]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/extents.c
aa2fc7793b17f8d1f1874b0d2cf9e8c030fb0ccb
[bcachefs-tools-debian] / libbcachefs / extents.c
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Code for managing the extent btree and dynamically updating the writeback
5  * dirty sector count.
6  */
7
8 #include "bcachefs.h"
9 #include "bkey_methods.h"
10 #include "btree_gc.h"
11 #include "btree_update.h"
12 #include "btree_update_interior.h"
13 #include "buckets.h"
14 #include "checksum.h"
15 #include "debug.h"
16 #include "dirent.h"
17 #include "disk_groups.h"
18 #include "error.h"
19 #include "extents.h"
20 #include "inode.h"
21 #include "journal.h"
22 #include "replicas.h"
23 #include "super.h"
24 #include "super-io.h"
25 #include "util.h"
26 #include "xattr.h"
27
28 #include <trace/events/bcachefs.h>
29
30 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
31 {
32         struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k);
33         const struct bch_extent_ptr *ptr;
34         unsigned nr_ptrs = 0;
35
36         bkey_for_each_ptr(p, ptr)
37                 nr_ptrs++;
38
39         return nr_ptrs;
40 }
41
42 unsigned bch2_bkey_nr_dirty_ptrs(struct bkey_s_c k)
43 {
44         unsigned nr_ptrs = 0;
45
46         switch (k.k->type) {
47         case KEY_TYPE_btree_ptr:
48         case KEY_TYPE_extent: {
49                 struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k);
50                 const struct bch_extent_ptr *ptr;
51
52                 bkey_for_each_ptr(p, ptr)
53                         nr_ptrs += !ptr->cached;
54                 BUG_ON(!nr_ptrs);
55                 break;
56         }
57         case KEY_TYPE_reservation:
58                 nr_ptrs = bkey_s_c_to_reservation(k).v->nr_replicas;
59                 break;
60         }
61
62         return nr_ptrs;
63 }
64
65 static unsigned bch2_extent_ptr_durability(struct bch_fs *c,
66                                            struct extent_ptr_decoded p)
67 {
68         unsigned i, durability = 0;
69         struct bch_dev *ca;
70
71         if (p.ptr.cached)
72                 return 0;
73
74         ca = bch_dev_bkey_exists(c, p.ptr.dev);
75
76         if (ca->mi.state != BCH_MEMBER_STATE_FAILED)
77                 durability = max_t(unsigned, durability, ca->mi.durability);
78
79         for (i = 0; i < p.ec_nr; i++) {
80                 struct stripe *s =
81                         genradix_ptr(&c->stripes[0], p.idx);
82
83                 if (WARN_ON(!s))
84                         continue;
85
86                 durability = max_t(unsigned, durability, s->nr_redundant);
87         }
88
89         return durability;
90 }
91
92 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
93 {
94         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
95         const union bch_extent_entry *entry;
96         struct extent_ptr_decoded p;
97         unsigned durability = 0;
98
99         bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
100                 durability += bch2_extent_ptr_durability(c, p);
101
102         return durability;
103 }
104
105 static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f,
106                                                    unsigned dev)
107 {
108         struct bch_dev_io_failures *i;
109
110         for (i = f->devs; i < f->devs + f->nr; i++)
111                 if (i->dev == dev)
112                         return i;
113
114         return NULL;
115 }
116
117 void bch2_mark_io_failure(struct bch_io_failures *failed,
118                           struct extent_ptr_decoded *p)
119 {
120         struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev);
121
122         if (!f) {
123                 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
124
125                 f = &failed->devs[failed->nr++];
126                 f->dev          = p->ptr.dev;
127                 f->idx          = p->idx;
128                 f->nr_failed    = 1;
129                 f->nr_retries   = 0;
130         } else if (p->idx != f->idx) {
131                 f->idx          = p->idx;
132                 f->nr_failed    = 1;
133                 f->nr_retries   = 0;
134         } else {
135                 f->nr_failed++;
136         }
137 }
138
139 /*
140  * returns true if p1 is better than p2:
141  */
142 static inline bool ptr_better(struct bch_fs *c,
143                               const struct extent_ptr_decoded p1,
144                               const struct extent_ptr_decoded p2)
145 {
146         if (likely(!p1.idx && !p2.idx)) {
147                 struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev);
148                 struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev);
149
150                 u64 l1 = atomic64_read(&dev1->cur_latency[READ]);
151                 u64 l2 = atomic64_read(&dev2->cur_latency[READ]);
152
153                 /* Pick at random, biased in favor of the faster device: */
154
155                 return bch2_rand_range(l1 + l2) > l1;
156         }
157
158         if (force_reconstruct_read(c))
159                 return p1.idx > p2.idx;
160
161         return p1.idx < p2.idx;
162 }
163
164 /*
165  * This picks a non-stale pointer, preferably from a device other than @avoid.
166  * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
167  * other devices, it will still pick a pointer from avoid.
168  */
169 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
170                                struct bch_io_failures *failed,
171                                struct extent_ptr_decoded *pick)
172 {
173         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
174         const union bch_extent_entry *entry;
175         struct extent_ptr_decoded p;
176         struct bch_dev_io_failures *f;
177         struct bch_dev *ca;
178         int ret = 0;
179
180         if (k.k->type == KEY_TYPE_error)
181                 return -EIO;
182
183         bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
184                 ca = bch_dev_bkey_exists(c, p.ptr.dev);
185
186                 /*
187                  * If there are any dirty pointers it's an error if we can't
188                  * read:
189                  */
190                 if (!ret && !p.ptr.cached)
191                         ret = -EIO;
192
193                 if (p.ptr.cached && ptr_stale(ca, &p.ptr))
194                         continue;
195
196                 f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL;
197                 if (f)
198                         p.idx = f->nr_failed < f->nr_retries
199                                 ? f->idx
200                                 : f->idx + 1;
201
202                 if (!p.idx &&
203                     !bch2_dev_is_readable(ca))
204                         p.idx++;
205
206                 if (force_reconstruct_read(c) &&
207                     !p.idx && p.ec_nr)
208                         p.idx++;
209
210                 if (p.idx >= p.ec_nr + 1)
211                         continue;
212
213                 if (ret > 0 && !ptr_better(c, p, *pick))
214                         continue;
215
216                 *pick = p;
217                 ret = 1;
218         }
219
220         return ret;
221 }
222
223 void bch2_bkey_append_ptr(struct bkey_i *k,
224                           struct bch_extent_ptr ptr)
225 {
226         EBUG_ON(bch2_bkey_has_device(bkey_i_to_s_c(k), ptr.dev));
227
228         switch (k->k.type) {
229         case KEY_TYPE_btree_ptr:
230         case KEY_TYPE_extent:
231                 EBUG_ON(bkey_val_u64s(&k->k) >= BKEY_EXTENT_VAL_U64s_MAX);
232
233                 ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
234
235                 memcpy((void *) &k->v + bkey_val_bytes(&k->k),
236                        &ptr,
237                        sizeof(ptr));
238                 k->u64s++;
239                 break;
240         default:
241                 BUG();
242         }
243 }
244
245 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
246 {
247         struct bch_extent_ptr *ptr;
248
249         bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
250 }
251
252 /* extent specific utility code */
253
254 const struct bch_extent_ptr *
255 bch2_extent_has_device(struct bkey_s_c_extent e, unsigned dev)
256 {
257         const struct bch_extent_ptr *ptr;
258
259         extent_for_each_ptr(e, ptr)
260                 if (ptr->dev == dev)
261                         return ptr;
262
263         return NULL;
264 }
265
266 const struct bch_extent_ptr *
267 bch2_extent_has_group(struct bch_fs *c, struct bkey_s_c_extent e, unsigned group)
268 {
269         const struct bch_extent_ptr *ptr;
270
271         extent_for_each_ptr(e, ptr) {
272                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
273
274                 if (ca->mi.group &&
