]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/io_write.c
Move c_src dirs back to toplevel
[bcachefs-tools-debian] / libbcachefs / io_write.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
4  * Copyright 2012 Google, Inc.
5  */
6
7 #include "bcachefs.h"
8 #include "alloc_foreground.h"
9 #include "bkey_buf.h"
10 #include "bset.h"
11 #include "btree_update.h"
12 #include "buckets.h"
13 #include "checksum.h"
14 #include "clock.h"
15 #include "compress.h"
16 #include "debug.h"
17 #include "ec.h"
18 #include "error.h"
19 #include "extent_update.h"
20 #include "inode.h"
21 #include "io_write.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "nocow_locking.h"
26 #include "rebalance.h"
27 #include "subvolume.h"
28 #include "super.h"
29 #include "super-io.h"
30 #include "trace.h"
31
32 #include <linux/blkdev.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/sched/mm.h>
36
37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38
39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40                                        u64 now, int rw)
41 {
42         u64 latency_capable =
43                 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44         /* ideally we'd be taking into account the device's variance here: */
45         u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46         s64 latency_over = io_latency - latency_threshold;
47
48         if (latency_threshold && latency_over > 0) {
49                 /*
50                  * bump up congested by approximately latency_over * 4 /
51                  * latency_threshold - we don't need much accuracy here so don't
52                  * bother with the divide:
53                  */
54                 if (atomic_read(&ca->congested) < CONGESTED_MAX)
55                         atomic_add(latency_over >>
56                                    max_t(int, ilog2(latency_threshold) - 2, 0),
57                                    &ca->congested);
58
59                 ca->congested_last = now;
60         } else if (atomic_read(&ca->congested) > 0) {
61                 atomic_dec(&ca->congested);
62         }
63 }
64
65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66 {
67         atomic64_t *latency = &ca->cur_latency[rw];
68         u64 now = local_clock();
69         u64 io_latency = time_after64(now, submit_time)
70                 ? now - submit_time
71                 : 0;
72         u64 old, new, v = atomic64_read(latency);
73
74         do {
75                 old = v;
76
77                 /*
78                  * If the io latency was reasonably close to the current
79                  * latency, skip doing the update and atomic operation - most of
80                  * the time:
81                  */
82                 if (abs((int) (old - io_latency)) < (old >> 1) &&
83                     now & ~(~0U << 5))
84                         break;
85
86                 new = ewma_add(old, io_latency, 5);
87         } while ((v = atomic64_cmpxchg(latency, old, new)) != old);
88
89         bch2_congested_acct(ca, io_latency, now, rw);
90
91         __bch2_time_stats_update(&ca->io_latency[rw], submit_time, now);
92 }
93
94 #endif
95
96 /* Allocate, free from mempool: */
97
98 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
99 {
100         struct bvec_iter_all iter;
101         struct bio_vec *bv;
102
103         bio_for_each_segment_all(bv, bio, iter)
104                 if (bv->bv_page != ZERO_PAGE(0))
105                         mempool_free(bv->bv_page, &c->bio_bounce_pages);
106         bio->bi_vcnt = 0;
107 }
108
109 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
110 {
111         struct page *page;
112
113         if (likely(!*using_mempool)) {
114                 page = alloc_page(GFP_NOFS);
115                 if (unlikely(!page)) {
116                         mutex_lock(&c->bio_bounce_pages_lock);
117                         *using_mempool = true;
118                         goto pool_alloc;
119
120                 }
121         } else {
122 pool_alloc:
123                 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
124         }
125
126         return page;
127 }
128
129 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
130                                size_t size)
131 {
132         bool using_mempool = false;
133
134         while (size) {
135                 struct page *page = __bio_alloc_page_pool(c, &using_mempool);
136                 unsigned len = min_t(size_t, PAGE_SIZE, size);
137
138                 BUG_ON(!bio_add_page(bio, page, len, 0));
139                 size -= len;
140         }
141
142         if (using_mempool)
143                 mutex_unlock(&c->bio_bounce_pages_lock);
144 }
145
146 /* Extent update path: */
147
148 int bch2_sum_sector_overwrites(struct btree_trans *trans,
149                                struct btree_iter *extent_iter,
150                                struct bkey_i *new,
151                                bool *usage_increasing,
152                                s64 *i_sectors_delta,
153                                s64 *disk_sectors_delta)
154 {
155         struct bch_fs *c = trans->c;
156         struct btree_iter iter;
157         struct bkey_s_c old;
158         unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
159         bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
160         int ret = 0;
161
162         *usage_increasing       = false;
163         *i_sectors_delta        = 0;
164         *disk_sectors_delta     = 0;
165
166         bch2_trans_copy_iter(&iter, extent_iter);
167
168         for_each_btree_key_upto_continue_norestart(iter,
169                                 new->k.p, BTREE_ITER_SLOTS, old, ret) {
170                 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
171                         max(bkey_start_offset(&new->k),
172                             bkey_start_offset(old.k));
173
174                 *i_sectors_delta += sectors *
175                         (bkey_extent_is_allocation(&new->k) -
176                          bkey_extent_is_allocation(old.k));
177
178                 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
179                 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
180                         ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
181                         : 0;
182
183                 if (!*usage_increasing &&
184                     (new->k.p.snapshot != old.k->p.snapshot ||
185                      new_replicas > bch2_bkey_replicas(c, old) ||
186                      (!new_compressed && bch2_bkey_sectors_compressed(old))))
187                         *usage_increasing = true;
188
189                 if (bkey_ge(old.k->p, new->k.p))
190                         break;
191         }
192
193         bch2_trans_iter_exit(trans, &iter);
194         return ret;
195 }
196
197 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
198                                                     struct btree_iter *extent_iter,
199                                                     u64 new_i_size,
200                                                     s64 i_sectors_delta)
201 {
202         struct btree_iter iter;
203         struct bkey_i *k;
204         struct bkey_i_inode_v3 *inode;
205         /*
206          * Crazy performance optimization:
207          * Every extent update needs to also update the inode: the inode trigger
208          * will set bi->journal_seq to the journal sequence number of this
209          * transaction - for fsync.
210          *
211          * But if that's the only reason we're updating the inode (we're not
212          * updating bi_size or bi_sectors), then we don't need the inode update
213          * to be journalled - if we crash, the bi_journal_seq update will be
214          * lost, but that's fine.
