746
747 #define checked_add(a, b)                                       \
748 ({                                                              \
749         unsigned _res = (unsigned) (a) + (b);                   \
750         bool overflow = _res > U16_MAX;                         \
751         if (overflow)                                           \
752                 _res = U16_MAX;                                 \
753         (a) = _res;                                             \
754         overflow;                                               \
755 })
756
757 static int __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
758                                        size_t b, enum bch_data_type type,
759                                        unsigned sectors, bool gc)
760 {
761         struct bucket *g = __bucket(ca, b, gc);
762         struct bucket_mark old, new;
763         bool overflow;
764
765         BUG_ON(type != BCH_DATA_SB &&
766                type != BCH_DATA_JOURNAL);
767
768         old = bucket_cmpxchg(g, new, ({
769                 new.data_type   = type;
770                 overflow = checked_add(new.dirty_sectors, sectors);
771         }));
772
773         bch2_fs_inconsistent_on(old.data_type &&
774                                 old.data_type != type, c,
775                 "different types of data in same bucket: %s, %s",
776                 bch2_data_types[old.data_type],
777                 bch2_data_types[type]);
778
779         bch2_fs_inconsistent_on(overflow, c,
780                 "bucket sector count overflow: %u + %u > U16_MAX",
781                 old.dirty_sectors, sectors);
782
783         if (c)
784                 bch2_dev_usage_update(c, ca, fs_usage_ptr(c, 0, gc),
785                                       old, new, gc);
786
787         return 0;
788 }
789
790 void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
791                                size_t b, enum bch_data_type type,
792                                unsigned sectors, struct gc_pos pos,
793                                unsigned flags)
794 {
795         BUG_ON(type != BCH_DATA_SB &&
796                type != BCH_DATA_JOURNAL);
797
798         preempt_disable();
799
800         if (likely(c)) {
801                 do_mark_fn(__bch2_mark_metadata_bucket, c, pos, flags,
802                            ca, b, type, sectors);
803         } else {
804                 __bch2_mark_metadata_bucket(c, ca, b, type, sectors, 0);
805         }
806
807         preempt_enable();
808 }
809
810 static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p,
811                                   unsigned offset, s64 delta,
812                                   unsigned flags)
813 {
814         if (flags & BCH_BUCKET_MARK_OVERWRITE_SPLIT) {
815                 BUG_ON(offset + -delta > p.crc.live_size);
816
817                 return -((s64) ptr_disk_sectors(p)) +
818                         __ptr_disk_sectors(p, offset) +
819                         __ptr_disk_sectors(p, p.crc.live_size -
820                                            offset + delta);
821         } else if (flags & BCH_BUCKET_MARK_OVERWRITE) {
822                 BUG_ON(offset + -delta > p.crc.live_size);
823
824                 return -((s64) ptr_disk_sectors(p)) +
825                         __ptr_disk_sectors(p, p.crc.live_size +
826                                            delta);
827         } else {
828                 return ptr_disk_sectors(p);
829         }
830 }
831
832 static void bucket_set_stripe(struct bch_fs *c,
833                               const struct bch_stripe *v,
834                               struct bch_fs_usage *fs_usage,
835                               u64 journal_seq,
836                               unsigned flags)
837 {
838         bool enabled = !(flags & BCH_BUCKET_MARK_OVERWRITE);
839         bool gc = flags & BCH_BUCKET_MARK_GC;
840         unsigned i;
841
842         for (i = 0; i < v->nr_blocks; i++) {
843                 const struct bch_extent_ptr *ptr = v->ptrs + i;
844                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
845                 struct bucket *g = PTR_BUCKET(ca, ptr, gc);
846                 struct bucket_mark new, old;
847
848                 old = bucket_cmpxchg(g, new, ({
849                         new.stripe                      = enabled;
850                         if (journal_seq) {
851                                 new.journal_seq_valid   = 1;
852                                 new.journal_seq         = journal_seq;
853                         }
854                 }));
855
856                 bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
857
858                 /*
859                  * XXX write repair code for these, flag stripe as possibly bad
860                  */
861                 if (old.gen != ptr->gen)
862                         bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
863                                       "stripe with stale pointer");
864 #if 0
865                 /*
866                  * We'd like to check for these, but these checks don't work
867                  * yet:
868                  */
869                 if (old.stripe && enabled)
870                         bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
871                                       "multiple stripes using same bucket");
872
873                 if (!old.stripe && !enabled)
874                         bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
875                                       "deleting stripe but bucket not marked as stripe bucket");
876 #endif
877         }
878 }
879
880 static bool bch2_mark_pointer(struct bch_fs *c,
881                               struct extent_ptr_decoded p,
882                               s64 sectors, enum bch_data_type data_type,
883                               struct bch_fs_usage *fs_usage,
884                               u64 journal_seq, unsigned flags)
885 {
886         bool gc = flags & BCH_BUCKET_MARK_GC;
887         struct bucket_mark old, new;
888         struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
889         struct bucket *g = PTR_BUCKET(ca, &p.ptr, gc);
890         bool overflow;
891         u64 v;
892
893         v = atomic64_read(&g->_mark.v);
894         do {
895                 new.v.counter = old.v.counter = v;
896
897                 /*
898                  * Check this after reading bucket mark to guard against
