]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/recovery.c
Disable pristine-tar option in gbp.conf, since there is no pristine-tar branch.
[bcachefs-tools-debian] / libbcachefs / recovery.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "backpointers.h"
5 #include "bkey_buf.h"
6 #include "alloc_background.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "buckets.h"
13 #include "dirent.h"
14 #include "ec.h"
15 #include "errcode.h"
16 #include "error.h"
17 #include "fs-common.h"
18 #include "fsck.h"
19 #include "journal_io.h"
20 #include "journal_reclaim.h"
21 #include "journal_seq_blacklist.h"
22 #include "lru.h"
23 #include "logged_ops.h"
24 #include "move.h"
25 #include "quota.h"
26 #include "rebalance.h"
27 #include "recovery.h"
28 #include "replicas.h"
29 #include "sb-clean.h"
30 #include "sb-downgrade.h"
31 #include "snapshot.h"
32 #include "subvolume.h"
33 #include "super-io.h"
34
35 #include <linux/sort.h>
36 #include <linux/stat.h>
37
38 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
39
40 static bool btree_id_is_alloc(enum btree_id id)
41 {
42         switch (id) {
43         case BTREE_ID_alloc:
44         case BTREE_ID_backpointers:
45         case BTREE_ID_need_discard:
46         case BTREE_ID_freespace:
47         case BTREE_ID_bucket_gens:
48                 return true;
49         default:
50                 return false;
51         }
52 }
53
54 /* for -o reconstruct_alloc: */
55 static void drop_alloc_keys(struct journal_keys *keys)
56 {
57         size_t src, dst;
58
59         for (src = 0, dst = 0; src < keys->nr; src++)
60                 if (!btree_id_is_alloc(keys->d[src].btree_id))
61                         keys->d[dst++] = keys->d[src];
62
63         keys->nr = dst;
64 }
65
66 /*
67  * Btree node pointers have a field to stack a pointer to the in memory btree
68  * node; we need to zero out this field when reading in btree nodes, or when
69  * reading in keys from the journal:
70  */
71 static void zero_out_btree_mem_ptr(struct journal_keys *keys)
72 {
73         struct journal_key *i;
74
75         for (i = keys->d; i < keys->d + keys->nr; i++)
76                 if (i->k->k.type == KEY_TYPE_btree_ptr_v2)
77                         bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
78 }
79
80 /* journal replay: */
81
82 static void replay_now_at(struct journal *j, u64 seq)
83 {
84         BUG_ON(seq < j->replay_journal_seq);
85
86         seq = min(seq, j->replay_journal_seq_end);
87
88         while (j->replay_journal_seq < seq)
89                 bch2_journal_pin_put(j, j->replay_journal_seq++);
90 }
91
92 static int bch2_journal_replay_key(struct btree_trans *trans,
93                                    struct journal_key *k)
94 {
95         struct btree_iter iter;
96         unsigned iter_flags =
97                 BTREE_ITER_INTENT|
98                 BTREE_ITER_NOT_EXTENTS;
99         unsigned update_flags = BTREE_TRIGGER_NORUN;
100         int ret;
101
102         if (k->overwritten)
103                 return 0;
104
105         trans->journal_res.seq = k->journal_seq;
106
107         /*
108          * BTREE_UPDATE_KEY_CACHE_RECLAIM disables key cache lookup/update to
109          * keep the key cache coherent with the underlying btree. Nothing
110          * besides the allocator is doing updates yet so we don't need key cache
111          * coherency for non-alloc btrees, and key cache fills for snapshots
112          * btrees use BTREE_ITER_FILTER_SNAPSHOTS, which isn't available until
113          * the snapshots recovery pass runs.
114          */
115         if (!k->level && k->btree_id == BTREE_ID_alloc)
116                 iter_flags |= BTREE_ITER_CACHED;
117         else
118                 update_flags |= BTREE_UPDATE_KEY_CACHE_RECLAIM;
119
120         bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
121                                   BTREE_MAX_DEPTH, k->level,
122                                   iter_flags);
123         ret = bch2_btree_iter_traverse(&iter);
124         if (ret)
125                 goto out;
126
127         /* Must be checked with btree locked: */
128         if (k->overwritten)
129                 goto out;
130
131         ret = bch2_trans_update(trans, &iter, k->k, update_flags);
132 out:
133         bch2_trans_iter_exit(trans, &iter);
134         return ret;
135 }
136
137 static int journal_sort_seq_cmp(const void *_l, const void *_r)
138 {
139         const struct journal_key *l = *((const struct journal_key **)_l);
140         const struct journal_key *r = *((const struct journal_key **)_r);
141
142         return cmp_int(l->journal_seq, r->journal_seq);
143 }
144
145 static int bch2_journal_replay(struct bch_fs *c)
146 {
147         struct journal_keys *keys = &c->journal_keys;
148         DARRAY(struct journal_key *) keys_sorted = { 0 };
149         struct journal *j = &c->journal;
150         u64 start_seq   = c->journal_replay_seq_start;
151         u64 end_seq     = c->journal_replay_seq_start;
152         struct btree_trans *trans = bch2_trans_get(c);
153         int ret = 0;
154
155         if (keys->nr) {
156                 ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)",
157                                            keys->nr, start_seq, end_seq);
158                 if (ret)
159                         goto err;
160         }
161
162         BUG_ON(!atomic_read(&keys->ref));
163
164         /*
165          * First, attempt to replay keys in sorted order. This is more
166          * efficient - better locality of btree access -  but some might fail if
167          * that would cause a journal deadlock.