215          */
216         unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL;
217         int ret;
218
219         k = bch2_bkey_get_mut_noupdate(trans, &iter, BTREE_ID_inodes,
220                               SPOS(0,
221                                    extent_iter->pos.inode,
222                                    extent_iter->snapshot),
223                               BTREE_ITER_CACHED);
224         ret = PTR_ERR_OR_ZERO(k);
225         if (unlikely(ret))
226                 return ret;
227
228         if (unlikely(k->k.type != KEY_TYPE_inode_v3)) {
229                 k = bch2_inode_to_v3(trans, k);
230                 ret = PTR_ERR_OR_ZERO(k);
231                 if (unlikely(ret))
232                         goto err;
233         }
234
235         inode = bkey_i_to_inode_v3(k);
236
237         if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
238             new_i_size > le64_to_cpu(inode->v.bi_size)) {
239                 inode->v.bi_size = cpu_to_le64(new_i_size);
240                 inode_update_flags = 0;
241         }
242
243         if (i_sectors_delta) {
244                 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
245                 inode_update_flags = 0;
246         }
247
248         if (inode->k.p.snapshot != iter.snapshot) {
249                 inode->k.p.snapshot = iter.snapshot;
250                 inode_update_flags = 0;
251         }
252
253         ret = bch2_trans_update(trans, &iter, &inode->k_i,
254                                 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
255                                 inode_update_flags);
256 err:
257         bch2_trans_iter_exit(trans, &iter);
258         return ret;
259 }
260
261 int bch2_extent_update(struct btree_trans *trans,
262                        subvol_inum inum,
263                        struct btree_iter *iter,
264                        struct bkey_i *k,
265                        struct disk_reservation *disk_res,
266                        u64 new_i_size,
267                        s64 *i_sectors_delta_total,
268                        bool check_enospc)
269 {
270         struct bpos next_pos;
271         bool usage_increasing;
272         s64 i_sectors_delta = 0, disk_sectors_delta = 0;
273         int ret;
274
275         /*
276          * This traverses us the iterator without changing iter->path->pos to
277          * search_key() (which is pos + 1 for extents): we want there to be a
278          * path already traversed at iter->pos because
279          * bch2_trans_extent_update() will use it to attempt extent merging
280          */
281         ret = __bch2_btree_iter_traverse(iter);
282         if (ret)
283                 return ret;
284
285         ret = bch2_extent_trim_atomic(trans, iter, k);
286         if (ret)
287                 return ret;
288
289         next_pos = k->k.p;
290
291         ret = bch2_sum_sector_overwrites(trans, iter, k,
292                         &usage_increasing,
293                         &i_sectors_delta,
294                         &disk_sectors_delta);
295         if (ret)
296                 return ret;
297
298         if (disk_res &&
299             disk_sectors_delta > (s64) disk_res->sectors) {
300                 ret = bch2_disk_reservation_add(trans->c, disk_res,
301                                         disk_sectors_delta - disk_res->sectors,
302                                         !check_enospc || !usage_increasing
303                                         ? BCH_DISK_RESERVATION_NOFAIL : 0);
304                 if (ret)
305                         return ret;
306         }
307
308         /*
309          * Note:
310          * We always have to do an inode update - even when i_size/i_sectors
311          * aren't changing - for fsync to work properly; fsync relies on
312          * inode->bi_journal_seq which is updated by the trigger code:
313          */
314         ret =   bch2_extent_update_i_size_sectors(trans, iter,
315                                                   min(k->k.p.offset << 9, new_i_size),
316                                                   i_sectors_delta) ?:
317                 bch2_trans_update(trans, iter, k, 0) ?:
318                 bch2_trans_commit(trans, disk_res, NULL,
319                                 BCH_TRANS_COMMIT_no_check_rw|
320                                 BCH_TRANS_COMMIT_no_enospc);
321         if (unlikely(ret))
322                 return ret;
323
324         if (i_sectors_delta_total)
325                 *i_sectors_delta_total += i_sectors_delta;
326         bch2_btree_iter_set_pos(iter, next_pos);
327         return 0;
328 }
329
330 static int bch2_write_index_default(struct bch_write_op *op)
331 {
332         struct bch_fs *c = op->c;
333         struct bkey_buf sk;
334         struct keylist *keys = &op->insert_keys;
335         struct bkey_i *k = bch2_keylist_front(keys);
336         struct btree_trans *trans = bch2_trans_get(c);
337         struct btree_iter iter;
338         subvol_inum inum = {
339                 .subvol = op->subvol,
340                 .inum   = k->k.p.inode,
341         };
342         int ret;
343
344         BUG_ON(!inum.subvol);
345
346         bch2_bkey_buf_init(&sk);
347
348         do {
349                 bch2_trans_begin(trans);
350
351                 k = bch2_keylist_front(keys);
352                 bch2_bkey_buf_copy(&sk, c, k);
353
354                 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
355                                                   &sk.k->k.p.snapshot);
356                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
357                         continue;
358                 if (ret)
359                         break;
360
361                 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
362                                      bkey_start_pos(&sk.k->k),
363                                      BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
364
365                 ret =   bch2_bkey_set_needs_rebalance(c, sk.k,
366                                         op->opts.background_target,
367                                         op->opts.background_compression) ?:
368                         bch2_extent_update(trans, inum, &iter, sk.k,
369                                         &op->res,
370                                         op->new_i_size, &op->i_sectors_delta,
371                                         op->flags & BCH_WRITE_CHECK_ENOSPC);
372                 bch2_trans_iter_exit(trans, &iter);
373
374                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
375                         continue;
376                 if (ret)
377                         break;
378
379                 if (bkey_ge(iter.pos, k->k.p))
380                         bch2_keylist_pop_front(&op->insert_keys);
381                 else
382                         bch2_cut_front(iter.pos, k);
383         } while (!bch2_keylist_empty(keys));
384
385         bch2_trans_put(trans);
386         bch2_bkey_buf_exit(&sk, c);
387
388         return ret;
389 }
390
391 /* Writes */
392
393 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
394                                enum bch_data_type type,
395                                const struct bkey_i *k,
396                                bool nocow)
397 {
398         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
399         struct bch_write_bio *n;
400
401         BUG_ON(c->opts.nochanges);
402
403         bkey_for_each_ptr(ptrs, ptr) {
404                 BUG_ON(!bch2_dev_exists2(c, ptr->dev));
405
406                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
407
408                 if (to_entry(ptr + 1) < ptrs.end) {
409                         n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
410                                                 GFP_NOFS, &ca->replica_set));
411
412                         n->bio.bi_end_io        = wbio->bio.bi_end_io;
413                         n->bio.bi_private       = wbio->bio.bi_private;
414                         n->parent               = wbio;
