]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/movinggc.c
Update bcachefs sources to 63924135a1 bcachefs: Have fsck check for stripe pointers...
[bcachefs-tools-debian] / libbcachefs / movinggc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Moving/copying garbage collector
4  *
5  * Copyright 2012 Google, Inc.
6  */
7
8 #include "bcachefs.h"
9 #include "alloc_foreground.h"
10 #include "btree_iter.h"
11 #include "btree_update.h"
12 #include "buckets.h"
13 #include "clock.h"
14 #include "disk_groups.h"
15 #include "error.h"
16 #include "extents.h"
17 #include "eytzinger.h"
18 #include "io.h"
19 #include "keylist.h"
20 #include "move.h"
21 #include "movinggc.h"
22 #include "super-io.h"
23
24 #include <trace/events/bcachefs.h>
25 #include <linux/freezer.h>
26 #include <linux/kthread.h>
27 #include <linux/math64.h>
28 #include <linux/sched/task.h>
29 #include <linux/sort.h>
30 #include <linux/wait.h>
31
32 /*
33  * We can't use the entire copygc reserve in one iteration of copygc: we may
34  * need the buckets we're freeing up to go back into the copygc reserve to make
35  * forward progress, but if the copygc reserve is full they'll be available for
36  * any allocation - and it's possible that in a given iteration, we free up most
37  * of the buckets we're going to free before we allocate most of the buckets
38  * we're going to allocate.
39  *
40  * If we only use half of the reserve per iteration, then in steady state we'll
41  * always have room in the reserve for the buckets we're going to need in the
42  * next iteration:
43  */
44 #define COPYGC_BUCKETS_PER_ITER(ca)                                     \
45         ((ca)->free[RESERVE_MOVINGGC].size / 2)
46
47 static int bucket_offset_cmp(const void *_l, const void *_r, size_t size)
48 {
49         const struct copygc_heap_entry *l = _l;
50         const struct copygc_heap_entry *r = _r;
51
52         return  cmp_int(l->dev,    r->dev) ?:
53                 cmp_int(l->offset, r->offset);
54 }
55
56 static enum data_cmd copygc_pred(struct bch_fs *c, void *arg,
57                                  struct bkey_s_c k,
58                                  struct bch_io_opts *io_opts,
59                                  struct data_opts *data_opts)
60 {
61         copygc_heap *h = &c->copygc_heap;
62         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
63         const union bch_extent_entry *entry;
64         struct extent_ptr_decoded p = { 0 };
65
66         bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
67                 struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
68                 struct copygc_heap_entry search = {
69                         .dev    = p.ptr.dev,
70                         .offset = p.ptr.offset,
71                 };
72
73                 ssize_t i = eytzinger0_find_le(h->data, h->used,
74                                                sizeof(h->data[0]),
75                                                bucket_offset_cmp, &search);
76 #if 0
77                 /* eytzinger search verify code: */
78                 ssize_t j = -1, k;
79
80                 for (k = 0; k < h->used; k++)
81                         if (h->data[k].offset <= ptr->offset &&
82                             (j < 0 || h->data[k].offset > h->data[j].offset))
83                                 j = k;
84
85                 BUG_ON(i != j);
86 #endif
87                 if (i >= 0 &&
88                     p.ptr.offset < h->data[i].offset + ca->mi.bucket_size &&
89                     p.ptr.gen == h->data[i].gen) {
90                         data_opts->target               = io_opts->background_target;
91                         data_opts->nr_replicas          = 1;
92                         data_opts->btree_insert_flags   = BTREE_INSERT_USE_RESERVE;
93                         data_opts->rewrite_dev          = p.ptr.dev;
94
95                         if (p.has_ec)
96                                 data_opts->nr_replicas += p.ec.redundancy;
97
98                         return DATA_REWRITE;
99                 }
100         }
101
102         return DATA_SKIP;
103 }
104
105 static bool have_copygc_reserve(struct bch_dev *ca)
106 {
107         bool ret;
108
109         spin_lock(&ca->fs->freelist_lock);
110         ret = fifo_full(&ca->free[RESERVE_MOVINGGC]) ||
111                 ca->allocator_state != ALLOCATOR_RUNNING;
112         spin_unlock(&ca->fs->freelist_lock);
113
114         return ret;
115 }
116
117 static inline int fragmentation_cmp(copygc_heap *heap,
118                                    struct copygc_heap_entry l,
119                                    struct copygc_heap_entry r)
120 {
121         return cmp_int(l.fragmentation, r.fragmentation);
122 }
123
124 static int bch2_copygc(struct bch_fs *c)
125 {
126         copygc_heap *h = &c->copygc_heap;
127         struct copygc_heap_entry e, *i;
128         struct bucket_array *buckets;
129         struct bch_move_stats move_stats;
130         u64 sectors_to_move = 0, sectors_not_moved = 0;
131         u64 sectors_reserved = 0;
132         u64 buckets_to_move, buckets_not_moved = 0;
133         struct bch_dev *ca;
134         unsigned dev_idx;
135         size_t b, heap_size = 0;
136         int ret;
137
138         memset(&move_stats, 0, sizeof(move_stats));
139         /*
140          * Find buckets with lowest sector counts, skipping completely
141          * empty buckets, by building a maxheap sorted by sector count,
142          * and repeatedly replacing the maximum element until all
143          * buckets have been visited.