899                  * the allocator invalidating a bucket after we've already
900                  * checked the gen
901                  */
902                 if (gen_after(p.ptr.gen, new.gen)) {
903                         bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
904                                       "pointer gen in the future");
905                         return true;
906                 }
907
908                 if (new.gen != p.ptr.gen) {
909                         /* XXX write repair code for this */
910                         if (!p.ptr.cached &&
911                             test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
912                                 bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
913                                               "stale dirty pointer");
914                         return true;
915                 }
916
917                 if (!p.ptr.cached)
918                         overflow = checked_add(new.dirty_sectors, sectors);
919                 else
920                         overflow = checked_add(new.cached_sectors, sectors);
921
922                 if (!new.dirty_sectors &&
923                     !new.cached_sectors) {
924                         new.data_type   = 0;
925
926                         if (journal_seq) {
927                                 new.journal_seq_valid = 1;
928                                 new.journal_seq = journal_seq;
929                         }
930                 } else {
931                         new.data_type = data_type;
932                 }
933
934                 if (flags & BCH_BUCKET_MARK_NOATOMIC) {
935                         g->_mark = new;
936                         break;
937                 }
938         } while ((v = atomic64_cmpxchg(&g->_mark.v,
939                               old.v.counter,
940                               new.v.counter)) != old.v.counter);
941
942         if (old.data_type && old.data_type != data_type)
943                 bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
944                         "bucket %u:%zu gen %u different types of data in same bucket: %s, %s",
945                         p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
946                         new.gen,
947                         bch2_data_types[old.data_type],
948                         bch2_data_types[data_type]);
949
950         bch2_fs_inconsistent_on(overflow, c,
951                 "bucket sector count overflow: %u + %lli > U16_MAX",
952                 !p.ptr.cached
953                 ? old.dirty_sectors
954                 : old.cached_sectors, sectors);
955
956         bch2_dev_usage_update(c, ca, fs_usage, old, new, gc);
957
958         BUG_ON(!gc && bucket_became_unavailable(old, new));
959
960         return false;
961 }
962
963 static int bch2_mark_stripe_ptr(struct bch_fs *c,
964                                 struct bch_extent_stripe_ptr p,
965                                 enum bch_data_type data_type,
966                                 struct bch_fs_usage *fs_usage,
967                                 s64 sectors, unsigned flags)
968 {
969         bool gc = flags & BCH_BUCKET_MARK_GC;
970         struct stripe *m;
971         unsigned old, new, nr_data;
972         int blocks_nonempty_delta;
973         s64 parity_sectors;
974
975         BUG_ON(!sectors);
976
977         m = genradix_ptr(&c->stripes[gc], p.idx);
978
979         spin_lock(&c->ec_stripes_heap_lock);
980
981         if (!m || !m->alive) {
982                 spin_unlock(&c->ec_stripes_heap_lock);
983                 bch_err_ratelimited(c, "pointer to nonexistent stripe %llu",
984                                     (u64) p.idx);
985                 return -EIO;
986         }
987
988         BUG_ON(m->r.e.data_type != data_type);
989
990         nr_data = m->nr_blocks - m->nr_redundant;
991
992         parity_sectors = DIV_ROUND_UP(abs(sectors) * m->nr_redundant, nr_data);
993
994         if (sectors < 0)
995                 parity_sectors = -parity_sectors;
996         sectors += parity_sectors;
997
998         old = m->block_sectors[p.block];
999         m->block_sectors[p.block] += sectors;
1000         new = m->block_sectors[p.block];
1001
1002         blocks_nonempty_delta = (int) !!new - (int) !!old;
1003         if (blocks_nonempty_delta) {
1004                 m->blocks_nonempty += blocks_nonempty_delta;
1005
1006                 if (!gc)
1007                         bch2_stripes_heap_update(c, m, p.idx);
1008         }
1009
1010         m->dirty = true;
1011
1012         spin_unlock(&c->ec_stripes_heap_lock);
1013
1014         update_replicas(c, fs_usage, &m->r.e, sectors);
1015
1016         return 0;
1017 }
1018
1019 static int bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k,
1020                             unsigned offset, s64 sectors,
1021                             enum bch_data_type data_type,
1022                             struct bch_fs_usage *fs_usage,
1023                             unsigned journal_seq, unsigned flags)
1024 {
1025         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1026         const union bch_extent_entry *entry;
1027         struct extent_ptr_decoded p;
1028         struct bch_replicas_padded r;
1029         s64 dirty_sectors = 0;
1030         unsigned i;
1031         int ret;
1032
1033         r.e.data_type   = data_type;
1034         r.e.nr_devs     = 0;
1035         r.e.nr_required = 1;
1036
1037         BUG_ON(!sectors);
1038
1039         bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1040                 s64 disk_sectors = data_type == BCH_DATA_BTREE
1041                         ? sectors
1042                         : ptr_disk_sectors_delta(p, offset, sectors, flags);
1043                 bool stale = bch2_mark_pointer(c, p, disk_sectors, data_type,
1044                                         fs_usage, journal_seq, flags);
1045
1046                 if (p.ptr.cached) {
1047                         if (!stale)
1048                                 update_cached_sectors(c, fs_usage, p.ptr.dev,
1049                                                       disk_sectors);
1050                 } else if (!p.ec_nr) {
1051                         dirty_sectors          += disk_sectors;
1052                         r.e.devs[r.e.nr_devs++] = p.ptr.dev;
1053                 } else {
1054                         for (i = 0; i < p.ec_nr; i++) {
1055                                 ret = bch2_mark_stripe_ptr(c, p.ec[i],