415                         n->split                = true;
416                         n->bounce               = false;
417                         n->put_bio              = true;
418                         n->bio.bi_opf           = wbio->bio.bi_opf;
419                         bio_inc_remaining(&wbio->bio);
420                 } else {
421                         n = wbio;
422                         n->split                = false;
423                 }
424
425                 n->c                    = c;
426                 n->dev                  = ptr->dev;
427                 n->have_ioref           = nocow || bch2_dev_get_ioref(ca,
428                                         type == BCH_DATA_btree ? READ : WRITE);
429                 n->nocow                = nocow;
430                 n->submit_time          = local_clock();
431                 n->inode_offset         = bkey_start_offset(&k->k);
432                 n->bio.bi_iter.bi_sector = ptr->offset;
433
434                 if (likely(n->have_ioref)) {
435                         this_cpu_add(ca->io_done->sectors[WRITE][type],
436                                      bio_sectors(&n->bio));
437
438                         bio_set_dev(&n->bio, ca->disk_sb.bdev);
439
440                         if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
441                                 bio_endio(&n->bio);
442                                 continue;
443                         }
444
445                         submit_bio(&n->bio);
446                 } else {
447                         n->bio.bi_status        = BLK_STS_REMOVED;
448                         bio_endio(&n->bio);
449                 }
450         }
451 }
452
453 static void __bch2_write(struct bch_write_op *);
454
455 static void bch2_write_done(struct closure *cl)
456 {
457         struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
458         struct bch_fs *c = op->c;
459
460         EBUG_ON(op->open_buckets.nr);
461
462         bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
463         bch2_disk_reservation_put(c, &op->res);
464
465         if (!(op->flags & BCH_WRITE_MOVE))
466                 bch2_write_ref_put(c, BCH_WRITE_REF_write);
467         bch2_keylist_free(&op->insert_keys, op->inline_keys);
468
469         EBUG_ON(cl->parent);
470         closure_debug_destroy(cl);
471         if (op->end_io)
472                 op->end_io(op);
473 }
474
475 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
476 {
477         struct keylist *keys = &op->insert_keys;
478         struct bch_extent_ptr *ptr;
479         struct bkey_i *src, *dst = keys->keys, *n;
480
481         for (src = keys->keys; src != keys->top; src = n) {
482                 n = bkey_next(src);
483
484                 if (bkey_extent_is_direct_data(&src->k)) {
485                         bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
486                                             test_bit(ptr->dev, op->failed.d));
487
488                         if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
489                                 return -EIO;
490                 }
491
492                 if (dst != src)
493                         memmove_u64s_down(dst, src, src->k.u64s);
494                 dst = bkey_next(dst);
495         }
496
497         keys->top = dst;
498         return 0;
499 }
500
501 /**
502  * __bch2_write_index - after a write, update index to point to new data
503  * @op:         bch_write_op to process
504  */
505 static void __bch2_write_index(struct bch_write_op *op)
506 {
507         struct bch_fs *c = op->c;
508         struct keylist *keys = &op->insert_keys;
509         unsigned dev;
510         int ret = 0;
511
512         if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
513                 ret = bch2_write_drop_io_error_ptrs(op);
514                 if (ret)
515                         goto err;
516         }
517
518         if (!bch2_keylist_empty(keys)) {
519                 u64 sectors_start = keylist_sectors(keys);
520
521                 ret = !(op->flags & BCH_WRITE_MOVE)
522                         ? bch2_write_index_default(op)
523                         : bch2_data_update_index_update(op);
524
525                 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
526                 BUG_ON(keylist_sectors(keys) && !ret);
527
528                 op->written += sectors_start - keylist_sectors(keys);
529
530                 if (ret && !bch2_err_matches(ret, EROFS)) {
531                         struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
532
533                         bch_err_inum_offset_ratelimited(c,
534                                 insert->k.p.inode, insert->k.p.offset << 9,
535                                 "write error while doing btree update: %s",
536                                 bch2_err_str(ret));
537                 }
538
539                 if (ret)
540                         goto err;
541         }
542 out:
543         /* If some a bucket wasn't written, we can't erasure code it: */
544         for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
545                 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
546
547         bch2_open_buckets_put(c, &op->open_buckets);
548         return;
549 err:
550         keys->top = keys->keys;
551         op->error = ret;
552         op->flags |= BCH_WRITE_DONE;
553         goto out;
554 }
555
556 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
557 {
558         if (state != wp->state) {
559                 u64 now = ktime_get_ns();
560
561                 if (wp->last_state_change &&
562                     time_after64(now, wp->last_state_change))
563                         wp->time[wp->state] += now - wp->last_state_change;
564                 wp->state = state;
565                 wp->last_state_change = now;
566         }
567 }
568
569 static inline void wp_update_state(struct write_point *wp, bool running)
570 {
571         enum write_point_state state;
572
573         state = running                  ? WRITE_POINT_running :
574                 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io
575                                          : WRITE_POINT_stopped;
576
577         __wp_update_state(wp, state);
578 }
579
580 static CLOSURE_CALLBACK(bch2_write_index)
581 {
582         closure_type(op, struct bch_write_op, cl);
583         struct write_point *wp = op->wp;
584         struct workqueue_struct *wq = index_update_wq(op);
585         unsigned long flags;
586
587         if ((op->flags & BCH_WRITE_DONE) &&
588             (op->flags & BCH_WRITE_MOVE))
589                 bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
590
591         spin_lock_irqsave(&wp->writes_lock, flags);
592         if (wp->state == WRITE_POINT_waiting_io)
593                 __wp_update_state(wp, WRITE_POINT_waiting_work);
594         list_add_tail(&op->wp_list, &wp->writes);
595         spin_unlock_irqrestore (&wp->writes_lock, flags);
596
597         queue_work(wq, &wp->index_update_work);
598 }
599
600 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
601 {
602         op->wp = wp;
603
604         if (wp->state == WRITE_POINT_stopped) {
605                 spin_lock_irq(&wp->writes_lock);
606                 __wp_update_state(wp, WRITE_POINT_waiting_io);
607                 spin_unlock_irq(&wp->writes_lock);
608         }
609 }
610
611 void bch2_write_point_do_index_updates(struct work_struct *work)
612 {
613         struct write_point *wp =
614                 container_of(work, struct write_point, index_update_work);
615         struct bch_write_op *op;
616
617         while (1) {
618                 spin_lock_irq(&wp->writes_lock);
619                 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
620                 if (op)
621                         list_del(&op->wp_list);
622                 wp_update_state(wp, op != NULL);
623                 spin_unlock_irq(&wp->writes_lock);
624
625                 if (!op)
626                         break;