168          */
169         for (size_t i = 0; i < keys->nr; i++) {
170                 cond_resched();
171
172                 struct journal_key *k = keys->d + i;
173
174                 /* Skip fastpath if we're low on space in the journal */
175                 ret = c->journal.watermark ? -1 :
176                         commit_do(trans, NULL, NULL,
177                                   BCH_TRANS_COMMIT_no_enospc|
178                                   BCH_TRANS_COMMIT_journal_reclaim|
179                                   (!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0),
180                              bch2_journal_replay_key(trans, k));
181                 BUG_ON(!ret && !k->overwritten);
182                 if (ret) {
183                         ret = darray_push(&keys_sorted, k);
184                         if (ret)
185                                 goto err;
186                 }
187         }
188
189         /*
190          * Now, replay any remaining keys in the order in which they appear in
191          * the journal, unpinning those journal entries as we go:
192          */
193         sort(keys_sorted.data, keys_sorted.nr,
194              sizeof(keys_sorted.data[0]),
195              journal_sort_seq_cmp, NULL);
196
197         darray_for_each(keys_sorted, kp) {
198                 cond_resched();
199
200                 struct journal_key *k = *kp;
201
202                 replay_now_at(j, k->journal_seq);
203
204                 ret = commit_do(trans, NULL, NULL,
205                                 BCH_TRANS_COMMIT_no_enospc|
206                                 (!k->allocated
207                                  ? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim
208                                  : 0),
209                              bch2_journal_replay_key(trans, k));
210                 bch_err_msg(c, ret, "while replaying key at btree %s level %u:",
211                             bch2_btree_id_str(k->btree_id), k->level);
212                 if (ret)
213                         goto err;
214
215                 BUG_ON(!k->overwritten);
216         }
217
218         /*
219          * We need to put our btree_trans before calling flush_all_pins(), since
220          * that will use a btree_trans internally
221          */
222         bch2_trans_put(trans);
223         trans = NULL;
224
225         if (!c->opts.keep_journal)
226                 bch2_journal_keys_put_initial(c);
227
228         replay_now_at(j, j->replay_journal_seq_end);
229         j->replay_journal_seq = 0;
230
231         bch2_journal_set_replay_done(j);
232
233         if (keys->nr)
234                 bch2_journal_log_msg(c, "journal replay finished");
235 err:
236         if (trans)
237                 bch2_trans_put(trans);
238         darray_exit(&keys_sorted);
239         bch_err_fn(c, ret);
240         return ret;
241 }
242
243 /* journal replay early: */
244
245 static int journal_replay_entry_early(struct bch_fs *c,
246                                       struct jset_entry *entry)
247 {
248         int ret = 0;
249
250         switch (entry->type) {
251         case BCH_JSET_ENTRY_btree_root: {
252                 struct btree_root *r;
253
254                 while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) {
255                         ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL });
256                         if (ret)
257                                 return ret;
258                 }
259
260                 r = bch2_btree_id_root(c, entry->btree_id);
261
262                 if (entry->u64s) {
263                         r->level = entry->level;
264                         bkey_copy(&r->key, (struct bkey_i *) entry->start);
265                         r->error = 0;
266                 } else {
267                         r->error = -BCH_ERR_btree_node_read_error;
268                 }
269                 r->alive = true;
270                 break;
271         }
272         case BCH_JSET_ENTRY_usage: {
273                 struct jset_entry_usage *u =
274                         container_of(entry, struct jset_entry_usage, entry);
275
276                 switch (entry->btree_id) {
277                 case BCH_FS_USAGE_reserved:
278                         if (entry->level < BCH_REPLICAS_MAX)
279                                 c->usage_base->persistent_reserved[entry->level] =
280                                         le64_to_cpu(u->v);
281                         break;
282                 case BCH_FS_USAGE_inodes:
283                         c->usage_base->b.nr_inodes = le64_to_cpu(u->v);
284                         break;
285                 case BCH_FS_USAGE_key_version:
286                         atomic64_set(&c->key_version,
287                                      le64_to_cpu(u->v));
288                         break;
289                 }
290
291                 break;
292         }
293         case BCH_JSET_ENTRY_data_usage: {
294                 struct jset_entry_data_usage *u =
295                         container_of(entry, struct jset_entry_data_usage, entry);
296
297                 ret = bch2_replicas_set_usage(c, &u->r,
298                                               le64_to_cpu(u->v));
299                 break;
300         }
301         case BCH_JSET_ENTRY_dev_usage: {
302                 struct jset_entry_dev_usage *u =
303                         container_of(entry, struct jset_entry_dev_usage, entry);
304                 struct bch_dev *ca = bch_dev_bkey_exists(c, le32_to_cpu(u->dev));
305                 unsigned i, nr_types = jset_entry_dev_usage_nr_types(u);
306
307                 for (i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) {
308                         ca->usage_base->d[i].buckets    = le64_to_cpu(u->d[i].buckets);
309                         ca->usage_base->d[i].sectors    = le64_to_cpu(u->d[i].sectors);
310                         ca->usage_base->d[i].fragmented = le64_to_cpu(u->d[i].fragmented);