1056                                                 data_type, fs_usage,
1057                                                 disk_sectors, flags);
1058                                 if (ret)
1059                                         return ret;
1060                         }
1061
1062                         r.e.nr_required = 0;
1063                 }
1064         }
1065
1066         update_replicas(c, fs_usage, &r.e, dirty_sectors);
1067
1068         return 0;
1069 }
1070
1071 static int bch2_mark_stripe(struct bch_fs *c, struct bkey_s_c k,
1072                             struct bch_fs_usage *fs_usage,
1073                             u64 journal_seq, unsigned flags)
1074 {
1075         bool gc = flags & BCH_BUCKET_MARK_GC;
1076         struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
1077         size_t idx = s.k->p.offset;
1078         struct stripe *m = genradix_ptr(&c->stripes[gc], idx);
1079         unsigned i;
1080
1081         spin_lock(&c->ec_stripes_heap_lock);
1082
1083         if (!m || ((flags & BCH_BUCKET_MARK_OVERWRITE) && !m->alive)) {
1084                 spin_unlock(&c->ec_stripes_heap_lock);
1085                 bch_err_ratelimited(c, "error marking nonexistent stripe %zu",
1086                                     idx);
1087                 return -1;
1088         }
1089
1090         if (!(flags & BCH_BUCKET_MARK_OVERWRITE)) {
1091                 m->sectors      = le16_to_cpu(s.v->sectors);
1092                 m->algorithm    = s.v->algorithm;
1093                 m->nr_blocks    = s.v->nr_blocks;
1094                 m->nr_redundant = s.v->nr_redundant;
1095
1096                 bch2_bkey_to_replicas(&m->r.e, k);
1097
1098                 /*
1099                  * XXX: account for stripes somehow here
1100                  */
1101 #if 0
1102                 update_replicas(c, fs_usage, &m->r.e, stripe_sectors);
1103 #endif
1104
1105                 /* gc recalculates these fields: */
1106                 if (!(flags & BCH_BUCKET_MARK_GC)) {
1107                         for (i = 0; i < s.v->nr_blocks; i++) {
1108                                 m->block_sectors[i] =
1109                                         stripe_blockcount_get(s.v, i);
1110                                 m->blocks_nonempty += !!m->block_sectors[i];
1111                         }
1112                 }
1113
1114                 if (!gc)
1115                         bch2_stripes_heap_update(c, m, idx);
1116                 m->alive        = true;
1117         } else {
1118                 if (!gc)
1119                         bch2_stripes_heap_del(c, m, idx);
1120                 memset(m, 0, sizeof(*m));
1121         }
1122
1123         spin_unlock(&c->ec_stripes_heap_lock);
1124
1125         bucket_set_stripe(c, s.v, fs_usage, 0, flags);
1126         return 0;
1127 }
1128
1129 int bch2_mark_key_locked(struct bch_fs *c,
1130                    struct bkey_s_c k,
1131                    unsigned offset, s64 sectors,
1132                    struct bch_fs_usage *fs_usage,
1133                    u64 journal_seq, unsigned flags)
1134 {
1135         int ret = 0;
1136
1137         preempt_disable();
1138
1139         if (!fs_usage || (flags & BCH_BUCKET_MARK_GC))
1140                 fs_usage = fs_usage_ptr(c, journal_seq,
1141                                         flags & BCH_BUCKET_MARK_GC);
1142
1143         switch (k.k->type) {
1144         case KEY_TYPE_alloc:
1145                 ret = bch2_mark_alloc(c, k, fs_usage, journal_seq, flags);
1146                 break;
1147         case KEY_TYPE_btree_ptr:
1148                 sectors = !(flags & BCH_BUCKET_MARK_OVERWRITE)
1149                         ?  c->opts.btree_node_size
1150                         : -c->opts.btree_node_size;
1151
1152                 ret = bch2_mark_extent(c, k, offset, sectors, BCH_DATA_BTREE,
1153                                 fs_usage, journal_seq, flags);
1154                 break;
1155         case KEY_TYPE_extent:
1156         case KEY_TYPE_reflink_v:
1157                 ret = bch2_mark_extent(c, k, offset, sectors, BCH_DATA_USER,
1158                                 fs_usage, journal_seq, flags);
1159                 break;
1160         case KEY_TYPE_stripe:
1161                 ret = bch2_mark_stripe(c, k, fs_usage, journal_seq, flags);
1162                 break;
1163         case KEY_TYPE_inode:
1164                 if (!(flags & BCH_BUCKET_MARK_OVERWRITE))
1165                         fs_usage->nr_inodes++;
1166                 else
1167                         fs_usage->nr_inodes--;
1168                 break;
1169         case KEY_TYPE_reservation: {
1170                 unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
1171
1172                 sectors *= replicas;
1173                 replicas = clamp_t(unsigned, replicas, 1,
1174                                    ARRAY_SIZE(fs_usage->persistent_reserved));
1175
1176                 fs_usage->reserved                              += sectors;
1177                 fs_usage->persistent_reserved[replicas - 1]     += sectors;
1178                 break;
1179         }
1180         }
1181
1182         preempt_enable();
1183
1184         return ret;
1185 }
1186
1187 int bch2_mark_key(struct bch_fs *c, struct bkey_s_c k,
1188                   unsigned offset, s64 sectors,
1189                   struct bch_fs_usage *fs_usage,
1190                   u64 journal_seq, unsigned flags)
1191 {
1192         int ret;
1193
1194         percpu_down_read(&c->mark_lock);
1195         ret = bch2_mark_key_locked(c, k, offset, sectors,
1196                                    fs_usage, journal_seq, flags);
1197         percpu_up_read(&c->mark_lock);
1198
1199         return ret;
1200 }
1201
1202 inline int bch2_mark_overwrite(struct btree_trans *trans,
1203                                struct btree_iter *iter,
1204                                struct bkey_s_c old,
1205                                struct bkey_i *new,
1206                                struct bch_fs_usage *fs_usage,
1207                                unsigned flags)
1208 {
1209         struct bch_fs           *c = trans->c;
1210         struct btree            *b = iter->l[0].b;
1211         unsigned                offset = 0;
1212         s64                     sectors = 0;
1213
1214         flags |= BCH_BUCKET_MARK_OVERWRITE;
1215
1216         if (btree_node_is_extents(b)
1217             ? bkey_cmp(new->k.p, bkey_start_pos(old.k)) <= 0
1218             : bkey_cmp(new->k.p, old.k->p))
1219                 return 0;