627
628                 op->flags |= BCH_WRITE_IN_WORKER;
629
630                 __bch2_write_index(op);
631
632                 if (!(op->flags & BCH_WRITE_DONE))
633                         __bch2_write(op);
634                 else
635                         bch2_write_done(&op->cl);
636         }
637 }
638
639 static void bch2_write_endio(struct bio *bio)
640 {
641         struct closure *cl              = bio->bi_private;
642         struct bch_write_op *op         = container_of(cl, struct bch_write_op, cl);
643         struct bch_write_bio *wbio      = to_wbio(bio);
644         struct bch_write_bio *parent    = wbio->split ? wbio->parent : NULL;
645         struct bch_fs *c                = wbio->c;
646         struct bch_dev *ca              = bch_dev_bkey_exists(c, wbio->dev);
647
648         if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
649                                     op->pos.inode,
650                                     wbio->inode_offset << 9,
651                                     "data write error: %s",
652                                     bch2_blk_status_to_str(bio->bi_status))) {
653                 set_bit(wbio->dev, op->failed.d);
654                 op->flags |= BCH_WRITE_IO_ERROR;
655         }
656
657         if (wbio->nocow)
658                 set_bit(wbio->dev, op->devs_need_flush->d);
659
660         if (wbio->have_ioref) {
661                 bch2_latency_acct(ca, wbio->submit_time, WRITE);
662                 percpu_ref_put(&ca->io_ref);
663         }
664
665         if (wbio->bounce)
666                 bch2_bio_free_pages_pool(c, bio);
667
668         if (wbio->put_bio)
669                 bio_put(bio);
670
671         if (parent)
672                 bio_endio(&parent->bio);
673         else
674                 closure_put(cl);
675 }
676
677 static void init_append_extent(struct bch_write_op *op,
678                                struct write_point *wp,
679                                struct bversion version,
680                                struct bch_extent_crc_unpacked crc)
681 {
682         struct bkey_i_extent *e;
683
684         op->pos.offset += crc.uncompressed_size;
685
686         e = bkey_extent_init(op->insert_keys.top);
687         e->k.p          = op->pos;
688         e->k.size       = crc.uncompressed_size;
689         e->k.version    = version;
690
691         if (crc.csum_type ||
692             crc.compression_type ||
693             crc.nonce)
694                 bch2_extent_crc_append(&e->k_i, crc);
695
696         bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
697                                        op->flags & BCH_WRITE_CACHED);
698
699         bch2_keylist_push(&op->insert_keys);
700 }
701
702 static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
703                                         struct write_point *wp,
704                                         struct bio *src,
705                                         bool *page_alloc_failed,
706                                         void *buf)
707 {
708         struct bch_write_bio *wbio;
709         struct bio *bio;
710         unsigned output_available =
711                 min(wp->sectors_free << 9, src->bi_iter.bi_size);
712         unsigned pages = DIV_ROUND_UP(output_available +
713                                       (buf
714                                        ? ((unsigned long) buf & (PAGE_SIZE - 1))
715                                        : 0), PAGE_SIZE);
716
717         pages = min(pages, BIO_MAX_VECS);
718
719         bio = bio_alloc_bioset(NULL, pages, 0,
720                                GFP_NOFS, &c->bio_write);
721         wbio                    = wbio_init(bio);
722         wbio->put_bio           = true;
723         /* copy WRITE_SYNC flag */
724         wbio->bio.bi_opf        = src->bi_opf;
725
726         if (buf) {
727                 bch2_bio_map(bio, buf, output_available);
728                 return bio;
729         }
730
731         wbio->bounce            = true;
732
733         /*
734          * We can't use mempool for more than c->sb.encoded_extent_max
735          * worth of pages, but we'd like to allocate more if we can:
736          */
737         bch2_bio_alloc_pages_pool(c, bio,
738                                   min_t(unsigned, output_available,
739                                         c->opts.encoded_extent_max));
740
741         if (bio->bi_iter.bi_size < output_available)
742                 *page_alloc_failed =
743                         bch2_bio_alloc_pages(bio,
744                                              output_available -
745                                              bio->bi_iter.bi_size,
746                                              GFP_NOFS) != 0;
747
748         return bio;
749 }
750
751 static int bch2_write_rechecksum(struct bch_fs *c,
752                                  struct bch_write_op *op,
753                                  unsigned new_csum_type)
754 {
755         struct bio *bio = &op->wbio.bio;
756         struct bch_extent_crc_unpacked new_crc;
757         int ret;
758
759         /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
760
761         if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
762             bch2_csum_type_is_encryption(new_csum_type))
763                 new_csum_type = op->crc.csum_type;
764
765         ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
766                                   NULL, &new_crc,
767                                   op->crc.offset, op->crc.live_size,
768                                   new_csum_type);
769         if (ret)
770                 return ret;
771
772         bio_advance(bio, op->crc.offset << 9);
773         bio->bi_iter.bi_size = op->crc.live_size << 9;
774         op->crc = new_crc;
775         return 0;
776 }
777
778 static int bch2_write_decrypt(struct bch_write_op *op)
779 {
780         struct bch_fs *c = op->c;
781         struct nonce nonce = extent_nonce(op->version, op->crc);
782         struct bch_csum csum;
783         int ret;
784
785         if (!bch2_csum_type_is_encryption(op->crc.csum_type))
786                 return 0;
787
788         /*
789          * If we need to decrypt data in the write path, we'll no longer be able
790          * to verify the existing checksum (poly1305 mac, in this case) after
791          * it's decrypted - this is the last point we'll be able to reverify the
792          * checksum:
793          */
794         csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
795         if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
796                 return -EIO;
797
798         ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
799         op->crc.csum_type = 0;
800         op->crc.csum = (struct bch_csum) { 0, 0 };
801         return ret;
802 }
803
804 static enum prep_encoded_ret {
805         PREP_ENCODED_OK,
806         PREP_ENCODED_ERR,
807         PREP_ENCODED_CHECKSUM_ERR,
808         PREP_ENCODED_DO_WRITE,
809 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
810 {
811         struct bch_fs *c = op->c;
812         struct bio *bio = &op->wbio.bio;
813
814         if (!(op->flags & BCH_WRITE_DATA_ENCODED))
815                 return PREP_ENCODED_OK;
816
817         BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
818
819         /* Can we just write the entire extent as is? */
820         if (op->crc.uncompressed_size == op->crc.live_size &&
821             op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
822             op->crc.compressed_size <= wp->sectors_free &&
823             (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
824              op->incompressible)) {
825                 if (!crc_is_compressed(op->crc) &&
826                     op->csum_type != op->crc.csum_type &&
827                     bch2_write_rechecksum(c, op, op->csum_type) &&
828                     !c->opts.no_data_io)
829                         return PREP_ENCODED_CHECKSUM_ERR;
830
831                 return PREP_ENCODED_DO_WRITE;
832         }
833