311                 }
312
313                 break;
314         }
315         case BCH_JSET_ENTRY_blacklist: {
316                 struct jset_entry_blacklist *bl_entry =
317                         container_of(entry, struct jset_entry_blacklist, entry);
318
319                 ret = bch2_journal_seq_blacklist_add(c,
320                                 le64_to_cpu(bl_entry->seq),
321                                 le64_to_cpu(bl_entry->seq) + 1);
322                 break;
323         }
324         case BCH_JSET_ENTRY_blacklist_v2: {
325                 struct jset_entry_blacklist_v2 *bl_entry =
326                         container_of(entry, struct jset_entry_blacklist_v2, entry);
327
328                 ret = bch2_journal_seq_blacklist_add(c,
329                                 le64_to_cpu(bl_entry->start),
330                                 le64_to_cpu(bl_entry->end) + 1);
331                 break;
332         }
333         case BCH_JSET_ENTRY_clock: {
334                 struct jset_entry_clock *clock =
335                         container_of(entry, struct jset_entry_clock, entry);
336
337                 atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time));
338         }
339         }
340
341         return ret;
342 }
343
344 static int journal_replay_early(struct bch_fs *c,
345                                 struct bch_sb_field_clean *clean)
346 {
347         if (clean) {
348                 for (struct jset_entry *entry = clean->start;
349                      entry != vstruct_end(&clean->field);
350                      entry = vstruct_next(entry)) {
351                         int ret = journal_replay_entry_early(c, entry);
352                         if (ret)
353                                 return ret;
354                 }
355         } else {
356                 struct genradix_iter iter;
357                 struct journal_replay *i, **_i;
358
359                 genradix_for_each(&c->journal_entries, iter, _i) {
360                         i = *_i;
361
362                         if (!i || i->ignore)
363                                 continue;
364
365                         vstruct_for_each(&i->j, entry) {
366                                 int ret = journal_replay_entry_early(c, entry);
367                                 if (ret)
368                                         return ret;
369                         }
370                 }
371         }
372
373         bch2_fs_usage_initialize(c);
374
375         return 0;
376 }
377
378 /* sb clean section: */
379
380 static int read_btree_roots(struct bch_fs *c)
381 {
382         unsigned i;
383         int ret = 0;
384
385         for (i = 0; i < btree_id_nr_alive(c); i++) {
386                 struct btree_root *r = bch2_btree_id_root(c, i);
387
388                 if (!r->alive)
389                         continue;
390
391                 if (btree_id_is_alloc(i) &&
392                     c->opts.reconstruct_alloc) {
393                         c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
394                         continue;
395                 }
396
397                 if (r->error) {
398                         __fsck_err(c,
399                                    btree_id_is_alloc(i)
400                                    ? FSCK_CAN_IGNORE : 0,
401                                    btree_root_bkey_invalid,
402                                    "invalid btree root %s",
403                                    bch2_btree_id_str(i));
404                         if (i == BTREE_ID_alloc)
405                                 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
406                 }
407
408                 ret = bch2_btree_root_read(c, i, &r->key, r->level);
409                 if (ret) {
410                         fsck_err(c,
411                                  btree_root_read_error,
412                                  "error reading btree root %s",
413                                  bch2_btree_id_str(i));
414                         if (btree_id_is_alloc(i))
415                                 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
416                         ret = 0;
417                 }
418         }
419
420         for (i = 0; i < BTREE_ID_NR; i++) {
421                 struct btree_root *r = bch2_btree_id_root(c, i);
422
423                 if (!r->b) {
424                         r->alive = false;
425                         r->level = 0;
426                         bch2_btree_root_alloc(c, i);
427                 }
428         }
429 fsck_err:
430         return ret;
431 }
432
433 static int bch2_initialize_subvolumes(struct bch_fs *c)
434 {
435         struct bkey_i_snapshot_tree     root_tree;
436         struct bkey_i_snapshot          root_snapshot;
437         struct bkey_i_subvolume         root_volume;
438         int ret;
439
440         bkey_snapshot_tree_init(&root_tree.k_i);
441         root_tree.k.p.offset            = 1;
442         root_tree.v.master_subvol       = cpu_to_le32(1);
443         root_tree.v.root_snapshot       = cpu_to_le32(U32_MAX);
444
445         bkey_snapshot_init(&root_snapshot.k_i);
446         root_snapshot.k.p.offset = U32_MAX;
447         root_snapshot.v.flags   = 0;
448         root_snapshot.v.parent  = 0;
449         root_snapshot.v.subvol  = cpu_to_le32(BCACHEFS_ROOT_SUBVOL);
450         root_snapshot.v.tree    = cpu_to_le32(1);
451         SET_BCH_SNAPSHOT_SUBVOL(&root_snapshot.v, true);
452
453         bkey_subvolume_init(&root_volume.k_i);
454         root_volume.k.p.offset = BCACHEFS_ROOT_SUBVOL;
455         root_volume.v.flags     = 0;
456         root_volume.v.snapshot  = cpu_to_le32(U32_MAX);
457         root_volume.v.inode     = cpu_to_le64(BCACHEFS_ROOT_INO);
458
459         ret =   bch2_btree_insert(c, BTREE_ID_snapshot_trees,   &root_tree.k_i, NULL, 0) ?:
460                 bch2_btree_insert(c, BTREE_ID_snapshots,        &root_snapshot.k_i, NULL, 0) ?:
461                 bch2_btree_insert(c, BTREE_ID_subvolumes,       &root_volume.k_i, NULL, 0);
462         bch_err_fn(c, ret);
463         return ret;
464 }
465
466 static int __bch2_fs_upgrade_for_subvolumes(struct btree_trans *trans)
467 {
468         struct btree_iter iter;
469         struct bkey_s_c k;
470         struct bch_inode_unpacked inode;
471         int ret;
472
473         k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
474                                SPOS(0, BCACHEFS_ROOT_INO, U32_MAX), 0);
475         ret = bkey_err(k);
476         if (ret)
477                 return ret;
478
479         if (!bkey_is_inode(k.k)) {
480                 bch_err(trans->c, "root inode not found");
481                 ret = -BCH_ERR_ENOENT_inode;
482                 goto err;
483         }
484
485         ret = bch2_inode_unpack(k, &inode);
486         BUG_ON(ret);
487
488         inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
489
490         ret = bch2_inode_write(trans, &iter, &inode);
491 err:
492         bch2_trans_iter_exit(trans, &iter);
493         return ret;
494 }
495
496 /* set bi_subvol on root inode */
497 noinline_for_stack
498 static int bch2_fs_upgrade_for_subvolumes(struct bch_fs *c)
499 {
500         int ret = bch2_trans_do(c, NULL, NULL, BCH_TRANS_COMMIT_lazy_rw,
501                                 __bch2_fs_upgrade_for_subvolumes(trans));
502         bch_err_fn(c, ret);
503         return ret;
504 }
505
506 const char * const bch2_recovery_passes[] = {
507 #define x(_fn, ...)     #_fn,
508         BCH_RECOVERY_PASSES()
509 #undef x
510         NULL
511 };
512
513 static int bch2_check_allocations(struct bch_fs *c)
514 {
515         return bch2_gc(c, true, c->opts.norecovery);
516 }
517
518 static int bch2_set_may_go_rw(struct bch_fs *c)
519 {
520         struct journal_keys *keys = &c->journal_keys;
521
522         /*
523          * After we go RW, the journal keys buffer can't be modified (except for
524          * setting journal_key->overwritten: it will be accessed by multiple
525          * threads
526          */
527         move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr);
528         keys->gap = keys->nr;
529
530         set_bit(BCH_FS_may_go_rw, &c->flags);
531
532         if (keys->nr || c->opts.fsck || !c->sb.clean)
533                 return bch2_fs_read_write_early(c);
534         return 0;
535 }
536
537 struct recovery_pass_fn {
538         int             (*fn)(struct bch_fs *);
539         unsigned        when;
540 };
541
542 static struct recovery_pass_fn recovery_pass_fns[] = {
543 #define x(_fn, _id, _when)      { .fn = bch2_##_fn, .when = _when },
544         BCH_RECOVERY_PASSES()
545 #undef x
546 };
547
548 u64 bch2_recovery_passes_to_stable(u64 v)
549 {
550         static const u8 map[] = {
551 #define x(n, id, ...)   [BCH_RECOVERY_PASS_##n] = BCH_RECOVERY_PASS_STABLE_##n,
552         BCH_RECOVERY_PASSES()
553 #undef x
554         };
555
556         u64 ret = 0;
557         for (unsigned i = 0; i < ARRAY_SIZE(map); i++)
558                 if (v & BIT_ULL(i))
559                         ret |= BIT_ULL(map[i]);
560         return ret;
561 }
562
563 u64 bch2_recovery_passes_from_stable(u64 v)
564 {
565         static const u8 map[] = {
566 #define x(n, id, ...)   [BCH_RECOVERY_PASS_STABLE_##n] = BCH_RECOVERY_PASS_##n,
567         BCH_RECOVERY_PASSES()
568 #undef x
569         };
570
571         u64 ret = 0;
572         for (unsigned i = 0; i < ARRAY_SIZE(map); i++)
573                 if (v & BIT_ULL(i))
574                         ret |= BIT_ULL(map[i]);
575         return ret;
576 }
577
578 static bool check_version_upgrade(struct bch_fs *c)
579 {
580         unsigned latest_version = bcachefs_metadata_version_current;
581         unsigned latest_compatible = min(latest_version,
582                                          bch2_latest_compatible_version(c->sb.version));
583         unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version;
584         unsigned new_version = 0;
585
586         if (old_version < bcachefs_metadata_required_upgrade_below) {
587                 if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible ||
588                     latest_compatible < bcachefs_metadata_required_upgrade_below)
589                         new_version = latest_version;
590                 else
591                         new_version = latest_compatible;
592         } else {
593                 switch (c->opts.version_upgrade) {
594                 case BCH_VERSION_UPGRADE_compatible:
595                         new_version = latest_compatible;
596                         break;
597                 case BCH_VERSION_UPGRADE_incompatible:
598                         new_version = latest_version;
599                         break;
600                 case BCH_VERSION_UPGRADE_none:
601                         new_version = min(old_version, latest_version);
602                         break;
603                 }
604         }
605
606         if (new_version > old_version) {
607                 struct printbuf buf = PRINTBUF;
608
609                 if (old_version < bcachefs_metadata_required_upgrade_below)
610                         prt_str(&buf, "Version upgrade required:\n");
611
612                 if (old_version != c->sb.version) {
613                         prt_str(&buf, "Version upgrade from ");
614                         bch2_version_to_text(&buf, c->sb.version_upgrade_complete);
615                         prt_str(&buf, " to ");
616                         bch2_version_to_text(&buf, c->sb.version);
617                         prt_str(&buf, " incomplete\n");
618                 }
619
620                 prt_printf(&buf, "Doing %s version upgrade from ",
621                            BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version)
622                            ? "incompatible" : "compatible");
623                 bch2_version_to_text(&buf, old_version);
624                 prt_str(&buf, " to ");