275                     ca->mi.group - 1 == group)
276                         return ptr;
277         }
278
279         return NULL;
280 }
281
282 const struct bch_extent_ptr *
283 bch2_extent_has_target(struct bch_fs *c, struct bkey_s_c_extent e, unsigned target)
284 {
285         const struct bch_extent_ptr *ptr;
286
287         extent_for_each_ptr(e, ptr)
288                 if (bch2_dev_in_target(c, ptr->dev, target) &&
289                     (!ptr->cached ||
290                      !ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)))
291                         return ptr;
292
293         return NULL;
294 }
295
296 unsigned bch2_extent_is_compressed(struct bkey_s_c k)
297 {
298         unsigned ret = 0;
299
300         switch (k.k->type) {
301         case KEY_TYPE_extent: {
302                 struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
303                 const union bch_extent_entry *entry;
304                 struct extent_ptr_decoded p;
305
306                 extent_for_each_ptr_decode(e, p, entry)
307                         if (!p.ptr.cached &&
308                             p.crc.compression_type != BCH_COMPRESSION_NONE)
309                                 ret += p.crc.compressed_size;
310         }
311         }
312
313         return ret;
314 }
315
316 bool bch2_extent_matches_ptr(struct bch_fs *c, struct bkey_s_c_extent e,
317                              struct bch_extent_ptr m, u64 offset)
318 {
319         const union bch_extent_entry *entry;
320         struct extent_ptr_decoded p;
321
322         extent_for_each_ptr_decode(e, p, entry)
323                 if (p.ptr.dev   == m.dev &&
324                     p.ptr.gen   == m.gen &&
325                     (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(e.k) ==
326                     (s64) m.offset  - offset)
327                         return true;
328
329         return false;
330 }
331
332 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
333                                           union bch_extent_entry *entry)
334 {
335         union bch_extent_entry *i = ptrs.start;
336
337         if (i == entry)
338                 return NULL;
339
340         while (extent_entry_next(i) != entry)
341                 i = extent_entry_next(i);
342         return i;
343 }
344
345 union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k,
346                                            struct bch_extent_ptr *ptr)
347 {
348         struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
349         union bch_extent_entry *dst, *src, *prev;
350         bool drop_crc = true;
351
352         EBUG_ON(ptr < &ptrs.start->ptr ||
353                 ptr >= &ptrs.end->ptr);
354         EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
355
356         src = extent_entry_next(to_entry(ptr));
357         if (src != ptrs.end &&
358             !extent_entry_is_crc(src))
359                 drop_crc = false;
360
361         dst = to_entry(ptr);
362         while ((prev = extent_entry_prev(ptrs, dst))) {
363                 if (extent_entry_is_ptr(prev))
364                         break;
365
366                 if (extent_entry_is_crc(prev)) {
367                         if (drop_crc)
368                                 dst = prev;
369                         break;
370                 }
371
372                 dst = prev;
373         }
374
375         memmove_u64s_down(dst, src,
376                           (u64 *) ptrs.end - (u64 *) src);
377         k.k->u64s -= (u64 *) src - (u64 *) dst;
378
379         return dst;
380 }
381
382 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
383                                   struct bch_extent_crc_unpacked n)
384 {
385         return !u.compression_type &&
386                 u.csum_type &&
387                 u.uncompressed_size > u.live_size &&
388                 bch2_csum_type_is_encryption(u.csum_type) ==
389                 bch2_csum_type_is_encryption(n.csum_type);
390 }
391
392 bool bch2_can_narrow_extent_crcs(struct bkey_s_c_extent e,
393                                  struct bch_extent_crc_unpacked n)
394 {
395         struct bch_extent_crc_unpacked crc;
396         const union bch_extent_entry *i;
397
398         if (!n.csum_type)
399                 return false;
400
401         extent_for_each_crc(e, crc, i)
402                 if (can_narrow_crc(crc, n))
403                         return true;
404
405         return false;
406 }
407
408 /*
409  * We're writing another replica for this extent, so while we've got the data in
410  * memory we'll be computing a new checksum for the currently live data.
411  *
412  * If there are other replicas we aren't moving, and they are checksummed but
413  * not compressed, we can modify them to point to only the data that is
414  * currently live (so that readers won't have to bounce) while we've got the
415  * checksum we need:
416  */
417 bool bch2_extent_narrow_crcs(struct bkey_i_extent *e,
418                              struct bch_extent_crc_unpacked n)
419 {
420         struct bch_extent_crc_unpacked u;
421         struct extent_ptr_decoded p;
422         union bch_extent_entry *i;
423         bool ret = false;
424
425         /* Find a checksum entry that covers only live data: */
426         if (!n.csum_type) {
427                 extent_for_each_crc(extent_i_to_s(e), u, i)
428                         if (!u.compression_type &&
429                             u.csum_type &&
430                             u.live_size == u.uncompressed_size) {
431                                 n = u;
432                                 goto found;
433                         }
434                 return false;
435         }
436 found:
437         BUG_ON(n.compression_type);
438         BUG_ON(n.offset);
439         BUG_ON(n.live_size != e->k.size);
440
441 restart_narrow_pointers:
442         extent_for_each_ptr_decode(extent_i_to_s(e), p, i)
443                 if (can_narrow_crc(p.crc, n)) {
444                         bch2_bkey_drop_ptr(extent_i_to_s(e).s, &i->ptr);
445                         p.ptr.offset += p.crc.offset;
446                         p.crc = n;
447                         bch2_extent_ptr_decoded_append(e, &p);
448                         ret = true;
449                         goto restart_narrow_pointers;
450                 }
451
452         return ret;
453 }
454
455 /* returns true if not equal */
456 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
457                                          struct bch_extent_crc_unpacked r)
458 {
459         return (l.csum_type             != r.csum_type ||
460                 l.compression_type      != r.compression_type ||
461                 l.compressed_size       != r.compressed_size ||
462                 l.uncompressed_size     != r.uncompressed_size ||
463                 l.offset                != r.offset ||
464                 l.live_size             != r.live_size ||
465                 l.nonce                 != r.nonce ||
466                 bch2_crc_cmp(l.csum, r.csum));
467 }
468
469 void bch2_ptr_swab(const struct bkey_format *f, struct bkey_packed *k)
470 {
471         union bch_extent_entry *entry;
472         u64 *d = (u64 *) bkeyp_val(f, k);
473         unsigned i;
474
475         for (i = 0; i < bkeyp_val_u64s(f, k); i++)
476                 d[i] = swab64(d[i]);
477
478         for (entry = (union bch_extent_entry *) d;
479              entry < (union bch_extent_entry *) (d + bkeyp_val_u64s(f, k));
480              entry = extent_entry_next(entry)) {
481                 switch (extent_entry_type(entry)) {
482                 case BCH_EXTENT_ENTRY_ptr:
483                         break;
484                 case BCH_EXTENT_ENTRY_crc32:
485                         entry->crc32.csum = swab32(entry->crc32.csum);
486                         break;
487                 case BCH_EXTENT_ENTRY_crc64:
488                         entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
489                         entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
490                         break;
491                 case BCH_EXTENT_ENTRY_crc128:
492                         entry->crc128.csum.hi = (__force __le64)
493                                 swab64((__force u64) entry->crc128.csum.hi);
494                         entry->crc128.csum.lo = (__force __le64)
495                                 swab64((__force u64) entry->crc128.csum.lo);
496                         break;
497                 case BCH_EXTENT_ENTRY_stripe_ptr:
498                         break;
499                 }
500         }
501 }
502
503 static const char *extent_ptr_invalid(const struct bch_fs *c,
504                                       struct bkey_s_c k,
505                                       const struct bch_extent_ptr *ptr,