834         /*
835          * If the data is compressed and we couldn't write the entire extent as
836          * is, we have to decompress it:
837          */
838         if (crc_is_compressed(op->crc)) {
839                 struct bch_csum csum;
840
841                 if (bch2_write_decrypt(op))
842                         return PREP_ENCODED_CHECKSUM_ERR;
843
844                 /* Last point we can still verify checksum: */
845                 csum = bch2_checksum_bio(c, op->crc.csum_type,
846                                          extent_nonce(op->version, op->crc),
847                                          bio);
848                 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
849                         return PREP_ENCODED_CHECKSUM_ERR;
850
851                 if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
852                         return PREP_ENCODED_ERR;
853         }
854
855         /*
856          * No longer have compressed data after this point - data might be
857          * encrypted:
858          */
859
860         /*
861          * If the data is checksummed and we're only writing a subset,
862          * rechecksum and adjust bio to point to currently live data:
863          */
864         if ((op->crc.live_size != op->crc.uncompressed_size ||
865              op->crc.csum_type != op->csum_type) &&
866             bch2_write_rechecksum(c, op, op->csum_type) &&
867             !c->opts.no_data_io)
868                 return PREP_ENCODED_CHECKSUM_ERR;
869
870         /*
871          * If we want to compress the data, it has to be decrypted:
872          */
873         if ((op->compression_opt ||
874              bch2_csum_type_is_encryption(op->crc.csum_type) !=
875              bch2_csum_type_is_encryption(op->csum_type)) &&
876             bch2_write_decrypt(op))
877                 return PREP_ENCODED_CHECKSUM_ERR;
878
879         return PREP_ENCODED_OK;
880 }
881
882 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
883                              struct bio **_dst)
884 {
885         struct bch_fs *c = op->c;
886         struct bio *src = &op->wbio.bio, *dst = src;
887         struct bvec_iter saved_iter;
888         void *ec_buf;
889         unsigned total_output = 0, total_input = 0;
890         bool bounce = false;
891         bool page_alloc_failed = false;
892         int ret, more = 0;
893
894         BUG_ON(!bio_sectors(src));
895
896         ec_buf = bch2_writepoint_ec_buf(c, wp);
897
898         switch (bch2_write_prep_encoded_data(op, wp)) {
899         case PREP_ENCODED_OK:
900                 break;
901         case PREP_ENCODED_ERR:
902                 ret = -EIO;
903                 goto err;
904         case PREP_ENCODED_CHECKSUM_ERR:
905                 goto csum_err;
906         case PREP_ENCODED_DO_WRITE:
907                 /* XXX look for bug here */
908                 if (ec_buf) {
909                         dst = bch2_write_bio_alloc(c, wp, src,
910                                                    &page_alloc_failed,
911                                                    ec_buf);
912                         bio_copy_data(dst, src);
913                         bounce = true;
914                 }
915                 init_append_extent(op, wp, op->version, op->crc);
916                 goto do_write;
917         }
918
919         if (ec_buf ||
920             op->compression_opt ||
921             (op->csum_type &&
922              !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
923             (bch2_csum_type_is_encryption(op->csum_type) &&
924              !(op->flags & BCH_WRITE_PAGES_OWNED))) {
925                 dst = bch2_write_bio_alloc(c, wp, src,
926                                            &page_alloc_failed,
927                                            ec_buf);
928                 bounce = true;
929         }
930
931         saved_iter = dst->bi_iter;
932
933         do {
934                 struct bch_extent_crc_unpacked crc = { 0 };
935                 struct bversion version = op->version;
936                 size_t dst_len = 0, src_len = 0;
937
938                 if (page_alloc_failed &&
939                     dst->bi_iter.bi_size  < (wp->sectors_free << 9) &&
940                     dst->bi_iter.bi_size < c->opts.encoded_extent_max)
941                         break;
942
943                 BUG_ON(op->compression_opt &&
944                        (op->flags & BCH_WRITE_DATA_ENCODED) &&
945                        bch2_csum_type_is_encryption(op->crc.csum_type));
946                 BUG_ON(op->compression_opt && !bounce);
947
948                 crc.compression_type = op->incompressible
949                         ? BCH_COMPRESSION_TYPE_incompressible
950                         : op->compression_opt
951                         ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
952                                             op->compression_opt)
953                         : 0;
954                 if (!crc_is_compressed(crc)) {
955                         dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
956                         dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
957
958                         if (op->csum_type)
959                                 dst_len = min_t(unsigned, dst_len,
960                                                 c->opts.encoded_extent_max);
961
962                         if (bounce) {
963                                 swap(dst->bi_iter.bi_size, dst_len);
964                                 bio_copy_data(dst, src);
965                                 swap(dst->bi_iter.bi_size, dst_len);
966                         }
967
968                         src_len = dst_len;
969                 }
970
971                 BUG_ON(!src_len || !dst_len);
972
973                 if (bch2_csum_type_is_encryption(op->csum_type)) {
974                         if (bversion_zero(version)) {
975                                 version.lo = atomic64_inc_return(&c->key_version);
976                         } else {
977                                 crc.nonce = op->nonce;
978                                 op->nonce += src_len >> 9;
979                         }
980                 }
981
982                 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
983                     !crc_is_compressed(crc) &&
984                     bch2_csum_type_is_encryption(op->crc.csum_type) ==
985                     bch2_csum_type_is_encryption(op->csum_type)) {
986                         u8 compression_type = crc.compression_type;
987                         u16 nonce = crc.nonce;
988                         /*
989                          * Note: when we're using rechecksum(), we need to be
990                          * checksumming @src because it has all the data our
991                          * existing checksum covers - if we bounced (because we
992                          * were trying to compress), @dst will only have the
993                          * part of the data the new checksum will cover.
994                          *
995                          * But normally we want to be checksumming post bounce,
996                          * because part of the reason for bouncing is so the
997                          * data can't be modified (by userspace) while it's in
998                          * flight.
999                          */
1000                         if (bch2_rechecksum_bio(c, src, version, op->crc,
1001                                         &crc, &op->crc,
1002                                         src_len >> 9,
1003                                         bio_sectors(src) - (src_len >> 9),
1004                                         op->csum_type))
1005                                 goto csum_err;
1006                         /*
1007                          * rchecksum_bio sets compression_type on crc from op->crc,
1008                          * this isn't always correct as sometimes we're changing
1009                          * an extent from uncompressed to incompressible.