144          */
145         h->used = 0;
146
147         for_each_rw_member(ca, c, dev_idx)
148                 heap_size += ca->mi.nbuckets >> 7;
149
150         if (h->size < heap_size) {
151                 free_heap(&c->copygc_heap);
152                 if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) {
153                         bch_err(c, "error allocating copygc heap");
154                         return 0;
155                 }
156         }
157
158         for_each_rw_member(ca, c, dev_idx) {
159                 closure_wait_event(&c->freelist_wait, have_copygc_reserve(ca));
160
161                 spin_lock(&ca->fs->freelist_lock);
162                 sectors_reserved += fifo_used(&ca->free[RESERVE_MOVINGGC]) * ca->mi.bucket_size;
163                 spin_unlock(&ca->fs->freelist_lock);
164
165                 down_read(&ca->bucket_lock);
166                 buckets = bucket_array(ca);
167
168                 for (b = buckets->first_bucket; b < buckets->nbuckets; b++) {
169                         struct bucket *g = buckets->b + b;
170                         struct bucket_mark m = READ_ONCE(g->mark);
171                         struct copygc_heap_entry e;
172
173                         if (m.owned_by_allocator ||
174                             m.data_type != BCH_DATA_user ||
175                             !bucket_sectors_used(m) ||
176                             bucket_sectors_used(m) >= ca->mi.bucket_size)
177                                 continue;
178
179                         WARN_ON(m.stripe && !g->stripe_redundancy);
180
181                         e = (struct copygc_heap_entry) {
182                                 .dev            = dev_idx,
183                                 .gen            = m.gen,
184                                 .replicas       = 1 + g->stripe_redundancy,
185                                 .fragmentation  = bucket_sectors_used(m) * (1U << 15)
186                                         / ca->mi.bucket_size,
187                                 .sectors        = bucket_sectors_used(m),
188                                 .offset         = bucket_to_sector(ca, b),
189                         };
190                         heap_add_or_replace(h, e, -fragmentation_cmp, NULL);
191                 }
192                 up_read(&ca->bucket_lock);
193         }
194
195         if (!sectors_reserved) {
196                 bch2_fs_fatal_error(c, "stuck, ran out of copygc reserve!");
197                 return -1;
198         }
199
200         /*
201          * Our btree node allocations also come out of RESERVE_MOVINGGC:
202          */
203         sectors_to_move = (sectors_to_move * 3) / 4;
204
205         for (i = h->data; i < h->data + h->used; i++)
206                 sectors_to_move += i->sectors * i->replicas;
207
208         while (sectors_to_move > sectors_reserved) {
209                 BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL));
210                 sectors_to_move -= e.sectors * e.replicas;
211         }
212
213         buckets_to_move = h->used;
214
215         if (!buckets_to_move)
216                 return 0;
217
218         eytzinger0_sort(h->data, h->used,
219                         sizeof(h->data[0]),
220                         bucket_offset_cmp, NULL);
221
222         ret = bch2_move_data(c, &c->copygc_pd.rate,
223                              writepoint_ptr(&c->copygc_write_point),
224                              POS_MIN, POS_MAX,
225                              copygc_pred, NULL,
226                              &move_stats);
227
228         for_each_rw_member(ca, c, dev_idx) {
229                 down_read(&ca->bucket_lock);
230                 buckets = bucket_array(ca);
231                 for (i = h->data; i < h->data + h->used; i++) {
232                         struct bucket_mark m;
233                         size_t b;
234
235                         if (i->dev != dev_idx)
236                                 continue;
237
238                         b = sector_to_bucket(ca, i->offset);
239                         m = READ_ONCE(buckets->b[b].mark);
240
241                         if (i->gen == m.gen &&
242                             bucket_sectors_used(m)) {
243                                 sectors_not_moved += bucket_sectors_used(m);
244                                 buckets_not_moved++;