506                                       unsigned size_ondisk,
507                                       bool metadata)
508 {
509         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
510         const struct bch_extent_ptr *ptr2;
511         struct bch_dev *ca;
512
513         if (ptr->dev >= c->sb.nr_devices ||
514             !c->devs[ptr->dev])
515                 return "pointer to invalid device";
516
517         ca = bch_dev_bkey_exists(c, ptr->dev);
518         if (!ca)
519                 return "pointer to invalid device";
520
521         bkey_for_each_ptr(ptrs, ptr2)
522                 if (ptr != ptr2 && ptr->dev == ptr2->dev)
523                         return "multiple pointers to same device";
524
525         if (ptr->offset + size_ondisk > bucket_to_sector(ca, ca->mi.nbuckets))
526                 return "offset past end of device";
527
528         if (ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket))
529                 return "offset before first bucket";
530
531         if (bucket_remainder(ca, ptr->offset) +
532             size_ondisk > ca->mi.bucket_size)
533                 return "spans multiple buckets";
534
535         return NULL;
536 }
537
538 static void bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
539                               struct bkey_s_c k)
540 {
541         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
542         const union bch_extent_entry *entry;
543         struct bch_extent_crc_unpacked crc;
544         const struct bch_extent_ptr *ptr;
545         const struct bch_extent_stripe_ptr *ec;
546         struct bch_dev *ca;
547         bool first = true;
548
549         bkey_extent_entry_for_each(ptrs, entry) {
550                 if (!first)
551                         pr_buf(out, " ");
552
553                 switch (__extent_entry_type(entry)) {
554                 case BCH_EXTENT_ENTRY_ptr:
555                         ptr = entry_to_ptr(entry);
556                         ca = ptr->dev < c->sb.nr_devices && c->devs[ptr->dev]
557                                 ? bch_dev_bkey_exists(c, ptr->dev)
558                                 : NULL;
559
560                         pr_buf(out, "ptr: %u:%llu gen %u%s%s", ptr->dev,
561                                (u64) ptr->offset, ptr->gen,
562                                ptr->cached ? " cached" : "",
563                                ca && ptr_stale(ca, ptr)
564                                ? " stale" : "");
565                         break;
566                 case BCH_EXTENT_ENTRY_crc32:
567                 case BCH_EXTENT_ENTRY_crc64:
568                 case BCH_EXTENT_ENTRY_crc128:
569                         crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
570
571                         pr_buf(out, "crc: c_size %u size %u offset %u nonce %u csum %u compress %u",
572                                crc.compressed_size,
573                                crc.uncompressed_size,
574                                crc.offset, crc.nonce,
575                                crc.csum_type,
576                                crc.compression_type);
577                         break;
578                 case BCH_EXTENT_ENTRY_stripe_ptr:
579                         ec = &entry->stripe_ptr;
580
581                         pr_buf(out, "ec: idx %llu block %u",
582                                (u64) ec->idx, ec->block);
583                         break;
584                 default:
585                         pr_buf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
586                         return;
587                 }
588
589                 first = false;
590         }
591 }
592
593 /* Btree ptrs */
594
595 const char *bch2_btree_ptr_invalid(const struct bch_fs *c, struct bkey_s_c k)
596 {
597         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
598         const union bch_extent_entry *entry;
599         const struct bch_extent_ptr *ptr;
600         const char *reason;
601
602         if (bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX)
603                 return "value too big";
604
605         bkey_extent_entry_for_each(ptrs, entry) {
606                 if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX)
607                         return "invalid extent entry type";
608
609                 if (!extent_entry_is_ptr(entry))
610                         return "has non ptr field";
611         }
612
613         bkey_for_each_ptr(ptrs, ptr) {
614                 reason = extent_ptr_invalid(c, k, ptr,
615                                             c->opts.btree_node_size,
616                                             true);
617                 if (reason)
618                         return reason;
619         }
620
621         return NULL;
622 }
623
624 void bch2_btree_ptr_debugcheck(struct bch_fs *c, struct btree *b,
625                                struct bkey_s_c k)
626 {
627         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
628         const struct bch_extent_ptr *ptr;
629         const char *err;
630         char buf[160];
631         struct bucket_mark mark;
632         struct bch_dev *ca;
633
634         bch2_fs_bug_on(!test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) &&
635                        !bch2_bkey_replicas_marked(c, k, false), c,
636                        "btree key bad (replicas not marked in superblock):\n%s",
637                        (bch2_bkey_val_to_text(&PBUF(buf), c, k), buf));
638
639         if (!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags))
640                 return;
641
642         bkey_for_each_ptr(ptrs, ptr) {
643                 ca = bch_dev_bkey_exists(c, ptr->dev);
644
645                 mark = ptr_bucket_mark(ca, ptr);
646
647                 err = "stale";
648                 if (gen_after(mark.gen, ptr->gen))
649                         goto err;
650
651                 err = "inconsistent";
652                 if (mark.data_type != BCH_DATA_BTREE ||
653                     mark.dirty_sectors < c->opts.btree_node_size)
654                         goto err;
655         }
656
657         return;
658 err:
659         bch2_bkey_val_to_text(&PBUF(buf), c, k);
660         bch2_fs_bug(c, "%s btree pointer %s: bucket %zi gen %i mark %08x",
661                     err, buf, PTR_BUCKET_NR(ca, ptr),
662                     mark.gen, (unsigned) mark.v.counter);
663 }
664
665 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
666                             struct bkey_s_c k)
667 {
668         const char *invalid;
669
670         bkey_ptrs_to_text(out, c, k);
671
672         invalid = bch2_btree_ptr_invalid(c, k);
673         if (invalid)
674                 pr_buf(out, " invalid: %s", invalid);
675 }
676
677 /* Extents */
678
679 bool __bch2_cut_front(struct bpos where, struct bkey_s k)
680 {
681         u64 len = 0;
682
683         if (bkey_cmp(where, bkey_start_pos(k.k)) <= 0)
684                 return false;
685
686         EBUG_ON(bkey_cmp(where, k.k->p) > 0);
687
688         len = k.k->p.offset - where.offset;
689
690         BUG_ON(len > k.k->size);
691
692         /*
693          * Don't readjust offset if the key size is now 0, because that could
694          * cause offset to point to the next bucket:
695          */
696         if (!len)
697                 k.k->type = KEY_TYPE_deleted;
698         else if (bkey_extent_is_data(k.k)) {
699                 struct bkey_s_extent e = bkey_s_to_extent(k);
700                 union bch_extent_entry *entry;
701                 bool seen_crc = false;
702
703                 extent_for_each_entry(e, entry) {
704                         switch (extent_entry_type(entry)) {
705                         case BCH_EXTENT_ENTRY_ptr:
706                                 if (!seen_crc)
707                                         entry->ptr.offset += e.k->size - len;
708                                 break;
709                         case BCH_EXTENT_ENTRY_crc32:
710                                 entry->crc32.offset += e.k->size - len;
711                                 break;
712                         case BCH_EXTENT_ENTRY_crc64:
713                                 entry->crc64.offset += e.k->size - len;
714                                 break;
715                         case BCH_EXTENT_ENTRY_crc128:
716                                 entry->crc128.offset += e.k->size - len;
717                                 break;
718                         case BCH_EXTENT_ENTRY_stripe_ptr:
719                                 break;
720                         }
721
722                         if (extent_entry_is_crc(entry))
723                                 seen_crc = true;
724                 }
725         }
726
727         k.k->size = len;
728
729         return true;
730 }
731
732 bool bch2_cut_back(struct bpos where, struct bkey *k)