1010                          */
1011                         crc.compression_type = compression_type;
1012                         crc.nonce = nonce;
1013                 } else {
1014                         if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1015                             bch2_rechecksum_bio(c, src, version, op->crc,
1016                                         NULL, &op->crc,
1017                                         src_len >> 9,
1018                                         bio_sectors(src) - (src_len >> 9),
1019                                         op->crc.csum_type))
1020                                 goto csum_err;
1021
1022                         crc.compressed_size     = dst_len >> 9;
1023                         crc.uncompressed_size   = src_len >> 9;
1024                         crc.live_size           = src_len >> 9;
1025
1026                         swap(dst->bi_iter.bi_size, dst_len);
1027                         ret = bch2_encrypt_bio(c, op->csum_type,
1028                                                extent_nonce(version, crc), dst);
1029                         if (ret)
1030                                 goto err;
1031
1032                         crc.csum = bch2_checksum_bio(c, op->csum_type,
1033                                          extent_nonce(version, crc), dst);
1034                         crc.csum_type = op->csum_type;
1035                         swap(dst->bi_iter.bi_size, dst_len);
1036                 }
1037
1038                 init_append_extent(op, wp, version, crc);
1039
1040                 if (dst != src)
1041                         bio_advance(dst, dst_len);
1042                 bio_advance(src, src_len);
1043                 total_output    += dst_len;
1044                 total_input     += src_len;
1045         } while (dst->bi_iter.bi_size &&
1046                  src->bi_iter.bi_size &&
1047                  wp->sectors_free &&
1048                  !bch2_keylist_realloc(&op->insert_keys,
1049                                       op->inline_keys,
1050                                       ARRAY_SIZE(op->inline_keys),
1051                                       BKEY_EXTENT_U64s_MAX));
1052
1053         more = src->bi_iter.bi_size != 0;
1054
1055         dst->bi_iter = saved_iter;
1056
1057         if (dst == src && more) {
1058                 BUG_ON(total_output != total_input);
1059
1060                 dst = bio_split(src, total_input >> 9,
1061                                 GFP_NOFS, &c->bio_write);
1062                 wbio_init(dst)->put_bio = true;
1063                 /* copy WRITE_SYNC flag */
1064                 dst->bi_opf             = src->bi_opf;
1065         }
1066
1067         dst->bi_iter.bi_size = total_output;
1068 do_write:
1069         *_dst = dst;
1070         return more;
1071 csum_err:
1072         bch_err(c, "error verifying existing checksum while rewriting existing data (memory corruption?)");
1073         ret = -EIO;
1074 err:
1075         if (to_wbio(dst)->bounce)
1076                 bch2_bio_free_pages_pool(c, dst);
1077         if (to_wbio(dst)->put_bio)
1078                 bio_put(dst);
1079
1080         return ret;
1081 }
1082
1083 static bool bch2_extent_is_writeable(struct bch_write_op *op,
1084                                      struct bkey_s_c k)
1085 {
1086         struct bch_fs *c = op->c;
1087         struct bkey_s_c_extent e;
1088         struct extent_ptr_decoded p;
1089         const union bch_extent_entry *entry;
1090         unsigned replicas = 0;
1091
1092         if (k.k->type != KEY_TYPE_extent)
1093                 return false;
1094
1095         e = bkey_s_c_to_extent(k);
1096         extent_for_each_ptr_decode(e, p, entry) {
1097                 if (crc_is_encoded(p.crc) || p.has_ec)
1098                         return false;
1099
1100                 replicas += bch2_extent_ptr_durability(c, &p);
1101         }
1102
1103         return replicas >= op->opts.data_replicas;
1104 }
1105
1106 static inline void bch2_nocow_write_unlock(struct bch_write_op *op)
1107 {
1108         struct bch_fs *c = op->c;
1109
1110         for_each_keylist_key(&op->insert_keys, k) {
1111                 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
1112
1113                 bkey_for_each_ptr(ptrs, ptr)
1114                         bch2_bucket_nocow_unlock(&c->nocow_locks,
1115                                                  PTR_BUCKET_POS(c, ptr),
1116                                                  BUCKET_NOCOW_LOCK_UPDATE);
1117         }
1118 }
1119
1120 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1121                                                   struct btree_iter *iter,
1122                                                   struct bkey_i *orig,
1123                                                   struct bkey_s_c k,
1124                                                   u64 new_i_size)
1125 {
1126         if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1127                 /* trace this */
1128                 return 0;
1129         }
1130
1131         struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
1132         int ret = PTR_ERR_OR_ZERO(new);
1133         if (ret)
1134                 return ret;
1135
1136         bch2_cut_front(bkey_start_pos(&orig->k), new);
1137         bch2_cut_back(orig->k.p, new);
1138
1139         struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1140         bkey_for_each_ptr(ptrs, ptr)
1141                 ptr->unwritten = 0;
1142
1143         /*
1144          * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1145          * that was done when we kicked off the write, and here it's important
1146          * that we update the extent that we wrote to - even if a snapshot has
1147          * since been created. The write is still outstanding, so we're ok
1148          * w.r.t. snapshot atomicity:
1149          */
1150         return  bch2_extent_update_i_size_sectors(trans, iter,
1151                                         min(new->k.p.offset << 9, new_i_size), 0) ?:
1152                 bch2_trans_update(trans, iter, new,
1153                                   BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
1154 }
1155
1156 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1157 {
1158         struct bch_fs *c = op->c;
1159         struct btree_trans *trans = bch2_trans_get(c);
1160
1161         for_each_keylist_key(&op->insert_keys, orig) {
1162                 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1163                                      bkey_start_pos(&orig->k), orig->k.p,
1164                                      BTREE_ITER_INTENT, k,
1165                                      NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
1166                         bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1167                 }));
1168
1169                 if (ret && !bch2_err_matches(ret, EROFS)) {
1170                         struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1171
1172                         bch_err_inum_offset_ratelimited(c,
1173                                 insert->k.p.inode, insert->k.p.offset << 9,
1174                                 "write error while doing btree update: %s",
1175                                 bch2_err_str(ret));
1176                 }
1177
1178                 if (ret) {
1179                         op->error = ret;
1180                         break;
1181                 }
1182         }
1183
1184         bch2_trans_put(trans);
1185 }
1186
1187 static void __bch2_nocow_write_done(struct bch_write_op *op)
1188 {
1189         bch2_nocow_write_unlock(op);
1190
1191         if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1192                 op->error = -EIO;
1193         } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1194                 bch2_nocow_write_convert_unwritten(op);
1195 }
1196
1197 static CLOSURE_CALLBACK(bch2_nocow_write_done)
1198 {
1199         closure_type(op, struct bch_write_op, cl);
1200
1201         __bch2_nocow_write_done(op);
1202         bch2_write_done(cl);
1203 }
1204
1205 struct bucket_to_lock {
1206         struct bpos             b;
1207         unsigned                gen;
1208         struct nocow_lock_bucket *l;
1209 };
1210
1211 static void bch2_nocow_write(struct bch_write_op *op)
1212 {
1213         struct bch_fs *c = op->c;
1214         struct btree_trans *trans;
1215         struct btree_iter iter;
1216         struct bkey_s_c k;
1217         DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1218         u32 snapshot;
1219         struct bucket_to_lock *stale_at;
1220         int ret;
1221
1222         if (op->flags & BCH_WRITE_MOVE)
1223                 return;
1224
1225         darray_init(&buckets);
1226         trans = bch2_trans_get(c);
1227 retry:
1228         bch2_trans_begin(trans);
1229
1230         ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1231         if (unlikely(ret))
1232                 goto err;
1233
1234         bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1235                              SPOS(op->pos.inode, op->pos.offset, snapshot),
1236                              BTREE_ITER_SLOTS);
1237         while (1) {
1238                 struct bio *bio = &op->wbio.bio;
1239
1240                 buckets.nr = 0;
1241
1242                 k = bch2_btree_iter_peek_slot(&iter);
1243                 ret = bkey_err(k);
1244                 if (ret)
1245                         break;
1246
1247                 /* fall back to normal cow write path? */
1248                 if (unlikely(k.k->p.snapshot != snapshot ||
1249                              !bch2_extent_is_writeable(op, k)))
1250                         break;
1251
1252                 if (bch2_keylist_realloc(&op->insert_keys,