625                 bch2_version_to_text(&buf, new_version);
626                 prt_newline(&buf);
627
628                 struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
629                 __le64 passes = ext->recovery_passes_required[0];
630                 bch2_sb_set_upgrade(c, old_version, new_version);
631                 passes = ext->recovery_passes_required[0] & ~passes;
632
633                 if (passes) {
634                         prt_str(&buf, "  running recovery passes: ");
635                         prt_bitflags(&buf, bch2_recovery_passes,
636                                      bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
637                 }
638
639                 bch_info(c, "%s", buf.buf);
640
641                 bch2_sb_upgrade(c, new_version);
642
643                 printbuf_exit(&buf);
644                 return true;
645         }
646
647         return false;
648 }
649
650 u64 bch2_fsck_recovery_passes(void)
651 {
652         u64 ret = 0;
653
654         for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++)
655                 if (recovery_pass_fns[i].when & PASS_FSCK)
656                         ret |= BIT_ULL(i);
657         return ret;
658 }
659
660 static bool should_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
661 {
662         struct recovery_pass_fn *p = recovery_pass_fns + pass;
663
664         if (c->opts.norecovery && pass > BCH_RECOVERY_PASS_snapshots_read)
665                 return false;
666         if (c->recovery_passes_explicit & BIT_ULL(pass))
667                 return true;
668         if ((p->when & PASS_FSCK) && c->opts.fsck)
669                 return true;
670         if ((p->when & PASS_UNCLEAN) && !c->sb.clean)
671                 return true;
672         if (p->when & PASS_ALWAYS)
673                 return true;
674         return false;
675 }
676
677 static int bch2_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
678 {
679         struct recovery_pass_fn *p = recovery_pass_fns + pass;
680         int ret;
681
682         if (!(p->when & PASS_SILENT))
683                 bch2_print(c, KERN_INFO bch2_log_msg(c, "%s..."),
684                            bch2_recovery_passes[pass]);
685         ret = p->fn(c);
686         if (ret)
687                 return ret;
688         if (!(p->when & PASS_SILENT))
689                 bch2_print(c, KERN_CONT " done\n");
690
691         return 0;
692 }
693
694 static int bch2_run_recovery_passes(struct bch_fs *c)
695 {
696         int ret = 0;
697
698         while (c->curr_recovery_pass < ARRAY_SIZE(recovery_pass_fns)) {
699                 if (should_run_recovery_pass(c, c->curr_recovery_pass)) {
700                         unsigned pass = c->curr_recovery_pass;
701
702                         ret = bch2_run_recovery_pass(c, c->curr_recovery_pass);
703                         if (bch2_err_matches(ret, BCH_ERR_restart_recovery) ||
704                             (ret && c->curr_recovery_pass < pass))
705                                 continue;
706                         if (ret)
707                                 break;
708
709                         c->recovery_passes_complete |= BIT_ULL(c->curr_recovery_pass);
710                 }
711                 c->curr_recovery_pass++;
712                 c->recovery_pass_done = max(c->recovery_pass_done, c->curr_recovery_pass);
713         }
714
715         return ret;
716 }
717
718 int bch2_run_online_recovery_passes(struct bch_fs *c)
719 {
720         int ret = 0;
721
722         for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++) {
723                 struct recovery_pass_fn *p = recovery_pass_fns + i;
724
725                 if (!(p->when & PASS_ONLINE))
726                         continue;
727
728                 ret = bch2_run_recovery_pass(c, i);
729                 if (bch2_err_matches(ret, BCH_ERR_restart_recovery)) {
730                         i = c->curr_recovery_pass;
731                         continue;
732                 }
733                 if (ret)
734                         break;
735         }
736
737         return ret;
738 }
739
740 int bch2_fs_recovery(struct bch_fs *c)
741 {
742         struct bch_sb_field_clean *clean = NULL;
743         struct jset *last_journal_entry = NULL;
744         u64 last_seq = 0, blacklist_seq, journal_seq;
745         int ret = 0;
746
747         if (c->sb.clean) {
748                 clean = bch2_read_superblock_clean(c);
749                 ret = PTR_ERR_OR_ZERO(clean);
750                 if (ret)
751                         goto err;
752
753                 bch_info(c, "recovering from clean shutdown, journal seq %llu",
754                          le64_to_cpu(clean->journal_seq));
755         } else {
756                 bch_info(c, "recovering from unclean shutdown");
757         }
758
759         if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
760                 bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
761                 ret = -EINVAL;
762                 goto err;
763         }
764
765         if (!c->sb.clean &&
766             !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
767                 bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
768                 ret = -EINVAL;
769                 goto err;
770         }
771
772         if (c->opts.fsck && c->opts.norecovery) {
773                 bch_err(c, "cannot select both norecovery and fsck");
774                 ret = -EINVAL;
775                 goto err;
776         }
777
778         if (!c->opts.nochanges) {
779                 mutex_lock(&c->sb_lock);
780                 bool write_sb = false;
781
782                 struct bch_sb_field_ext *ext =
783                         bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
784                 if (!ext) {
785                         ret = -BCH_ERR_ENOSPC_sb;
786                         mutex_unlock(&c->sb_lock);
787                         goto err;
788                 }
789