733 {
734         u64 len = 0;
735
736         if (bkey_cmp(where, k->p) >= 0)
737                 return false;
738
739         EBUG_ON(bkey_cmp(where, bkey_start_pos(k)) < 0);
740
741         len = where.offset - bkey_start_offset(k);
742
743         BUG_ON(len > k->size);
744
745         k->p = where;
746         k->size = len;
747
748         if (!len)
749                 k->type = KEY_TYPE_deleted;
750
751         return true;
752 }
753
754 /**
755  * bch_key_resize - adjust size of @k
756  *
757  * bkey_start_offset(k) will be preserved, modifies where the extent ends
758  */
759 void bch2_key_resize(struct bkey *k,
760                     unsigned new_size)
761 {
762         k->p.offset -= k->size;
763         k->p.offset += new_size;
764         k->size = new_size;
765 }
766
767 static bool extent_i_save(struct btree *b, struct bkey_packed *dst,
768                           struct bkey_i *src)
769 {
770         struct bkey_format *f = &b->format;
771         struct bkey_i *dst_unpacked;
772         struct bkey_packed tmp;
773
774         if ((dst_unpacked = packed_to_bkey(dst)))
775                 dst_unpacked->k = src->k;
776         else if (bch2_bkey_pack_key(&tmp, &src->k, f))
777                 memcpy_u64s(dst, &tmp, f->key_u64s);
778         else
779                 return false;
780
781         memcpy_u64s(bkeyp_val(f, dst), &src->v, bkey_val_u64s(&src->k));
782         return true;
783 }
784
785 static bool bch2_extent_merge_inline(struct bch_fs *,
786                                      struct btree_iter *,
787                                      struct bkey_packed *,
788                                      struct bkey_packed *,
789                                      bool);
790
791 static void verify_extent_nonoverlapping(struct bch_fs *c,
792                                          struct btree *b,
793                                          struct btree_node_iter *_iter,
794                                          struct bkey_i *insert)
795 {
796 #ifdef CONFIG_BCACHEFS_DEBUG
797         struct btree_node_iter iter;
798         struct bkey_packed *k;
799         struct bkey uk;
800
801         if (!expensive_debug_checks(c))
802                 return;
803
804         iter = *_iter;
805         k = bch2_btree_node_iter_prev_filter(&iter, b, KEY_TYPE_discard);
806         BUG_ON(k &&
807                (uk = bkey_unpack_key(b, k),
808                 bkey_cmp(uk.p, bkey_start_pos(&insert->k)) > 0));
809
810         iter = *_iter;
811         k = bch2_btree_node_iter_peek_filter(&iter, b, KEY_TYPE_discard);
812 #if 0
813         BUG_ON(k &&
814                (uk = bkey_unpack_key(b, k),
815                 bkey_cmp(insert->k.p, bkey_start_pos(&uk))) > 0);
816 #else
817         if (k &&
818             (uk = bkey_unpack_key(b, k),
819              bkey_cmp(insert->k.p, bkey_start_pos(&uk))) > 0) {
820                 char buf1[100];
821                 char buf2[100];
822
823                 bch2_bkey_to_text(&PBUF(buf1), &insert->k);
824                 bch2_bkey_to_text(&PBUF(buf2), &uk);
825
826                 bch2_dump_btree_node(b);
827                 panic("insert > next :\n"
828                       "insert %s\n"
829                       "next   %s\n",
830                       buf1, buf2);
831         }
832 #endif
833
834 #endif
835 }
836
837 static void verify_modified_extent(struct btree_iter *iter,
838                                    struct bkey_packed *k)
839 {
840         bch2_btree_iter_verify(iter, iter->l[0].b);
841         bch2_verify_insert_pos(iter->l[0].b, k, k, k->u64s);
842 }
843
844 static void extent_bset_insert(struct bch_fs *c, struct btree_iter *iter,
845                                struct bkey_i *insert)
846 {
847         struct btree_iter_level *l = &iter->l[0];
848         struct btree_node_iter node_iter;
849         struct bkey_packed *k;
850
851         BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(c, l->b));
852
853         EBUG_ON(bkey_deleted(&insert->k) || !insert->k.size);
854         verify_extent_nonoverlapping(c, l->b, &l->iter, insert);
855
856         node_iter = l->iter;
857         k = bch2_btree_node_iter_prev_filter(&node_iter, l->b, KEY_TYPE_discard);
858         if (k && !bkey_written(l->b, k) &&
859             bch2_extent_merge_inline(c, iter, k, bkey_to_packed(insert), true))
860                 return;
861
862         node_iter = l->iter;
863         k = bch2_btree_node_iter_peek_filter(&node_iter, l->b, KEY_TYPE_discard);
864         if (k && !bkey_written(l->b, k) &&
865             bch2_extent_merge_inline(c, iter, bkey_to_packed(insert), k, false))
866                 return;
867
868         k = bch2_btree_node_iter_bset_pos(&l->iter, l->b, bset_tree_last(l->b));
869
870         bch2_bset_insert(l->b, &l->iter, k, insert, 0);
871         bch2_btree_node_iter_fix(iter, l->b, &l->iter, k, 0, k->u64s);
872         bch2_btree_iter_verify(iter, l->b);
873 }
874
875 static inline struct bpos
876 bch2_extent_atomic_end(struct bkey_i *k, struct btree_iter *iter)
877 {
878         struct btree *b = iter->l[0].b;
879
880         BUG_ON(iter->uptodate > BTREE_ITER_NEED_PEEK);
881         BUG_ON(bkey_cmp(bkey_start_pos(&k->k), b->data->min_key) < 0);
882
883         return bpos_min(k->k.p, b->key.k.p);
884 }
885
886 void bch2_extent_trim_atomic(struct bkey_i *k, struct btree_iter *iter)
887 {
888         bch2_cut_back(bch2_extent_atomic_end(k, iter), &k->k);
889 }
890
891 bool bch2_extent_is_atomic(struct bkey_i *k, struct btree_iter *iter)
892 {
893         return !bkey_cmp(bch2_extent_atomic_end(k, iter), k->k.p);
894 }
895
896 enum btree_insert_ret
897 bch2_extent_can_insert(struct btree_trans *trans,
898                        struct btree_insert_entry *insert,
899                        unsigned *u64s)
900 {
901         struct btree_iter_level *l = &insert->iter->l[0];
902         struct btree_node_iter node_iter = l->iter;
903         enum bch_extent_overlap overlap;
904         struct bkey_packed *_k;
905         struct bkey unpacked;
906         struct bkey_s_c k;
907         int sectors;
908
909         /*
910          * We avoid creating whiteouts whenever possible when deleting, but
911          * those optimizations mean we may potentially insert two whiteouts
912          * instead of one (when we overlap with the front of one extent and the
913          * back of another):
914          */
915         if (bkey_whiteout(&insert->k->k))
916                 *u64s += BKEY_U64s;
917
918         _k = bch2_btree_node_iter_peek_filter(&node_iter, l->b,
919                                               KEY_TYPE_discard);
920         if (!_k)
921                 return BTREE_INSERT_OK;
922
923         k = bkey_disassemble(l->b, _k, &unpacked);
924
925         overlap = bch2_extent_overlap(&insert->k->k, k.k);
926
927         /* account for having to split existing extent: */
928         if (overlap == BCH_EXTENT_OVERLAP_MIDDLE)
929                 *u64s += _k->u64s;
930
931         if (overlap == BCH_EXTENT_OVERLAP_MIDDLE &&
932             (sectors = bch2_extent_is_compressed(k))) {
933                 int flags = trans->flags & BTREE_INSERT_NOFAIL
934                         ? BCH_DISK_RESERVATION_NOFAIL : 0;
935
936                 switch (bch2_disk_reservation_add(trans->c,
937                                 trans->disk_res,
938                                 sectors, flags)) {
939                 case 0:
940                         break;
941                 case -ENOSPC:
942                         return BTREE_INSERT_ENOSPC;
943                 default:
944                         BUG();
945                 }
946         }
947
948         return BTREE_INSERT_OK;
949 }
950
951 static void
952 extent_squash(struct bch_fs *c, struct btree_iter *iter,
953               struct bkey_i *insert,
954               struct bkey_packed *_k, struct bkey_s k,
955               enum bch_extent_overlap overlap)
956 {
957         struct btree_iter_level *l = &iter->l[0];
958
959         switch (overlap) {
960         case BCH_EXTENT_OVERLAP_FRONT:
961                 /* insert overlaps with start of k: */
962                 __bch2_cut_front(insert->k.p, k);
963                 BUG_ON(bkey_deleted(k.k));
964                 extent_save(l->b, _k, k.k);
965                 verify_modified_extent(iter, _k);
966                 break;
967
968         case BCH_EXTENT_OVERLAP_BACK:
969                 /* insert overlaps with end of k: */
970                 bch2_cut_back(bkey_start_pos(&insert->k), k.k);
971                 BUG_ON(bkey_deleted(k.k));
972                 extent_save(l->b, _k, k.k);
973
974                 /*
975                  * As the auxiliary tree is indexed by the end of the
976                  * key and we've just changed the end, update the
977                  * auxiliary tree.