1253                                          op->inline_keys,
1254                                          ARRAY_SIZE(op->inline_keys),
1255                                          k.k->u64s))
1256                         break;
1257
1258                 /* Get iorefs before dropping btree locks: */
1259                 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1260                 bkey_for_each_ptr(ptrs, ptr) {
1261                         struct bpos b = PTR_BUCKET_POS(c, ptr);
1262                         struct nocow_lock_bucket *l =
1263                                 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
1264                         prefetch(l);
1265
1266                         if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE)))
1267                                 goto err_get_ioref;
1268
1269                         /* XXX allocating memory with btree locks held - rare */
1270                         darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1271                                                    .b = b, .gen = ptr->gen, .l = l,
1272                                                    }), GFP_KERNEL|__GFP_NOFAIL);
1273
1274                         if (ptr->unwritten)
1275                                 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1276                 }
1277
1278                 /* Unlock before taking nocow locks, doing IO: */
1279                 bkey_reassemble(op->insert_keys.top, k);
1280                 bch2_trans_unlock(trans);
1281
1282                 bch2_cut_front(op->pos, op->insert_keys.top);
1283                 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1284                         bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1285
1286                 darray_for_each(buckets, i) {
1287                         struct bch_dev *ca = bch_dev_bkey_exists(c, i->b.inode);
1288
1289                         __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1290                                                  bucket_to_u64(i->b),
1291                                                  BUCKET_NOCOW_LOCK_UPDATE);
1292
1293                         rcu_read_lock();
1294                         bool stale = gen_after(*bucket_gen(ca, i->b.offset), i->gen);
1295                         rcu_read_unlock();
1296
1297                         if (unlikely(stale)) {
1298                                 stale_at = i;
1299                                 goto err_bucket_stale;
1300                         }
1301                 }
1302
1303                 bio = &op->wbio.bio;
1304                 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1305                         bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1306                                         GFP_KERNEL, &c->bio_write);
1307                         wbio_init(bio)->put_bio = true;
1308                         bio->bi_opf = op->wbio.bio.bi_opf;
1309                 } else {
1310                         op->flags |= BCH_WRITE_DONE;
1311                 }
1312
1313                 op->pos.offset += bio_sectors(bio);
1314                 op->written += bio_sectors(bio);
1315
1316                 bio->bi_end_io  = bch2_write_endio;
1317                 bio->bi_private = &op->cl;
1318                 bio->bi_opf |= REQ_OP_WRITE;
1319                 closure_get(&op->cl);
1320                 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1321                                           op->insert_keys.top, true);
1322
1323                 bch2_keylist_push(&op->insert_keys);
1324                 if (op->flags & BCH_WRITE_DONE)
1325                         break;
1326                 bch2_btree_iter_advance(&iter);
1327         }
1328 out:
1329         bch2_trans_iter_exit(trans, &iter);
1330 err:
1331         if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1332                 goto retry;
1333
1334         if (ret) {
1335                 bch_err_inum_offset_ratelimited(c,
1336                         op->pos.inode, op->pos.offset << 9,
1337                         "%s: btree lookup error %s", __func__, bch2_err_str(ret));
1338                 op->error = ret;
1339                 op->flags |= BCH_WRITE_DONE;
1340         }
1341
1342         bch2_trans_put(trans);
1343         darray_exit(&buckets);
1344
1345         /* fallback to cow write path? */
1346         if (!(op->flags & BCH_WRITE_DONE)) {
1347                 closure_sync(&op->cl);
1348                 __bch2_nocow_write_done(op);
1349                 op->insert_keys.top = op->insert_keys.keys;
1350         } else if (op->flags & BCH_WRITE_SYNC) {
1351                 closure_sync(&op->cl);
1352                 bch2_nocow_write_done(&op->cl.work);
1353         } else {
1354                 /*
1355                  * XXX
1356                  * needs to run out of process context because ei_quota_lock is
1357                  * a mutex
1358                  */
1359                 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1360         }
1361         return;
1362 err_get_ioref:
1363         darray_for_each(buckets, i)
1364                 percpu_ref_put(&bch_dev_bkey_exists(c, i->b.inode)->io_ref);
1365
1366         /* Fall back to COW path: */
1367         goto out;
1368 err_bucket_stale:
1369         darray_for_each(buckets, i) {
1370                 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1371                 if (i == stale_at)
1372                         break;
1373         }
1374
1375         /* We can retry this: */
1376         ret = -BCH_ERR_transaction_restart;
1377         goto err_get_ioref;
1378 }
1379
1380 static void __bch2_write(struct bch_write_op *op)
1381 {
1382         struct bch_fs *c = op->c;
1383         struct write_point *wp = NULL;
1384         struct bio *bio = NULL;
1385         unsigned nofs_flags;
1386         int ret;
1387
1388         nofs_flags = memalloc_nofs_save();
1389
1390         if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1391                 bch2_nocow_write(op);
1392                 if (op->flags & BCH_WRITE_DONE)
1393                         goto out_nofs_restore;
1394         }
1395 again:
1396         memset(&op->failed, 0, sizeof(op->failed));
1397
1398         do {
1399                 struct bkey_i *key_to_write;
1400                 unsigned key_to_write_offset = op->insert_keys.top_p -
1401                         op->insert_keys.keys_p;
1402
1403                 /* +1 for possible cache device: */
1404                 if (op->open_buckets.nr + op->nr_replicas + 1 >
1405                     ARRAY_SIZE(op->open_buckets.v))
1406                         break;
1407
1408                 if (bch2_keylist_realloc(&op->insert_keys,
1409                                         op->inline_keys,
1410                                         ARRAY_SIZE(op->inline_keys),
1411                                         BKEY_EXTENT_U64s_MAX))
1412                         break;
1413
1414                 /*
1415                  * The copygc thread is now global, which means it's no longer
1416                  * freeing up space on specific disks, which means that
1417                  * allocations for specific disks may hang arbitrarily long:
1418                  */
1419                 ret = bch2_trans_do(c, NULL, NULL, 0,
1420                         bch2_alloc_sectors_start_trans(trans,
1421                                 op->target,
1422                                 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1423                                 op->write_point,
1424                                 &op->devs_have,
1425                                 op->nr_replicas,
1426                                 op->nr_replicas_required,
1427                                 op->watermark,
1428                                 op->flags,
1429                                 (op->flags & (BCH_WRITE_ALLOC_NOWAIT|
1430                                               BCH_WRITE_ONLY_SPECIFIED_DEVS))
1431                                 ? NULL : &op->cl, &wp));
1432                 if (unlikely(ret)) {
1433                         if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1434                                 break;
1435
1436                         goto err;
1437                 }
1438
1439                 EBUG_ON(!wp);
1440
1441                 bch2_open_bucket_get(c, wp, &op->open_buckets);
1442                 ret = bch2_write_extent(op, wp, &bio);
1443
1444                 bch2_alloc_sectors_done_inlined(c, wp);
1445 err:
1446                 if (ret <= 0) {
1447                         op->flags |= BCH_WRITE_DONE;
1448
1449                         if (ret < 0) {
1450                                 bch_err_inum_offset_ratelimited(c,
1451                                         op->pos.inode,
1452                                         op->pos.offset << 9,
1453                                         "%s(): error: %s", __func__, bch2_err_str(ret));
1454                                 op->error = ret;
1455                                 break;
1456                         }
1457                 }
1458
1459                 bio->bi_end_io  = bch2_write_endio;
1460                 bio->bi_private = &op->cl;
1461                 bio->bi_opf |= REQ_OP_WRITE;
1462
1463                 closure_get(bio->bi_private);
1464
1465                 key_to_write = (void *) (op->insert_keys.keys_p +
1466                                          key_to_write_offset);
1467
1468                 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1469                                           key_to_write, false);
1470         } while (ret);
1471
1472         /*
1473          * Sync or no?