1220
1221         if (btree_node_is_extents(b)) {
1222                 switch (bch2_extent_overlap(&new->k, old.k)) {
1223                 case BCH_EXTENT_OVERLAP_ALL:
1224                         offset = 0;
1225                         sectors = -((s64) old.k->size);
1226                         break;
1227                 case BCH_EXTENT_OVERLAP_BACK:
1228                         offset = bkey_start_offset(&new->k) -
1229                                 bkey_start_offset(old.k);
1230                         sectors = bkey_start_offset(&new->k) -
1231                                 old.k->p.offset;
1232                         break;
1233                 case BCH_EXTENT_OVERLAP_FRONT:
1234                         offset = 0;
1235                         sectors = bkey_start_offset(old.k) -
1236                                 new->k.p.offset;
1237                         break;
1238                 case BCH_EXTENT_OVERLAP_MIDDLE:
1239                         offset = bkey_start_offset(&new->k) -
1240                                 bkey_start_offset(old.k);
1241                         sectors = -((s64) new->k.size);
1242                         flags |= BCH_BUCKET_MARK_OVERWRITE_SPLIT;
1243                         break;
1244                 }
1245
1246                 BUG_ON(sectors >= 0);
1247         }
1248
1249         return bch2_mark_key_locked(c, old, offset, sectors, fs_usage,
1250                                     trans->journal_res.seq, flags) ?: 1;
1251 }
1252
1253 int bch2_mark_update(struct btree_trans *trans,
1254                      struct btree_insert_entry *insert,
1255                      struct bch_fs_usage *fs_usage,
1256                      unsigned flags)
1257 {
1258         struct bch_fs           *c = trans->c;
1259         struct btree_iter       *iter = insert->iter;
1260         struct btree            *b = iter->l[0].b;
1261         struct btree_node_iter  node_iter = iter->l[0].iter;
1262         struct bkey_packed      *_k;
1263         int ret = 0;
1264
1265         if (!btree_node_type_needs_gc(iter->btree_id))
1266                 return 0;
1267
1268         bch2_mark_key_locked(c, bkey_i_to_s_c(insert->k),
1269                 0, insert->k->k.size,
1270                 fs_usage, trans->journal_res.seq,
1271                 BCH_BUCKET_MARK_INSERT|flags);
1272
1273         if (unlikely(trans->flags & BTREE_INSERT_NOMARK_OVERWRITES))
1274                 return 0;
1275
1276         /*
1277          * For non extents, we only mark the new key, not the key being
1278          * overwritten - unless we're actually deleting:
1279          */
1280         if ((iter->btree_id == BTREE_ID_ALLOC ||
1281              iter->btree_id == BTREE_ID_EC) &&
1282             !bkey_deleted(&insert->k->k))
1283                 return 0;
1284
1285         while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
1286                                                       KEY_TYPE_discard))) {
1287                 struct bkey             unpacked;
1288                 struct bkey_s_c         k = bkey_disassemble(b, _k, &unpacked);
1289
1290                 ret = bch2_mark_overwrite(trans, iter, k, insert->k,
1291                                           fs_usage, flags);
1292                 if (ret <= 0)
1293                         break;
1294
1295                 bch2_btree_node_iter_advance(&node_iter, b);
1296         }
1297
1298         return ret;
1299 }
1300
1301 void bch2_trans_fs_usage_apply(struct btree_trans *trans,
1302                                struct bch_fs_usage *fs_usage)
1303 {
1304         struct bch_fs *c = trans->c;
1305         struct btree_insert_entry *i;
1306         static int warned_disk_usage = 0;
1307         u64 disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0;
1308         char buf[200];
1309
1310         if (!bch2_fs_usage_apply(c, fs_usage, trans->disk_res,
1311                                  trans->journal_res.seq) ||
1312             warned_disk_usage ||
1313             xchg(&warned_disk_usage, 1))
1314                 return;
1315
1316         bch_err(c, "disk usage increased more than %llu sectors reserved",
1317                 disk_res_sectors);
1318
1319         trans_for_each_update(trans, i) {
1320                 struct btree_iter       *iter = i->iter;
1321                 struct btree            *b = iter->l[0].b;
1322                 struct btree_node_iter  node_iter = iter->l[0].iter;
1323                 struct bkey_packed      *_k;
1324
1325                 pr_err("while inserting");
1326                 bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(i->k));
1327                 pr_err("%s", buf);
1328                 pr_err("overlapping with");
1329
1330                 node_iter = iter->l[0].iter;
1331                 while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
1332                                                         KEY_TYPE_discard))) {
1333                         struct bkey             unpacked;
1334                         struct bkey_s_c         k;
1335
1336                         k = bkey_disassemble(b, _k, &unpacked);
1337
1338                         if (btree_node_is_extents(b)
1339                             ? bkey_cmp(i->k->k.p, bkey_start_pos(k.k)) <= 0
1340                             : bkey_cmp(i->k->k.p, k.k->p))
1341                                 break;
1342
1343                         bch2_bkey_val_to_text(&PBUF(buf), c, k);
1344                         pr_err("%s", buf);
1345
1346                         bch2_btree_node_iter_advance(&node_iter, b);
1347                 }
1348         }
1349 }
1350
1351 /* trans_mark: */
1352
1353 static int trans_get_key(struct btree_trans *trans,
1354                          enum btree_id btree_id, struct bpos pos,
1355                          struct btree_iter **iter,
1356                          struct bkey_s_c *k)
1357 {
1358         struct btree_insert_entry *i;
1359         int ret;
1360
1361         trans_for_each_update(trans, i)
1362                 if (i->iter->btree_id == btree_id &&
1363                     (btree_node_type_is_extents(btree_id)
1364                      ? bkey_cmp(pos, bkey_start_pos(&i->k->k)) >= 0 &&
1365                        bkey_cmp(pos, i->k->k.p) < 0
1366                      : !bkey_cmp(pos, i->iter->pos))) {
1367                         *iter   = i->iter;
1368                         *k      = bkey_i_to_s_c(i->k);
1369                         return 1;
1370                 }