790                 if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) {
791                         ext->recovery_passes_required[0] |=
792                                 cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology)));
793                         write_sb = true;
794                 }
795
796                 u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
797                 if (sb_passes) {
798                         struct printbuf buf = PRINTBUF;
799                         prt_str(&buf, "superblock requires following recovery passes to be run:\n  ");
800                         prt_bitflags(&buf, bch2_recovery_passes, sb_passes);
801                         bch_info(c, "%s", buf.buf);
802                         printbuf_exit(&buf);
803                 }
804
805                 if (bch2_check_version_downgrade(c)) {
806                         struct printbuf buf = PRINTBUF;
807
808                         prt_str(&buf, "Version downgrade required:");
809
810                         __le64 passes = ext->recovery_passes_required[0];
811                         bch2_sb_set_downgrade(c,
812                                         BCH_VERSION_MINOR(bcachefs_metadata_version_current),
813                                         BCH_VERSION_MINOR(c->sb.version));
814                         passes = ext->recovery_passes_required[0] & ~passes;
815                         if (passes) {
816                                 prt_str(&buf, "\n  running recovery passes: ");
817                                 prt_bitflags(&buf, bch2_recovery_passes,
818                                              bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
819                         }
820
821                         bch_info(c, "%s", buf.buf);
822                         printbuf_exit(&buf);
823                         write_sb = true;
824                 }
825
826                 if (check_version_upgrade(c))
827                         write_sb = true;
828
829                 if (write_sb)
830                         bch2_write_super(c);
831
832                 c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
833                 mutex_unlock(&c->sb_lock);
834         }
835
836         if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
837                 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
838
839         if (c->opts.fsck)
840                 set_bit(BCH_FS_fsck_running, &c->flags);
841
842         ret = bch2_blacklist_table_initialize(c);
843         if (ret) {
844                 bch_err(c, "error initializing blacklist table");
845                 goto err;
846         }
847
848         if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) {
849                 struct genradix_iter iter;
850                 struct journal_replay **i;
851
852                 bch_verbose(c, "starting journal read");
853                 ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq);
854                 if (ret)
855                         goto err;
856
857                 /*
858                  * note: cmd_list_journal needs the blacklist table fully up to date so
859                  * it can asterisk ignored journal entries:
860                  */
861                 if (c->opts.read_journal_only)
862                         goto out;
863
864                 genradix_for_each_reverse(&c->journal_entries, iter, i)
865                         if (*i && !(*i)->ignore) {
866                                 last_journal_entry = &(*i)->j;
867                                 break;
868                         }
869
870                 if (mustfix_fsck_err_on(c->sb.clean &&
871                                         last_journal_entry &&
872                                         !journal_entry_empty(last_journal_entry), c,
873                                 clean_but_journal_not_empty,
874                                 "filesystem marked clean but journal not empty")) {
875                         c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
876                         SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
877                         c->sb.clean = false;
878                 }
879
880                 if (!last_journal_entry) {
881                         fsck_err_on(!c->sb.clean, c,
882                                     dirty_but_no_journal_entries,
883                                     "no journal entries found");
884                         if (clean)
885                                 goto use_clean;
886
887                         genradix_for_each_reverse(&c->journal_entries, iter, i)
888                                 if (*i) {
889                                         last_journal_entry = &(*i)->j;
890                                         (*i)->ignore = false;
891                                         /*
892                                          * This was probably a NO_FLUSH entry,
893                                          * so last_seq was garbage - but we know
894                                          * we're only using a single journal
895                                          * entry, set it here:
896                                          */
897                                         (*i)->j.last_seq = (*i)->j.seq;
898                                         break;
899                                 }
900                 }
901
902                 ret = bch2_journal_keys_sort(c);
903                 if (ret)
904                         goto err;
905
906                 if (c->sb.clean && last_journal_entry) {
907                         ret = bch2_verify_superblock_clean(c, &clean,
908                                                       last_journal_entry);
909                         if (ret)
910                                 goto err;
911                 }
912         } else {
913 use_clean:
914                 if (!clean) {
915                         bch_err(c, "no superblock clean section found");