978                  */
979                 bch2_bset_fix_invalidated_key(l->b, _k);
980                 bch2_btree_node_iter_fix(iter, l->b, &l->iter,
981                                          _k, _k->u64s, _k->u64s);
982                 verify_modified_extent(iter, _k);
983                 break;
984
985         case BCH_EXTENT_OVERLAP_ALL: {
986                 /* The insert key completely covers k, invalidate k */
987                 if (!bkey_whiteout(k.k))
988                         btree_account_key_drop(l->b, _k);
989
990                 k.k->size = 0;
991                 k.k->type = KEY_TYPE_deleted;
992
993                 if (_k >= btree_bset_last(l->b)->start) {
994                         unsigned u64s = _k->u64s;
995
996                         bch2_bset_delete(l->b, _k, _k->u64s);
997                         bch2_btree_node_iter_fix(iter, l->b, &l->iter,
998                                                  _k, u64s, 0);
999                         bch2_btree_iter_verify(iter, l->b);
1000                 } else {
1001                         extent_save(l->b, _k, k.k);
1002                         bch2_btree_node_iter_fix(iter, l->b, &l->iter,
1003                                                  _k, _k->u64s, _k->u64s);
1004                         verify_modified_extent(iter, _k);
1005                 }
1006
1007                 break;
1008         }
1009         case BCH_EXTENT_OVERLAP_MIDDLE: {
1010                 BKEY_PADDED(k) split;
1011                 /*
1012                  * The insert key falls 'in the middle' of k
1013                  * The insert key splits k in 3:
1014                  * - start only in k, preserve
1015                  * - middle common section, invalidate in k
1016                  * - end only in k, preserve
1017                  *
1018                  * We update the old key to preserve the start,
1019                  * insert will be the new common section,
1020                  * we manually insert the end that we are preserving.
1021                  *
1022                  * modify k _before_ doing the insert (which will move
1023                  * what k points to)
1024                  */
1025                 bkey_reassemble(&split.k, k.s_c);
1026                 split.k.k.needs_whiteout |= bkey_written(l->b, _k);
1027
1028                 bch2_cut_back(bkey_start_pos(&insert->k), &split.k.k);
1029                 BUG_ON(bkey_deleted(&split.k.k));
1030
1031                 __bch2_cut_front(insert->k.p, k);
1032                 BUG_ON(bkey_deleted(k.k));
1033                 extent_save(l->b, _k, k.k);
1034                 verify_modified_extent(iter, _k);
1035
1036                 extent_bset_insert(c, iter, &split.k);
1037                 break;
1038         }
1039         }
1040 }
1041
1042 struct extent_insert_state {
1043         struct bkey_i                   whiteout;
1044         bool                            update_journal;
1045         bool                            update_btree;
1046         bool                            deleting;
1047 };
1048
1049 static void __bch2_insert_fixup_extent(struct bch_fs *c,
1050                                        struct btree_iter *iter,
1051                                        struct bkey_i *insert,
1052                                        struct extent_insert_state *s)
1053 {
1054         struct btree_iter_level *l = &iter->l[0];
1055         struct bkey_packed *_k;
1056         struct bkey unpacked;
1057
1058         while ((_k = bch2_btree_node_iter_peek_filter(&l->iter, l->b,
1059                                                       KEY_TYPE_discard))) {
1060                 struct bkey_s k = __bkey_disassemble(l->b, _k, &unpacked);
1061                 struct bpos cur_end = bpos_min(insert->k.p, k.k->p);
1062                 enum bch_extent_overlap overlap =
1063                         bch2_extent_overlap(&insert->k, k.k);
1064
1065                 if (bkey_cmp(bkey_start_pos(k.k), insert->k.p) >= 0)
1066                         break;
1067
1068                 if (!bkey_whiteout(k.k))
1069                         s->update_journal = true;
1070
1071                 if (!s->update_journal) {
1072                         bch2_cut_front(cur_end, insert);
1073                         bch2_cut_front(cur_end, &s->whiteout);
1074                         bch2_btree_iter_set_pos_same_leaf(iter, cur_end);
1075                         goto next;
1076                 }
1077
1078                 /*
1079                  * When deleting, if possible just do it by switching the type
1080                  * of the key we're deleting, instead of creating and inserting
1081                  * a new whiteout:
1082                  */
1083                 if (s->deleting &&
1084                     !s->update_btree &&
1085                     !bkey_cmp(insert->k.p, k.k->p) &&
1086                     !bkey_cmp(bkey_start_pos(&insert->k), bkey_start_pos(k.k))) {
1087                         if (!bkey_whiteout(k.k)) {
1088                                 btree_account_key_drop(l->b, _k);
1089                                 _k->type = KEY_TYPE_discard;
1090                                 reserve_whiteout(l->b, _k);
1091                         }
1092                         break;
1093                 }
1094
1095                 if (k.k->needs_whiteout || bkey_written(l->b, _k)) {
1096                         insert->k.needs_whiteout = true;
1097                         s->update_btree = true;
1098                 }
1099
1100                 if (s->update_btree &&
1101                     overlap == BCH_EXTENT_OVERLAP_ALL &&
1102                     bkey_whiteout(k.k) &&
1103                     k.k->needs_whiteout) {
1104                         unreserve_whiteout(l->b, _k);
1105                         _k->needs_whiteout = false;
1106                 }
1107
1108                 extent_squash(c, iter, insert, _k, k, overlap);
1109
1110                 if (!s->update_btree)
1111                         bch2_cut_front(cur_end, insert);
1112 next:
1113                 if (overlap == BCH_EXTENT_OVERLAP_FRONT ||
1114                     overlap == BCH_EXTENT_OVERLAP_MIDDLE)
1115                         break;
1116         }
1117
1118         /*
1119          * may have skipped past some deleted extents greater than the insert
1120          * key, before we got to a non deleted extent and knew we could bail out
1121          * rewind the iterator a bit if necessary:
1122          */
1123         {
1124                 struct btree_node_iter node_iter = l->iter;
1125
1126                 while ((_k = bch2_btree_node_iter_prev_all(&node_iter, l->b)) &&
1127                        bkey_cmp_left_packed(l->b, _k, &insert->k.p) > 0)
1128                         l->iter = node_iter;
1129         }
1130 }
1131
1132 /**
1133  * bch_extent_insert_fixup - insert a new extent and deal with overlaps
1134  *
1135  * this may result in not actually doing the insert, or inserting some subset
1136  * of the insert key. For cmpxchg operations this is where that logic lives.