1371
1372         *iter = bch2_trans_get_iter(trans, btree_id, pos,
1373                                     BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
1374         if (IS_ERR(*iter))
1375                 return PTR_ERR(*iter);
1376
1377         *k = bch2_btree_iter_peek_slot(*iter);
1378         ret = bkey_err(*k);
1379         if (ret)
1380                 bch2_trans_iter_put(trans, *iter);
1381         return ret;
1382 }
1383
1384 static void *trans_update_key(struct btree_trans *trans,
1385                               struct btree_iter *iter,
1386                               unsigned u64s)
1387 {
1388         struct btree_insert_entry *i;
1389         struct bkey_i *new_k;
1390
1391         new_k = bch2_trans_kmalloc(trans, u64s * sizeof(u64));
1392         if (IS_ERR(new_k))
1393                 return new_k;
1394
1395         bkey_init(&new_k->k);
1396         new_k->k.p = iter->pos;
1397
1398         trans_for_each_update(trans, i)
1399                 if (i->iter == iter) {
1400                         i->k = new_k;
1401                         return new_k;
1402                 }
1403
1404         bch2_trans_update(trans, iter, new_k);
1405         return new_k;
1406 }
1407
1408 static int bch2_trans_mark_pointer(struct btree_trans *trans,
1409                         struct extent_ptr_decoded p,
1410                         s64 sectors, enum bch_data_type data_type)
1411 {
1412         struct bch_fs *c = trans->c;
1413         struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
1414         struct btree_iter *iter;
1415         struct bkey_s_c k;
1416         struct bkey_alloc_unpacked u;
1417         struct bkey_i_alloc *a;
1418         unsigned old;
1419         bool overflow;
1420         int ret;
1421
1422         ret = trans_get_key(trans, BTREE_ID_ALLOC,
1423                             POS(p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr)),
1424                             &iter, &k);
1425         if (ret < 0)
1426                 return ret;
1427
1428         if (!ret) {
1429                 /*
1430                  * During journal replay, and if gc repairs alloc info at
1431                  * runtime, the alloc info in the btree might not be up to date
1432                  * yet - so, trust the in memory mark:
1433                  */
1434                 struct bucket *g;
1435                 struct bucket_mark m;
1436
1437                 percpu_down_read(&c->mark_lock);
1438                 g       = bucket(ca, iter->pos.offset);
1439                 m       = READ_ONCE(g->mark);
1440                 u       = alloc_mem_to_key(g, m);
1441                 percpu_up_read(&c->mark_lock);
1442         } else {
1443                 /*
1444                  * Unless we're already updating that key:
1445                  */
1446                 if (k.k->type != KEY_TYPE_alloc) {
1447                         bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
1448                                       "pointer to nonexistent bucket %llu:%llu",
1449                                       iter->pos.inode, iter->pos.offset);
1450                         ret = -1;
1451                         goto out;
1452                 }
1453
1454                 u = bch2_alloc_unpack(k);
1455         }
1456
1457         if (gen_after(u.gen, p.ptr.gen)) {
1458                 ret = 1;
1459                 goto out;
1460         }
1461
1462         if (u.data_type && u.data_type != data_type) {
1463                 bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK,
1464                         "bucket %llu:%llu gen %u different types of data in same bucket: %s, %s",
1465                         iter->pos.inode, iter->pos.offset,
1466                         u.gen,
1467                         bch2_data_types[u.data_type],
1468                         bch2_data_types[data_type]);
1469                 ret = -1;
1470                 goto out;
1471         }
1472
1473         if (!p.ptr.cached) {
1474                 old = u.dirty_sectors;
1475                 overflow = checked_add(u.dirty_sectors, sectors);
1476         } else {
1477                 old = u.cached_sectors;
1478                 overflow = checked_add(u.cached_sectors, sectors);
1479         }
1480
1481         u.data_type = u.dirty_sectors || u.cached_sectors
1482                 ? data_type : 0;
1483
1484         bch2_fs_inconsistent_on(overflow, c,
1485                 "bucket sector count overflow: %u + %lli > U16_MAX",
1486                 old, sectors);
1487         BUG_ON(overflow);
1488
1489         a = trans_update_key(trans, iter, BKEY_ALLOC_U64s_MAX);
1490         ret = PTR_ERR_OR_ZERO(a);
1491         if (ret)
1492                 goto out;
1493
1494         bkey_alloc_init(&a->k_i);
1495         a->k.p = iter->pos;
1496         bch2_alloc_pack(a, u);
1497 out:
1498         bch2_trans_iter_put(trans, iter);
1499         return ret;
1500 }
1501
1502 static int bch2_trans_mark_stripe_ptr(struct btree_trans *trans,
1503                         struct bch_extent_stripe_ptr p,
1504                         s64 sectors, enum bch_data_type data_type)
1505 {
1506         struct bch_fs *c = trans->c;
1507         struct bch_replicas_padded r;
1508         struct btree_iter *iter;
1509         struct bkey_i *new_k;
1510         struct bkey_s_c k;
1511         struct bkey_s_stripe s;
1512         unsigned nr_data;
1513         s64 parity_sectors;
1514         int ret = 0;
1515
1516         ret = trans_get_key(trans, BTREE_ID_EC, POS(0, p.idx), &iter, &k);
1517         if (ret < 0)
1518                 return ret;
1519
1520         if (k.k->type != KEY_TYPE_stripe) {
1521                 bch2_fs_inconsistent(c,
1522                         "pointer to nonexistent stripe %llu",
1523                         (u64) p.idx);
1524                 ret = -EIO;
1525                 goto out;
1526         }
1527
1528         new_k = trans_update_key(trans, iter, k.k->u64s);
1529         ret = PTR_ERR_OR_ZERO(new_k);
1530         if (ret)
1531                 goto out;
1532
1533         bkey_reassemble(new_k, k);
1534         s = bkey_i_to_s_stripe(new_k);
1535
1536         nr_data = s.v->nr_blocks - s.v->nr_redundant;
1537
1538         parity_sectors = DIV_ROUND_UP(abs(sectors) * s.v->nr_redundant, nr_data);
1539
1540         if (sectors < 0)
1541                 parity_sectors = -parity_sectors;
1542
1543         stripe_blockcount_set(s.v, p.block,
1544                 stripe_blockcount_get(s.v, p.block) +