916                         ret = -BCH_ERR_fsck_repair_impossible;
917                         goto err;
918
919                 }
920                 blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
921         }
922
923         c->journal_replay_seq_start     = last_seq;
924         c->journal_replay_seq_end       = blacklist_seq - 1;
925
926         if (c->opts.reconstruct_alloc) {
927                 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
928                 drop_alloc_keys(&c->journal_keys);
929         }
930
931         zero_out_btree_mem_ptr(&c->journal_keys);
932
933         ret = journal_replay_early(c, clean);
934         if (ret)
935                 goto err;
936
937         /*
938          * After an unclean shutdown, skip then next few journal sequence
939          * numbers as they may have been referenced by btree writes that
940          * happened before their corresponding journal writes - those btree
941          * writes need to be ignored, by skipping and blacklisting the next few
942          * journal sequence numbers:
943          */
944         if (!c->sb.clean)
945                 journal_seq += 8;
946
947         if (blacklist_seq != journal_seq) {
948                 ret =   bch2_journal_log_msg(c, "blacklisting entries %llu-%llu",
949                                              blacklist_seq, journal_seq) ?:
950                         bch2_journal_seq_blacklist_add(c,
951                                         blacklist_seq, journal_seq);
952                 if (ret) {
953                         bch_err(c, "error creating new journal seq blacklist entry");
954                         goto err;
955                 }
956         }
957
958         ret =   bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu",
959                                      journal_seq, last_seq, blacklist_seq - 1) ?:
960                 bch2_fs_journal_start(&c->journal, journal_seq);
961         if (ret)
962                 goto err;
963
964         if (c->opts.reconstruct_alloc)
965                 bch2_journal_log_msg(c, "dropping alloc info");
966
967         /*
968          * Skip past versions that might have possibly been used (as nonces),
969          * but hadn't had their pointers written:
970          */
971         if (c->sb.encryption_type && !c->sb.clean)
972                 atomic64_add(1 << 16, &c->key_version);
973
974         ret = read_btree_roots(c);
975         if (ret)
976                 goto err;
977
978         ret = bch2_run_recovery_passes(c);
979         if (ret)
980                 goto err;
981
982         clear_bit(BCH_FS_fsck_running, &c->flags);
983
984         /* If we fixed errors, verify that fs is actually clean now: */
985         if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) &&
986             test_bit(BCH_FS_errors_fixed, &c->flags) &&
987             !test_bit(BCH_FS_errors_not_fixed, &c->flags) &&
988             !test_bit(BCH_FS_error, &c->flags)) {
989                 bch2_flush_fsck_errs(c);
990
991                 bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean");
992                 clear_bit(BCH_FS_errors_fixed, &c->flags);
993
994                 c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info;
995
996                 ret = bch2_run_recovery_passes(c);
997                 if (ret)
998                         goto err;
999
1000                 if (test_bit(BCH_FS_errors_fixed, &c->flags) ||
1001                     test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
1002                         bch_err(c, "Second fsck run was not clean");
1003                         set_bit(BCH_FS_errors_not_fixed, &c->flags);
1004                 }
1005
1006                 set_bit(BCH_FS_errors_fixed, &c->flags);
1007         }
1008
1009         if (enabled_qtypes(c)) {
1010                 bch_verbose(c, "reading quotas");
1011                 ret = bch2_fs_quota_read(c);
1012                 if (ret)
1013                         goto err;
1014                 bch_verbose(c, "quotas done");
1015         }
1016
1017         mutex_lock(&c->sb_lock);
1018         bool write_sb = false;
1019
1020         if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) {
1021                 SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version));
1022                 write_sb = true;
1023         }
1024
1025         if (!test_bit(BCH_FS_error, &c->flags) &&
1026             !(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) {
1027                 c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
1028                 write_sb = true;
1029         }
1030
1031         if (!test_bit(BCH_FS_error, &c->flags)) {
1032                 struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
1033                 if (ext &&
1034                     (!bch2_is_zero(ext->recovery_passes_required, sizeof(ext->recovery_passes_required)) ||
1035                      !bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent)))) {
1036                         memset(ext->recovery_passes_required, 0, sizeof(ext->recovery_passes_required));
1037                         memset(ext->errors_silent, 0, sizeof(ext->errors_silent));
1038                         write_sb = true;
1039                 }
1040         }
1041
1042         if (c->opts.fsck &&
1043             !test_bit(BCH_FS_error, &c->flags) &&
1044             !test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
1045                 SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
1046                 SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0);
1047                 write_sb = true;
1048         }
1049
1050         if (write_sb)
1051                 bch2_write_super(c);
1052         mutex_unlock(&c->sb_lock);
1053
1054         if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
1055             c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) {
1056                 struct bch_move_stats stats;