1137  *
1138  * All subsets of @insert that need to be inserted are inserted using
1139  * bch2_btree_insert_and_journal(). If @b or @res fills up, this function
1140  * returns false, setting @iter->pos for the prefix of @insert that actually got
1141  * inserted.
1142  *
1143  * BSET INVARIANTS: this function is responsible for maintaining all the
1144  * invariants for bsets of extents in memory. things get really hairy with 0
1145  * size extents
1146  *
1147  * within one bset:
1148  *
1149  * bkey_start_pos(bkey_next(k)) >= k
1150  * or bkey_start_offset(bkey_next(k)) >= k->offset
1151  *
1152  * i.e. strict ordering, no overlapping extents.
1153  *
1154  * multiple bsets (i.e. full btree node):
1155  *
1156  * âˆ€ k, j
1157  *   k.size != 0 âˆ§ j.size != 0 â†’
1158  *     Â¬ (k > bkey_start_pos(j) âˆ§ k < j)
1159  *
1160  * i.e. no two overlapping keys _of nonzero size_
1161  *
1162  * We can't realistically maintain this invariant for zero size keys because of
1163  * the key merging done in bch2_btree_insert_key() - for two mergeable keys k, j
1164  * there may be another 0 size key between them in another bset, and it will
1165  * thus overlap with the merged key.
1166  *
1167  * In addition, the end of iter->pos indicates how much has been processed.
1168  * If the end of iter->pos is not the same as the end of insert, then
1169  * key insertion needs to continue/be retried.
1170  */
1171 void bch2_insert_fixup_extent(struct btree_trans *trans,
1172                               struct btree_insert_entry *insert)
1173 {
1174         struct bch_fs *c = trans->c;
1175         struct btree_iter *iter = insert->iter;
1176         struct extent_insert_state s = {
1177                 .whiteout       = *insert->k,
1178                 .update_journal = !bkey_whiteout(&insert->k->k),
1179                 .update_btree   = !bkey_whiteout(&insert->k->k),
1180                 .deleting       = bkey_whiteout(&insert->k->k),
1181         };
1182         BKEY_PADDED(k) tmp;
1183
1184         EBUG_ON(iter->level);
1185         EBUG_ON(!insert->k->k.size);
1186         EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k->k)));
1187
1188         __bch2_insert_fixup_extent(c, iter, insert->k, &s);
1189
1190         bch2_btree_iter_set_pos_same_leaf(iter, insert->k->k.p);
1191
1192         if (s.update_btree) {
1193                 bkey_copy(&tmp.k, insert->k);
1194
1195                 if (s.deleting)
1196                         tmp.k.k.type = KEY_TYPE_discard;
1197 #if 0
1198                 /* disabled due to lock recursion - mark_lock: */
1199                 if (debug_check_bkeys(c))
1200                         bch2_bkey_debugcheck(c, iter->l[0].b,
1201                                              bkey_i_to_s_c(&tmp.k));
1202 #endif
1203                 EBUG_ON(bkey_deleted(&tmp.k.k) || !tmp.k.k.size);
1204
1205                 extent_bset_insert(c, iter, &tmp.k);
1206         }
1207
1208         if (s.update_journal) {
1209                 bkey_copy(&tmp.k, !s.deleting ? insert->k : &s.whiteout);
1210
1211                 if (s.deleting)
1212                         tmp.k.k.type = KEY_TYPE_discard;
1213
1214                 EBUG_ON(bkey_deleted(&tmp.k.k) || !tmp.k.k.size);
1215
1216                 bch2_btree_journal_key(trans, iter, &tmp.k);
1217         }
1218
1219         bch2_cut_front(insert->k->k.p, insert->k);
1220 }
1221
1222 const char *bch2_extent_invalid(const struct bch_fs *c, struct bkey_s_c k)
1223 {
1224         struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
1225         const union bch_extent_entry *entry;
1226         struct bch_extent_crc_unpacked crc;
1227         const struct bch_extent_ptr *ptr;
1228         unsigned size_ondisk = e.k->size;
1229         const char *reason;
1230         unsigned nonce = UINT_MAX;
1231
1232         if (bkey_val_u64s(e.k) > BKEY_EXTENT_VAL_U64s_MAX)
1233                 return "value too big";
1234
1235         extent_for_each_entry(e, entry) {
1236                 if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX)
1237                         return "invalid extent entry type";
1238
1239                 switch (extent_entry_type(entry)) {
1240                 case BCH_EXTENT_ENTRY_ptr:
1241                         ptr = entry_to_ptr(entry);
1242
1243                         reason = extent_ptr_invalid(c, e.s_c, &entry->ptr,
1244                                                     size_ondisk, false);
1245                         if (reason)
1246                                 return reason;
1247                         break;
1248                 case BCH_EXTENT_ENTRY_crc32:
1249                 case BCH_EXTENT_ENTRY_crc64:
1250                 case BCH_EXTENT_ENTRY_crc128:
1251                         crc = bch2_extent_crc_unpack(e.k, entry_to_crc(entry));
1252
1253                         if (crc.offset + e.k->size >
1254                             crc.uncompressed_size)
1255                                 return "checksum offset + key size > uncompressed size";
1256
1257                         size_ondisk = crc.compressed_size;
1258
1259                         if (!bch2_checksum_type_valid(c, crc.csum_type))
1260                                 return "invalid checksum type";
1261
1262                         if (crc.compression_type >= BCH_COMPRESSION_NR)
1263                                 return "invalid compression type";
1264
1265                         if (bch2_csum_type_is_encryption(crc.csum_type)) {
1266                                 if (nonce == UINT_MAX)
1267                                         nonce = crc.offset + crc.nonce;
1268                                 else if (nonce != crc.offset + crc.nonce)
1269                                         return "incorrect nonce";
1270                         }
1271                         break;
1272                 case BCH_EXTENT_ENTRY_stripe_ptr:
1273                         break;
1274                 }
1275         }
1276
1277         return NULL;
1278 }
1279
1280 void bch2_extent_debugcheck(struct bch_fs *c, struct btree *b,
1281                             struct bkey_s_c k)
1282 {
1283         struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
1284         const union bch_extent_entry *entry;
1285         struct extent_ptr_decoded p;
1286         char buf[160];
1287
1288         /*
1289          * XXX: we should be doing most/all of these checks at startup time,
1290          * where we check bch2_bkey_invalid() in btree_node_read_done()
1291          *
1292          * But note that we can't check for stale pointers or incorrect gc marks
1293          * until after journal replay is done (it might be an extent that's
1294          * going to get overwritten during replay)
1295          */
1296
1297         bch2_fs_bug_on(!test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) &&
1298                        !bch2_bkey_replicas_marked(c, e.s_c, false), c,
1299                        "extent key bad (replicas not marked in superblock):\n%s",
1300                        (bch2_bkey_val_to_text(&PBUF(buf), c, e.s_c), buf));
1301
1302         /*
1303          * If journal replay hasn't finished, we might be seeing keys
1304          * that will be overwritten by the time journal replay is done:
1305          */
1306         if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
1307                 return;
1308
1309         extent_for_each_ptr_decode(e, p, entry) {
1310                 struct bch_dev *ca      = bch_dev_bkey_exists(c, p.ptr.dev);
1311                 struct bucket_mark mark = ptr_bucket_mark(ca, &p.ptr);
1312                 unsigned stale          = gen_after(mark.gen, p.ptr.gen);
1313                 unsigned disk_sectors   = ptr_disk_sectors(p);
1314                 unsigned mark_sectors   = p.ptr.cached
1315                         ? mark.cached_sectors
1316                         : mark.dirty_sectors;
1317
1318                 bch2_fs_bug_on(stale && !p.ptr.cached, c,
1319                                "stale dirty pointer (ptr gen %u bucket %u",
1320                                p.ptr.gen, mark.gen);
1321
1322                 bch2_fs_bug_on(stale > 96, c, "key too stale: %i", stale);
1323
1324                 bch2_fs_bug_on(!stale &&
1325                                (mark.data_type != BCH_DATA_USER ||
1326                                 mark_sectors < disk_sectors), c,
1327                                "extent pointer not marked: %s:\n"
1328                                "type %u sectors %u < %u",
1329                                (bch2_bkey_val_to_text(&PBUF(buf), c, e.s_c), buf),
1330                                mark.data_type,
1331                                mark_sectors, disk_sectors);
1332         }
1333 }
1334
1335 void bch2_extent_to_text(struct printbuf *out, struct bch_fs *c,
1336                          struct bkey_s_c k)
1337 {
1338         const char *invalid;
1339