1545                 sectors + parity_sectors);
1546
1547         bch2_bkey_to_replicas(&r.e, s.s_c);
1548
1549         update_replicas_list(trans, &r.e, sectors);
1550 out:
1551         bch2_trans_iter_put(trans, iter);
1552         return ret;
1553 }
1554
1555 static int bch2_trans_mark_extent(struct btree_trans *trans,
1556                         struct bkey_s_c k, unsigned offset,
1557                         s64 sectors, unsigned flags,
1558                         enum bch_data_type data_type)
1559 {
1560         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1561         const union bch_extent_entry *entry;
1562         struct extent_ptr_decoded p;
1563         struct bch_replicas_padded r;
1564         s64 dirty_sectors = 0;
1565         bool stale;
1566         unsigned i;
1567         int ret;
1568
1569         r.e.data_type   = data_type;
1570         r.e.nr_devs     = 0;
1571         r.e.nr_required = 1;
1572
1573         BUG_ON(!sectors);
1574
1575         bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1576                 s64 disk_sectors = data_type == BCH_DATA_BTREE
1577                         ? sectors
1578                         : ptr_disk_sectors_delta(p, offset, sectors, flags);
1579
1580                 ret = bch2_trans_mark_pointer(trans, p, disk_sectors,
1581                                               data_type);
1582                 if (ret < 0)
1583                         return ret;
1584
1585                 stale = ret > 0;
1586
1587                 if (p.ptr.cached) {
1588                         if (!stale)
1589                                 update_cached_sectors_list(trans, p.ptr.dev,
1590                                                            disk_sectors);
1591                 } else if (!p.ec_nr) {
1592                         dirty_sectors          += disk_sectors;
1593                         r.e.devs[r.e.nr_devs++] = p.ptr.dev;
1594                 } else {
1595                         for (i = 0; i < p.ec_nr; i++) {
1596                                 ret = bch2_trans_mark_stripe_ptr(trans, p.ec[i],
1597                                                 disk_sectors, data_type);
1598                                 if (ret)
1599                                         return ret;
1600                         }
1601
1602                         r.e.nr_required = 0;
1603                 }
1604         }
1605
1606         update_replicas_list(trans, &r.e, dirty_sectors);
1607
1608         return 0;
1609 }
1610
1611 static int __bch2_trans_mark_reflink_p(struct btree_trans *trans,
1612                         struct bkey_s_c_reflink_p p,
1613                         u64 idx, unsigned sectors,
1614                         unsigned flags)
1615 {
1616         struct bch_fs *c = trans->c;
1617         struct btree_iter *iter;
1618         struct bkey_i *new_k;
1619         struct bkey_s_c k;
1620         struct bkey_i_reflink_v *r_v;
1621         s64 ret;
1622
1623         ret = trans_get_key(trans, BTREE_ID_REFLINK,
1624                             POS(0, idx), &iter, &k);
1625         if (ret < 0)
1626                 return ret;
1627
1628         if (k.k->type != KEY_TYPE_reflink_v) {
1629                 bch2_fs_inconsistent(c,
1630                         "%llu:%llu len %u points to nonexistent indirect extent %llu",
1631                         p.k->p.inode, p.k->p.offset, p.k->size, idx);
1632                 ret = -EIO;
1633                 goto err;
1634         }
1635
1636         if ((flags & BCH_BUCKET_MARK_OVERWRITE) &&
1637             (bkey_start_offset(k.k) < idx ||
1638              k.k->p.offset > idx + sectors))
1639                 goto out;
1640
1641         bch2_btree_iter_set_pos(iter, bkey_start_pos(k.k));
1642         BUG_ON(iter->uptodate > BTREE_ITER_NEED_PEEK);
1643
1644         new_k = trans_update_key(trans, iter, k.k->u64s);
1645         ret = PTR_ERR_OR_ZERO(new_k);
1646         if (ret)
1647                 goto err;
1648
1649         bkey_reassemble(new_k, k);
1650         r_v = bkey_i_to_reflink_v(new_k);
1651
1652         le64_add_cpu(&r_v->v.refcount,
1653                      !(flags & BCH_BUCKET_MARK_OVERWRITE) ? 1 : -1);
1654
1655         if (!r_v->v.refcount) {
1656                 r_v->k.type = KEY_TYPE_deleted;
1657                 set_bkey_val_u64s(&r_v->k, 0);
1658         }
1659 out:
1660         ret = k.k->p.offset - idx;
1661 err:
1662         bch2_trans_iter_put(trans, iter);
1663         return ret;
1664 }
1665
1666 static int bch2_trans_mark_reflink_p(struct btree_trans *trans,
1667                         struct bkey_s_c_reflink_p p, unsigned offset,
1668                         s64 sectors, unsigned flags)
1669 {
1670         u64 idx = le64_to_cpu(p.v->idx) + offset;
1671         s64 ret = 0;
1672
1673         sectors = abs(sectors);
1674         BUG_ON(offset + sectors > p.k->size);
1675
1676         while (sectors) {
1677                 ret = __bch2_trans_mark_reflink_p(trans, p, idx, sectors, flags);
1678                 if (ret < 0)
1679                         break;
1680
1681                 idx += ret;
1682                 sectors = max_t(s64, 0LL, sectors - ret);
1683                 ret = 0;
1684         }
1685
1686         return ret;
1687 }
1688
1689 int bch2_trans_mark_key(struct btree_trans *trans, struct bkey_s_c k,
1690                         unsigned offset, s64 sectors, unsigned flags)
1691 {
1692         struct replicas_delta_list *d;
1693         struct bch_fs *c = trans->c;
1694
1695         switch (k.k->type) {
1696         case KEY_TYPE_btree_ptr:
1697                 sectors = !(flags & BCH_BUCKET_MARK_OVERWRITE)
1698                         ?  c->opts.btree_node_size
1699                         : -c->opts.btree_node_size;
1700
1701                 return bch2_trans_mark_extent(trans, k, offset, sectors,
1702                                               flags, BCH_DATA_BTREE);
1703         case KEY_TYPE_extent:
1704         case KEY_TYPE_reflink_v:
1705                 return bch2_trans_mark_extent(trans, k, offset, sectors,
1706                                               flags, BCH_DATA_USER);
1707         case KEY_TYPE_inode:
1708                 d = replicas_deltas_realloc(trans, 0);
1709
1710                 if (!(flags & BCH_BUCKET_MARK_OVERWRITE))
1711                         d->fs_usage.nr_inodes++;
1712                 else
1713                         d->fs_usage.nr_inodes--;
1714                 return 0;
1715         case KEY_TYPE_reservation: {