245                         }
246                 }
247                 up_read(&ca->bucket_lock);
248         }
249
250         if (sectors_not_moved && !ret)
251                 bch_warn_ratelimited(c,
252                         "copygc finished but %llu/%llu sectors, %llu/%llu buckets not moved (move stats: moved %llu sectors, raced %llu keys, %llu sectors)",
253                          sectors_not_moved, sectors_to_move,
254                          buckets_not_moved, buckets_to_move,
255                          atomic64_read(&move_stats.sectors_moved),
256                          atomic64_read(&move_stats.keys_raced),
257                          atomic64_read(&move_stats.sectors_raced));
258
259         trace_copygc(c,
260                      atomic64_read(&move_stats.sectors_moved), sectors_not_moved,
261                      buckets_to_move, buckets_not_moved);
262         return 0;
263 }
264
265 /*
266  * Copygc runs when the amount of fragmented data is above some arbitrary
267  * threshold:
268  *
269  * The threshold at the limit - when the device is full - is the amount of space
270  * we reserved in bch2_recalc_capacity; we can't have more than that amount of
271  * disk space stranded due to fragmentation and store everything we have
272  * promised to store.
273  *
274  * But we don't want to be running copygc unnecessarily when the device still
275  * has plenty of free space - rather, we want copygc to smoothly run every so
276  * often and continually reduce the amount of fragmented space as the device
277  * fills up. So, we increase the threshold by half the current free space.
278  */
279 unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
280 {
281         struct bch_dev *ca;
282         unsigned dev_idx;
283         u64 fragmented_allowed = c->copygc_threshold;
284         u64 fragmented = 0;
285
286         for_each_rw_member(ca, c, dev_idx) {
287                 struct bch_dev_usage usage = bch2_dev_usage_read(ca);
288
289                 fragmented_allowed += ((__dev_buckets_available(ca, usage) *
290                                         ca->mi.bucket_size) >> 1);
291                 fragmented += usage.d[BCH_DATA_user].fragmented;
292         }
293
294         return max_t(s64, 0, fragmented_allowed - fragmented);
295 }
296
297 static int bch2_copygc_thread(void *arg)
298 {
299         struct bch_fs *c = arg;
300         struct io_clock *clock = &c->io_clock[WRITE];
301         u64 last, wait;
302
303         set_freezable();
304
305         while (!kthread_should_stop()) {
306                 if (kthread_wait_freezable(c->copy_gc_enabled))
307                         break;
308
309                 last = atomic64_read(&clock->now);
310                 wait = bch2_copygc_wait_amount(c);
311
312                 if (wait > clock->max_slop) {
313                         bch2_kthread_io_clock_wait(clock, last + wait,
314                                         MAX_SCHEDULE_TIMEOUT);
315                         continue;
316                 }
317
318                 if (bch2_copygc(c))
319                         break;
320         }
321
322         return 0;
323 }
324
325 void bch2_copygc_stop(struct bch_fs *c)
326 {
327         c->copygc_pd.rate.rate = UINT_MAX;
328         bch2_ratelimit_reset(&c->copygc_pd.rate);
329
330         if (c->copygc_thread) {
331                 kthread_stop(c->copygc_thread);
332                 put_task_struct(c->copygc_thread);
333         }
334         c->copygc_thread = NULL;
335 }
336
337 int bch2_copygc_start(struct bch_fs *c)
338 {
339         struct task_struct *t;
340
341         if (c->copygc_thread)
342                 return 0;
343
344         if (c->opts.nochanges)
345                 return 0;
346
347         if (bch2_fs_init_fault("copygc_start"))
348                 return -ENOMEM;
349
350         t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name);
351         if (IS_ERR(t)) {
352                 bch_err(c, "error creating copygc thread: %li", PTR_ERR(t));
353                 return PTR_ERR(t);
354         }
355
356         get_task_struct(t);
357
358         c->copygc_thread = t;
359         wake_up_process(c->copygc_thread);
360
361         return 0;
362 }
363
364 void bch2_fs_copygc_init(struct bch_fs *c)
365 {
366         bch2_pd_controller_init(&c->copygc_pd);
367         c->copygc_pd.d_term = 0;
368 }