1340         bkey_ptrs_to_text(out, c, k);
1341
1342         invalid = bch2_extent_invalid(c, k);
1343         if (invalid)
1344                 pr_buf(out, " invalid: %s", invalid);
1345 }
1346
1347 static void bch2_extent_crc_init(union bch_extent_crc *crc,
1348                                  struct bch_extent_crc_unpacked new)
1349 {
1350 #define common_fields(_crc)                                             \
1351                 .csum_type              = _crc.csum_type,               \
1352                 .compression_type       = _crc.compression_type,        \
1353                 ._compressed_size       = _crc.compressed_size - 1,     \
1354                 ._uncompressed_size     = _crc.uncompressed_size - 1,   \
1355                 .offset                 = _crc.offset
1356
1357         if (bch_crc_bytes[new.csum_type]        <= 4 &&
1358             new.uncompressed_size               <= CRC32_SIZE_MAX &&
1359             new.nonce                           <= CRC32_NONCE_MAX) {
1360                 crc->crc32 = (struct bch_extent_crc32) {
1361                         .type = 1 << BCH_EXTENT_ENTRY_crc32,
1362                         common_fields(new),
1363                         .csum                   = *((__le32 *) &new.csum.lo),
1364                 };
1365                 return;
1366         }
1367
1368         if (bch_crc_bytes[new.csum_type]        <= 10 &&
1369             new.uncompressed_size               <= CRC64_SIZE_MAX &&
1370             new.nonce                           <= CRC64_NONCE_MAX) {
1371                 crc->crc64 = (struct bch_extent_crc64) {
1372                         .type = 1 << BCH_EXTENT_ENTRY_crc64,
1373                         common_fields(new),
1374                         .nonce                  = new.nonce,
1375                         .csum_lo                = new.csum.lo,
1376                         .csum_hi                = *((__le16 *) &new.csum.hi),
1377                 };
1378                 return;
1379         }
1380
1381         if (bch_crc_bytes[new.csum_type]        <= 16 &&
1382             new.uncompressed_size               <= CRC128_SIZE_MAX &&
1383             new.nonce                           <= CRC128_NONCE_MAX) {
1384                 crc->crc128 = (struct bch_extent_crc128) {
1385                         .type = 1 << BCH_EXTENT_ENTRY_crc128,
1386                         common_fields(new),
1387                         .nonce                  = new.nonce,
1388                         .csum                   = new.csum,
1389                 };
1390                 return;
1391         }
1392 #undef common_fields
1393         BUG();
1394 }
1395
1396 void bch2_extent_crc_append(struct bkey_i_extent *e,
1397                             struct bch_extent_crc_unpacked new)
1398 {
1399         bch2_extent_crc_init((void *) extent_entry_last(extent_i_to_s(e)), new);
1400         __extent_entry_push(e);
1401 }
1402
1403 static inline void __extent_entry_insert(struct bkey_i_extent *e,
1404                                          union bch_extent_entry *dst,
1405                                          union bch_extent_entry *new)
1406 {
1407         union bch_extent_entry *end = extent_entry_last(extent_i_to_s(e));
1408
1409         memmove_u64s_up((u64 *) dst + extent_entry_u64s(new),
1410                         dst, (u64 *) end - (u64 *) dst);
1411         e->k.u64s += extent_entry_u64s(new);
1412         memcpy(dst, new, extent_entry_bytes(new));
1413 }
1414
1415 void bch2_extent_ptr_decoded_append(struct bkey_i_extent *e,
1416                                     struct extent_ptr_decoded *p)
1417 {
1418         struct bch_extent_crc_unpacked crc;
1419         union bch_extent_entry *pos;
1420         unsigned i;
1421
1422         extent_for_each_crc(extent_i_to_s(e), crc, pos)
1423                 if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
1424                         pos = extent_entry_next(pos);
1425                         goto found;
1426                 }
1427
1428         bch2_extent_crc_append(e, p->crc);
1429         pos = extent_entry_last(extent_i_to_s(e));
1430 found:
1431         p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
1432         __extent_entry_insert(e, pos, to_entry(&p->ptr));
1433
1434         for (i = 0; i < p->ec_nr; i++) {
1435                 p->ec[i].type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
1436                 __extent_entry_insert(e, pos, to_entry(&p->ec[i]));
1437         }
1438 }
1439
1440 /*
1441  * bch_extent_normalize - clean up an extent, dropping stale pointers etc.
1442  *
1443  * Returns true if @k should be dropped entirely
1444  *
1445  * For existing keys, only called when btree nodes are being rewritten, not when
1446  * they're merely being compacted/resorted in memory.
1447  */
1448 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
1449 {
1450         struct bch_extent_ptr *ptr;
1451
1452         bch2_bkey_drop_ptrs(k, ptr,
1453                 ptr->cached &&
1454                 ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr));
1455
1456         /* will only happen if all pointers were cached: */
1457         if (!bkey_val_u64s(k.k))
1458                 k.k->type = KEY_TYPE_deleted;
1459
1460         return false;
1461 }
1462
1463 void bch2_extent_mark_replicas_cached(struct bch_fs *c,
1464                                       struct bkey_s_extent e,
1465                                       unsigned target,
1466                                       unsigned nr_desired_replicas)
1467 {
1468         union bch_extent_entry *entry;
1469         struct extent_ptr_decoded p;
1470         int extra = bch2_bkey_durability(c, e.s_c) - nr_desired_replicas;
1471
1472         if (target && extra > 0)
1473                 extent_for_each_ptr_decode(e, p, entry) {
1474                         int n = bch2_extent_ptr_durability(c, p);
1475
1476                         if (n && n <= extra &&
1477                             !bch2_dev_in_target(c, p.ptr.dev, target)) {
1478                                 entry->ptr.cached = true;
1479                                 extra -= n;
1480                         }
1481                 }
1482
1483         if (extra > 0)
1484                 extent_for_each_ptr_decode(e, p, entry) {
1485                         int n = bch2_extent_ptr_durability(c, p);
1486
1487                         if (n && n <= extra) {
1488                                 entry->ptr.cached = true;
1489                                 extra -= n;
1490                         }
1491                 }
1492 }
1493
1494 enum merge_result bch2_extent_merge(struct bch_fs *c,
1495                                     struct bkey_i *l, struct bkey_i *r)
1496 {
1497         struct bkey_s_extent el = bkey_i_to_s_extent(l);
1498         struct bkey_s_extent er = bkey_i_to_s_extent(r);
1499         union bch_extent_entry *en_l, *en_r;
1500
1501         if (bkey_val_u64s(&l->k) != bkey_val_u64s(&r->k))
1502                 return BCH_MERGE_NOMERGE;
1503
1504         extent_for_each_entry(el, en_l) {
1505                 struct bch_extent_ptr *lp, *rp;
1506                 struct bch_dev *ca;
1507
1508                 en_r = vstruct_idx(er.v, (u64 *) en_l - el.v->_data);
1509
1510                 if ((extent_entry_type(en_l) !=
1511                      extent_entry_type(en_r)) ||
1512                     !extent_entry_is_ptr(en_l))
1513                         return BCH_MERGE_NOMERGE;
1514
1515                 lp = &en_l->ptr;
1516                 rp = &en_r->ptr;
1517
1518                 if (lp->offset + el.k->size     != rp->offset ||
1519                     lp->dev                     != rp->dev ||
1520                     lp->gen                     != rp->gen)
1521                         return BCH_MERGE_NOMERGE;
1522
1523                 /* We don't allow extents to straddle buckets: */
1524                 ca = bch_dev_bkey_exists(c, lp->dev);
1525
1526                 if (PTR_BUCKET_NR(ca, lp) != PTR_BUCKET_NR(ca, rp))
1527                         return BCH_MERGE_NOMERGE;
1528         }
1529
1530         l->k.needs_whiteout |= r->k.needs_whiteout;
1531
1532         /* Keys with no pointers aren't restricted to one bucket and could
1533          * overflow KEY_SIZE
1534          */
1535         if ((u64) l->k.size + r->k.size > KEY_SIZE_MAX) {
1536                 bch2_key_resize(&l->k, KEY_SIZE_MAX);
1537                 bch2_cut_front(l->k.p, r);
1538                 return BCH_MERGE_PARTIAL;
1539         }
1540
1541         bch2_key_resize(&l->k, l->k.size + r->k.size);
1542
1543         return BCH_MERGE_MERGE;
1544 }
1545
1546 /*
1547  * When merging an extent that we're inserting into a btree node, the new merged
1548  * extent could overlap with an existing 0 size extent - if we don't fix that,
1549  * it'll break the btree node iterator so this code finds those 0 size extents
1550  * and shifts them out of the way.