1716                 unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas;
1717
1718                 d = replicas_deltas_realloc(trans, 0);
1719
1720                 sectors *= replicas;
1721                 replicas = clamp_t(unsigned, replicas, 1,
1722                                    ARRAY_SIZE(d->fs_usage.persistent_reserved));
1723
1724                 d->fs_usage.reserved                            += sectors;
1725                 d->fs_usage.persistent_reserved[replicas - 1]   += sectors;
1726                 return 0;
1727         }
1728         case KEY_TYPE_reflink_p:
1729                 return bch2_trans_mark_reflink_p(trans,
1730                                         bkey_s_c_to_reflink_p(k),
1731                                         offset, sectors, flags);
1732         default:
1733                 return 0;
1734         }
1735 }
1736
1737 int bch2_trans_mark_update(struct btree_trans *trans,
1738                            struct btree_iter *iter,
1739                            struct bkey_i *insert)
1740 {
1741         struct btree            *b = iter->l[0].b;
1742         struct btree_node_iter  node_iter = iter->l[0].iter;
1743         struct bkey_packed      *_k;
1744         int ret;
1745
1746         if (!btree_node_type_needs_gc(iter->btree_id))
1747                 return 0;
1748
1749         ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(insert),
1750                         0, insert->k.size, BCH_BUCKET_MARK_INSERT);
1751         if (ret)
1752                 return ret;
1753
1754         if (unlikely(trans->flags & BTREE_INSERT_NOMARK_OVERWRITES))
1755                 return 0;
1756
1757         while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
1758                                                       KEY_TYPE_discard))) {
1759                 struct bkey             unpacked;
1760                 struct bkey_s_c         k;
1761                 unsigned                offset = 0;
1762                 s64                     sectors = 0;
1763                 unsigned                flags = BCH_BUCKET_MARK_OVERWRITE;
1764
1765                 k = bkey_disassemble(b, _k, &unpacked);
1766
1767                 if (btree_node_is_extents(b)
1768                     ? bkey_cmp(insert->k.p, bkey_start_pos(k.k)) <= 0
1769                     : bkey_cmp(insert->k.p, k.k->p))
1770                         break;
1771
1772                 if (btree_node_is_extents(b)) {
1773                         switch (bch2_extent_overlap(&insert->k, k.k)) {
1774                         case BCH_EXTENT_OVERLAP_ALL:
1775                                 offset = 0;
1776                                 sectors = -((s64) k.k->size);
1777                                 break;
1778                         case BCH_EXTENT_OVERLAP_BACK:
1779                                 offset = bkey_start_offset(&insert->k) -
1780                                         bkey_start_offset(k.k);
1781                                 sectors = bkey_start_offset(&insert->k) -
1782                                         k.k->p.offset;
1783                                 break;
1784                         case BCH_EXTENT_OVERLAP_FRONT:
1785                                 offset = 0;
1786                                 sectors = bkey_start_offset(k.k) -
1787                                         insert->k.p.offset;
1788                                 break;
1789                         case BCH_EXTENT_OVERLAP_MIDDLE:
1790                                 offset = bkey_start_offset(&insert->k) -
1791                                         bkey_start_offset(k.k);
1792                                 sectors = -((s64) insert->k.size);
1793                                 flags |= BCH_BUCKET_MARK_OVERWRITE_SPLIT;
1794                                 break;
1795                         }
1796
1797                         BUG_ON(sectors >= 0);
1798                 }
1799
1800                 ret = bch2_trans_mark_key(trans, k, offset, sectors, flags);
1801                 if (ret)
1802                         return ret;
1803
1804                 bch2_btree_node_iter_advance(&node_iter, b);
1805         }
1806
1807         return 0;
1808 }
1809
1810 /* Disk reservations: */
1811
1812 static u64 bch2_recalc_sectors_available(struct bch_fs *c)
1813 {
1814         percpu_u64_set(&c->pcpu->sectors_available, 0);
1815
1816         return avail_factor(__bch2_fs_usage_read_short(c).free);
1817 }
1818
1819 void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res)
1820 {
1821         percpu_down_read(&c->mark_lock);
1822         this_cpu_sub(c->usage[0]->online_reserved,
1823                      res->sectors);
1824         percpu_up_read(&c->mark_lock);
1825
1826         res->sectors = 0;
1827 }
1828
1829 #define SECTORS_CACHE   1024
1830
1831 int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res,
1832                               unsigned sectors, int flags)
1833 {
1834         struct bch_fs_pcpu *pcpu;
1835         u64 old, v, get;
1836         s64 sectors_available;
1837         int ret;
1838
1839         percpu_down_read(&c->mark_lock);
1840         preempt_disable();
1841         pcpu = this_cpu_ptr(c->pcpu);
1842
1843         if (sectors <= pcpu->sectors_available)
1844                 goto out;
1845
1846         v = atomic64_read(&c->sectors_available);
1847         do {
1848                 old = v;
1849                 get = min((u64) sectors + SECTORS_CACHE, old);
1850
1851                 if (get < sectors) {
1852                         preempt_enable();
1853                         percpu_up_read(&c->mark_lock);
1854                         goto recalculate;
1855                 }
1856         } while ((v = atomic64_cmpxchg(&c->sectors_available,
1857                                        old, old - get)) != old);
1858
1859         pcpu->sectors_available         += get;
1860
1861 out:
1862         pcpu->sectors_available         -= sectors;
1863         this_cpu_add(c->usage[0]->online_reserved, sectors);
1864         res->sectors                    += sectors;
1865
1866         preempt_enable();
1867         percpu_up_read(&c->mark_lock);
1868         return 0;
1869
1870 recalculate:
1871         percpu_down_write(&c->mark_lock);
1872
1873         sectors_available = bch2_recalc_sectors_available(c);
1874
1875         if (sectors <= sectors_available ||
1876             (flags & BCH_DISK_RESERVATION_NOFAIL)) {
1877                 atomic64_set(&c->sectors_available,