1474          *
1475          * If we're running asynchronously, wne may still want to block
1476          * synchronously here if we weren't able to submit all of the IO at
1477          * once, as that signals backpressure to the caller.
1478          */
1479         if ((op->flags & BCH_WRITE_SYNC) ||
1480             (!(op->flags & BCH_WRITE_DONE) &&
1481              !(op->flags & BCH_WRITE_IN_WORKER))) {
1482                 closure_sync(&op->cl);
1483                 __bch2_write_index(op);
1484
1485                 if (!(op->flags & BCH_WRITE_DONE))
1486                         goto again;
1487                 bch2_write_done(&op->cl);
1488         } else {
1489                 bch2_write_queue(op, wp);
1490                 continue_at(&op->cl, bch2_write_index, NULL);
1491         }
1492 out_nofs_restore:
1493         memalloc_nofs_restore(nofs_flags);
1494 }
1495
1496 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1497 {
1498         struct bio *bio = &op->wbio.bio;
1499         struct bvec_iter iter;
1500         struct bkey_i_inline_data *id;
1501         unsigned sectors;
1502         int ret;
1503
1504         op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1505         op->flags |= BCH_WRITE_DONE;
1506
1507         bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1508
1509         ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1510                                    ARRAY_SIZE(op->inline_keys),
1511                                    BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1512         if (ret) {
1513                 op->error = ret;
1514                 goto err;
1515         }
1516
1517         sectors = bio_sectors(bio);
1518         op->pos.offset += sectors;
1519
1520         id = bkey_inline_data_init(op->insert_keys.top);
1521         id->k.p         = op->pos;
1522         id->k.version   = op->version;
1523         id->k.size      = sectors;
1524
1525         iter = bio->bi_iter;
1526         iter.bi_size = data_len;
1527         memcpy_from_bio(id->v.data, bio, iter);
1528
1529         while (data_len & 7)
1530                 id->v.data[data_len++] = '\0';
1531         set_bkey_val_bytes(&id->k, data_len);
1532         bch2_keylist_push(&op->insert_keys);
1533
1534         __bch2_write_index(op);
1535 err:
1536         bch2_write_done(&op->cl);
1537 }
1538
1539 /**
1540  * bch2_write() - handle a write to a cache device or flash only volume
1541  * @cl:         &bch_write_op->cl
1542  *
1543  * This is the starting point for any data to end up in a cache device; it could
1544  * be from a normal write, or a writeback write, or a write to a flash only
1545  * volume - it's also used by the moving garbage collector to compact data in
1546  * mostly empty buckets.
1547  *
1548  * It first writes the data to the cache, creating a list of keys to be inserted
1549  * (if the data won't fit in a single open bucket, there will be multiple keys);
1550  * after the data is written it calls bch_journal, and after the keys have been
1551  * added to the next journal write they're inserted into the btree.
1552  *
1553  * If op->discard is true, instead of inserting the data it invalidates the
1554  * region of the cache represented by op->bio and op->inode.
1555  */
1556 CLOSURE_CALLBACK(bch2_write)
1557 {
1558         closure_type(op, struct bch_write_op, cl);
1559         struct bio *bio = &op->wbio.bio;
1560         struct bch_fs *c = op->c;
1561         unsigned data_len;
1562
1563         EBUG_ON(op->cl.parent);
1564         BUG_ON(!op->nr_replicas);
1565         BUG_ON(!op->write_point.v);
1566         BUG_ON(bkey_eq(op->pos, POS_MAX));
1567
1568         op->start_time = local_clock();
1569         bch2_keylist_init(&op->insert_keys, op->inline_keys);
1570         wbio_init(bio)->put_bio = false;
1571
1572         if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1573                 bch_err_inum_offset_ratelimited(c,
1574                         op->pos.inode,
1575                         op->pos.offset << 9,
1576                         "misaligned write");
1577                 op->error = -EIO;
1578                 goto err;
1579         }
1580
1581         if (c->opts.nochanges) {
1582                 op->error = -BCH_ERR_erofs_no_writes;
1583                 goto err;
1584         }
1585
1586         if (!(op->flags & BCH_WRITE_MOVE) &&
1587             !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1588                 op->error = -BCH_ERR_erofs_no_writes;
1589                 goto err;
1590         }
1591
1592         this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1593         bch2_increment_clock(c, bio_sectors(bio), WRITE);
1594
1595         data_len = min_t(u64, bio->bi_iter.bi_size,
1596                          op->new_i_size - (op->pos.offset << 9));
1597
1598         if (c->opts.inline_data &&
1599             data_len <= min(block_bytes(c) / 2, 1024U)) {
1600                 bch2_write_data_inline(op, data_len);
1601                 return;
1602         }
1603
1604         __bch2_write(op);
1605         return;
1606 err:
1607         bch2_disk_reservation_put(c, &op->res);
1608
1609         closure_debug_destroy(&op->cl);
1610         if (op->end_io)
1611                 op->end_io(op);
1612 }
1613
1614 static const char * const bch2_write_flags[] = {
1615 #define x(f)    #f,
1616         BCH_WRITE_FLAGS()
1617 #undef x
1618         NULL
1619 };
1620
1621 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1622 {
1623         prt_str(out, "pos: ");
1624         bch2_bpos_to_text(out, op->pos);
1625         prt_newline(out);
1626         printbuf_indent_add(out, 2);
1627
1628         prt_str(out, "started: ");
1629         bch2_pr_time_units(out, local_clock() - op->start_time);
1630         prt_newline(out);
1631
1632         prt_str(out, "flags: ");
1633         prt_bitflags(out, bch2_write_flags, op->flags);
1634         prt_newline(out);
1635
1636         prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl));
1637         prt_newline(out);
1638
1639         printbuf_indent_sub(out, 2);
1640 }
1641
1642 void bch2_fs_io_write_exit(struct bch_fs *c)
1643 {
1644         mempool_exit(&c->bio_bounce_pages);
1645         bioset_exit(&c->bio_write);
1646 }
1647
1648 int bch2_fs_io_write_init(struct bch_fs *c)
1649 {
1650         if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
1651                         BIOSET_NEED_BVECS))
1652                 return -BCH_ERR_ENOMEM_bio_write_init;
1653
1654         if (mempool_init_page_pool(&c->bio_bounce_pages,
1655                                    max_t(unsigned,
1656                                          c->opts.btree_node_size,
1657                                          c->opts.encoded_extent_max) /
1658                                    PAGE_SIZE, 0))
1659                 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1660
1661         return 0;
1662 }