1551  *
1552  * Also unpacks and repacks.
1553  */
1554 static bool bch2_extent_merge_inline(struct bch_fs *c,
1555                                      struct btree_iter *iter,
1556                                      struct bkey_packed *l,
1557                                      struct bkey_packed *r,
1558                                      bool back_merge)
1559 {
1560         struct btree *b = iter->l[0].b;
1561         struct btree_node_iter *node_iter = &iter->l[0].iter;
1562         BKEY_PADDED(k) li, ri;
1563         struct bkey_packed *m   = back_merge ? l : r;
1564         struct bkey_i *mi       = back_merge ? &li.k : &ri.k;
1565         struct bset_tree *t     = bch2_bkey_to_bset(b, m);
1566         enum merge_result ret;
1567
1568         EBUG_ON(bkey_written(b, m));
1569
1570         /*
1571          * We need to save copies of both l and r, because we might get a
1572          * partial merge (which modifies both) and then fails to repack
1573          */
1574         bch2_bkey_unpack(b, &li.k, l);
1575         bch2_bkey_unpack(b, &ri.k, r);
1576
1577         ret = bch2_bkey_merge(c, &li.k, &ri.k);
1578         if (ret == BCH_MERGE_NOMERGE)
1579                 return false;
1580
1581         /*
1582          * check if we overlap with deleted extents - would break the sort
1583          * order:
1584          */
1585         if (back_merge) {
1586                 struct bkey_packed *n = bkey_next(m);
1587
1588                 if (n != btree_bkey_last(b, t) &&
1589                     bkey_cmp_left_packed(b, n, &li.k.k.p) <= 0 &&
1590                     bkey_deleted(n))
1591                         return false;
1592         } else if (ret == BCH_MERGE_MERGE) {
1593                 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1594
1595                 if (prev &&
1596                     bkey_cmp_left_packed_byval(b, prev,
1597                                 bkey_start_pos(&li.k.k)) > 0)
1598                         return false;
1599         }
1600
1601         if (ret == BCH_MERGE_PARTIAL) {
1602                 if (!extent_i_save(b, m, mi))
1603                         return false;
1604
1605                 if (!back_merge)
1606                         bkey_copy(packed_to_bkey(l), &li.k);
1607                 else
1608                         bkey_copy(packed_to_bkey(r), &ri.k);
1609         } else {
1610                 if (!extent_i_save(b, m, &li.k))
1611                         return false;
1612         }
1613
1614         bch2_bset_fix_invalidated_key(b, m);
1615         bch2_btree_node_iter_fix(iter, b, node_iter,
1616                                  m, m->u64s, m->u64s);
1617         verify_modified_extent(iter, m);
1618
1619         return ret == BCH_MERGE_MERGE;
1620 }
1621
1622 bool bch2_check_range_allocated(struct bch_fs *c, struct bpos pos, u64 size,
1623                                unsigned nr_replicas)
1624 {
1625         struct btree_trans trans;
1626         struct btree_iter *iter;
1627         struct bpos end = pos;
1628         struct bkey_s_c k;
1629         bool ret = true;
1630
1631         end.offset += size;
1632
1633         bch2_trans_init(&trans, c);
1634
1635         for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, pos,
1636                            BTREE_ITER_SLOTS, k) {
1637                 if (bkey_cmp(bkey_start_pos(k.k), end) >= 0)
1638                         break;
1639
1640                 if (nr_replicas > bch2_bkey_nr_ptrs_allocated(k)) {
1641                         ret = false;
1642                         break;
1643                 }
1644         }
1645         bch2_trans_exit(&trans);
1646
1647         return ret;
1648 }
1649
1650 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)
1651 {
1652         unsigned ret = 0;
1653
1654         switch (k.k->type) {
1655         case KEY_TYPE_extent: {
1656                 struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
1657                 const union bch_extent_entry *entry;
1658                 struct extent_ptr_decoded p;
1659
1660                 extent_for_each_ptr_decode(e, p, entry)
1661                         ret += !p.ptr.cached &&
1662                                 p.crc.compression_type == BCH_COMPRESSION_NONE;
1663                 break;
1664         }
1665         case KEY_TYPE_reservation:
1666                 ret = bkey_s_c_to_reservation(k).v->nr_replicas;
1667                 break;
1668         }
1669
1670         return ret;
1671 }
1672
1673 /* KEY_TYPE_reservation: */
1674
1675 const char *bch2_reservation_invalid(const struct bch_fs *c, struct bkey_s_c k)
1676 {
1677         struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
1678
1679         if (bkey_val_bytes(k.k) != sizeof(struct bch_reservation))
1680                 return "incorrect value size";
1681
1682         if (!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX)
1683                 return "invalid nr_replicas";
1684
1685         return NULL;
1686 }
1687
1688 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
1689                               struct bkey_s_c k)
1690 {
1691         struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
1692
1693         pr_buf(out, "generation %u replicas %u",
1694                le32_to_cpu(r.v->generation),
1695                r.v->nr_replicas);
1696 }
1697
1698 enum merge_result bch2_reservation_merge(struct bch_fs *c,
1699                                          struct bkey_i *l, struct bkey_i *r)
1700 {
1701         struct bkey_i_reservation *li = bkey_i_to_reservation(l);
1702         struct bkey_i_reservation *ri = bkey_i_to_reservation(r);
1703
1704         if (li->v.generation != ri->v.generation ||
1705             li->v.nr_replicas != ri->v.nr_replicas)
1706                 return BCH_MERGE_NOMERGE;
1707
1708         l->k.needs_whiteout |= r->k.needs_whiteout;
1709
1710         /* Keys with no pointers aren't restricted to one bucket and could
1711          * overflow KEY_SIZE
1712          */
1713         if ((u64) l->k.size + r->k.size > KEY_SIZE_MAX) {
1714                 bch2_key_resize(&l->k, KEY_SIZE_MAX);
1715                 bch2_cut_front(l->k.p, r);
1716                 return BCH_MERGE_PARTIAL;
1717         }
1718
1719         bch2_key_resize(&l->k, l->k.size + r->k.size);
1720
1721         return BCH_MERGE_MERGE;
1722 }