1878                              max_t(s64, 0, sectors_available - sectors));
1879                 this_cpu_add(c->usage[0]->online_reserved, sectors);
1880                 res->sectors                    += sectors;
1881                 ret = 0;
1882         } else {
1883                 atomic64_set(&c->sectors_available, sectors_available);
1884                 ret = -ENOSPC;
1885         }
1886
1887         percpu_up_write(&c->mark_lock);
1888
1889         return ret;
1890 }
1891
1892 /* Startup/shutdown: */
1893
1894 static void buckets_free_rcu(struct rcu_head *rcu)
1895 {
1896         struct bucket_array *buckets =
1897                 container_of(rcu, struct bucket_array, rcu);
1898
1899         kvpfree(buckets,
1900                 sizeof(struct bucket_array) +
1901                 buckets->nbuckets * sizeof(struct bucket));
1902 }
1903
1904 int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1905 {
1906         struct bucket_array *buckets = NULL, *old_buckets = NULL;
1907         unsigned long *buckets_nouse = NULL;
1908         alloc_fifo      free[RESERVE_NR];
1909         alloc_fifo      free_inc;
1910         alloc_heap      alloc_heap;
1911         copygc_heap     copygc_heap;
1912
1913         size_t btree_reserve    = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1914                              ca->mi.bucket_size / c->opts.btree_node_size);
1915         /* XXX: these should be tunable */
1916         size_t reserve_none     = max_t(size_t, 1, nbuckets >> 9);
1917         size_t copygc_reserve   = max_t(size_t, 2, nbuckets >> 7);
1918         size_t free_inc_nr      = max(max_t(size_t, 1, nbuckets >> 12),
1919                                       btree_reserve * 2);
1920         bool resize = ca->buckets[0] != NULL,
1921              start_copygc = ca->copygc_thread != NULL;
1922         int ret = -ENOMEM;
1923         unsigned i;
1924
1925         memset(&free,           0, sizeof(free));
1926         memset(&free_inc,       0, sizeof(free_inc));
1927         memset(&alloc_heap,     0, sizeof(alloc_heap));
1928         memset(&copygc_heap,    0, sizeof(copygc_heap));
1929
1930         if (!(buckets           = kvpmalloc(sizeof(struct bucket_array) +
1931                                             nbuckets * sizeof(struct bucket),
1932                                             GFP_KERNEL|__GFP_ZERO)) ||
1933             !(buckets_nouse     = kvpmalloc(BITS_TO_LONGS(nbuckets) *
1934                                             sizeof(unsigned long),
1935                                             GFP_KERNEL|__GFP_ZERO)) ||
1936             !init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) ||
1937             !init_fifo(&free[RESERVE_MOVINGGC],
1938                        copygc_reserve, GFP_KERNEL) ||
1939             !init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
1940             !init_fifo(&free_inc,       free_inc_nr, GFP_KERNEL) ||
1941             !init_heap(&alloc_heap,     ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) ||
1942             !init_heap(&copygc_heap,    copygc_reserve, GFP_KERNEL))
1943                 goto err;
1944
1945         buckets->first_bucket   = ca->mi.first_bucket;
1946         buckets->nbuckets       = nbuckets;
1947
1948         bch2_copygc_stop(ca);
1949
1950         if (resize) {
1951                 down_write(&c->gc_lock);
1952                 down_write(&ca->bucket_lock);
1953                 percpu_down_write(&c->mark_lock);
1954         }
1955
1956         old_buckets = bucket_array(ca);
1957
1958         if (resize) {
1959                 size_t n = min(buckets->nbuckets, old_buckets->nbuckets);
1960
1961                 memcpy(buckets->b,
1962                        old_buckets->b,
1963                        n * sizeof(struct bucket));
1964                 memcpy(buckets_nouse,
1965                        ca->buckets_nouse,
1966                        BITS_TO_LONGS(n) * sizeof(unsigned long));
1967         }
1968
1969         rcu_assign_pointer(ca->buckets[0], buckets);
1970         buckets = old_buckets;
1971
1972         swap(ca->buckets_nouse, buckets_nouse);
1973
1974         if (resize)
1975                 percpu_up_write(&c->mark_lock);
1976
1977         spin_lock(&c->freelist_lock);
1978         for (i = 0; i < RESERVE_NR; i++) {
1979                 fifo_move(&free[i], &ca->free[i]);
1980                 swap(ca->free[i], free[i]);
1981         }
1982         fifo_move(&free_inc, &ca->free_inc);
1983         swap(ca->free_inc, free_inc);
1984         spin_unlock(&c->freelist_lock);
1985
1986         /* with gc lock held, alloc_heap can't be in use: */
1987         swap(ca->alloc_heap, alloc_heap);
1988
1989         /* and we shut down copygc: */
1990         swap(ca->copygc_heap, copygc_heap);
1991
1992         nbuckets = ca->mi.nbuckets;
1993
1994         if (resize) {
1995                 up_write(&ca->bucket_lock);
1996                 up_write(&c->gc_lock);
1997         }
1998
1999         if (start_copygc &&
2000             bch2_copygc_start(c, ca))
2001                 bch_err(ca, "error restarting copygc thread");
2002
2003         ret = 0;
2004 err:
2005         free_heap(&copygc_heap);
2006         free_heap(&alloc_heap);
2007         free_fifo(&free_inc);
2008         for (i = 0; i < RESERVE_NR; i++)
2009                 free_fifo(&free[i]);
2010         kvpfree(buckets_nouse,
2011                 BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
2012         if (buckets)
2013                 call_rcu(&old_buckets->rcu, buckets_free_rcu);
2014
2015         return ret;
2016 }
2017
2018 void bch2_dev_buckets_free(struct bch_dev *ca)
2019 {
2020         unsigned i;
2021
2022         free_heap(&ca->copygc_heap);
2023         free_heap(&ca->alloc_heap);
2024         free_fifo(&ca->free_inc);
2025         for (i = 0; i < RESERVE_NR; i++)
2026                 free_fifo(&ca->free[i]);
2027         kvpfree(ca->buckets_nouse,
2028                 BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
2029         kvpfree(rcu_dereference_protected(ca->buckets[0], 1),
2030                 sizeof(struct bucket_array) +
2031                 ca->mi.nbuckets * sizeof(struct bucket));
2032
2033         free_percpu(ca->usage[0]);
2034 }
2035
2036 int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca)
2037 {
2038         if (!(ca->usage[0] = alloc_percpu(struct bch_dev_usage)))
2039                 return -ENOMEM;
2040
2041         return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);;
2042 }