1057
1058                 bch2_move_stats_init(&stats, "recovery");
1059
1060                 struct printbuf buf = PRINTBUF;
1061                 bch2_version_to_text(&buf, c->sb.version_min);
1062                 bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf);
1063                 printbuf_exit(&buf);
1064
1065                 ret =   bch2_fs_read_write_early(c) ?:
1066                         bch2_scan_old_btree_nodes(c, &stats);
1067                 if (ret)
1068                         goto err;
1069                 bch_info(c, "scanning for old btree nodes done");
1070         }
1071
1072         if (c->journal_seq_blacklist_table &&
1073             c->journal_seq_blacklist_table->nr > 128)
1074                 queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work);
1075
1076         ret = 0;
1077 out:
1078         bch2_flush_fsck_errs(c);
1079
1080         if (!c->opts.keep_journal &&
1081             test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
1082                 bch2_journal_keys_put_initial(c);
1083         kfree(clean);
1084
1085         if (!ret &&
1086             test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) &&
1087             !c->opts.nochanges) {
1088                 bch2_fs_read_write_early(c);
1089                 bch2_delete_dead_snapshots_async(c);
1090         }
1091
1092         bch_err_fn(c, ret);
1093         return ret;
1094 err:
1095 fsck_err:
1096         bch2_fs_emergency_read_only(c);
1097         goto out;
1098 }
1099
1100 int bch2_fs_initialize(struct bch_fs *c)
1101 {
1102         struct bch_inode_unpacked root_inode, lostfound_inode;
1103         struct bkey_inode_buf packed_inode;
1104         struct qstr lostfound = QSTR("lost+found");
1105         int ret;
1106
1107         bch_notice(c, "initializing new filesystem");
1108
1109         mutex_lock(&c->sb_lock);
1110         c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
1111         c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
1112
1113         bch2_check_version_downgrade(c);
1114
1115         if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) {
1116                 bch2_sb_upgrade(c, bcachefs_metadata_version_current);
1117                 SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current);
1118                 bch2_write_super(c);
1119         }
1120         mutex_unlock(&c->sb_lock);
1121
1122         c->curr_recovery_pass = ARRAY_SIZE(recovery_pass_fns);
1123         set_bit(BCH_FS_may_go_rw, &c->flags);
1124
1125         for (unsigned i = 0; i < BTREE_ID_NR; i++)
1126                 bch2_btree_root_alloc(c, i);
1127
1128         for_each_member_device(c, ca)
1129                 bch2_dev_usage_init(ca);
1130
1131         ret = bch2_fs_journal_alloc(c);
1132         if (ret)
1133                 goto err;
1134
1135         /*
1136          * journal_res_get() will crash if called before this has
1137          * set up the journal.pin FIFO and journal.cur pointer:
1138          */
1139         bch2_fs_journal_start(&c->journal, 1);
1140         bch2_journal_set_replay_done(&c->journal);
1141
1142         ret = bch2_fs_read_write_early(c);
1143         if (ret)
1144                 goto err;
1145
1146         /*
1147          * Write out the superblock and journal buckets, now that we can do
1148          * btree updates
1149          */
1150         bch_verbose(c, "marking superblocks");
1151         ret = bch2_trans_mark_dev_sbs(c);
1152         bch_err_msg(c, ret, "marking superblocks");
1153         if (ret)
1154                 goto err;
1155
1156         for_each_online_member(c, ca)
1157                 ca->new_fs_bucket_idx = 0;
1158
1159         ret = bch2_fs_freespace_init(c);
1160         if (ret)
1161                 goto err;
1162
1163         ret = bch2_initialize_subvolumes(c);
1164         if (ret)
1165                 goto err;
1166
1167         bch_verbose(c, "reading snapshots table");
1168         ret = bch2_snapshots_read(c);
1169         if (ret)
1170                 goto err;
1171         bch_verbose(c, "reading snapshots done");
1172
1173         bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL);
1174         root_inode.bi_inum      = BCACHEFS_ROOT_INO;
1175         root_inode.bi_subvol    = BCACHEFS_ROOT_SUBVOL;
1176         bch2_inode_pack(&packed_inode, &root_inode);
1177         packed_inode.inode.k.p.snapshot = U32_MAX;
1178
1179         ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0);
1180         bch_err_msg(c, ret, "creating root directory");
1181         if (ret)
1182                 goto err;
1183
1184         bch2_inode_init_early(c, &lostfound_inode);
1185
1186         ret = bch2_trans_do(c, NULL, NULL, 0,
1187                 bch2_create_trans(trans,
1188                                   BCACHEFS_ROOT_SUBVOL_INUM,
1189                                   &root_inode, &lostfound_inode,
1190                                   &lostfound,
1191                                   0, 0, S_IFDIR|0700, 0,
1192                                   NULL, NULL, (subvol_inum) { 0 }, 0));
1193         bch_err_msg(c, ret, "creating lost+found");
1194         if (ret)
1195                 goto err;
1196
1197         c->recovery_pass_done = ARRAY_SIZE(recovery_pass_fns) - 1;
1198
1199         if (enabled_qtypes(c)) {
1200                 ret = bch2_fs_quota_read(c);
1201                 if (ret)
1202                         goto err;
1203         }
1204
1205         ret = bch2_journal_flush(&c->journal);
1206         bch_err_msg(c, ret, "writing first journal entry");
1207         if (ret)
1208                 goto err;
1209
1210         mutex_lock(&c->sb_lock);
1211         SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
1212         SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
1213
1214         bch2_write_super(c);
1215         mutex_unlock(&c->sb_lock);
1216
1217         return 0;
1218 err:
1219         bch_err_fn(c, ret);
1220         return ret;
1221 }