]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/super.c
Update bcachefs sources to cfb41d25c7 bcachefs: Add an assertion to track down a...
[bcachefs-tools-debian] / libbcachefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_update_interior.h"
17 #include "btree_io.h"
18 #include "chardev.h"
19 #include "checksum.h"
20 #include "clock.h"
21 #include "compress.h"
22 #include "debug.h"
23 #include "disk_groups.h"
24 #include "ec.h"
25 #include "error.h"
26 #include "fs.h"
27 #include "fs-io.h"
28 #include "fsck.h"
29 #include "inode.h"
30 #include "io.h"
31 #include "journal.h"
32 #include "journal_reclaim.h"
33 #include "journal_seq_blacklist.h"
34 #include "move.h"
35 #include "migrate.h"
36 #include "movinggc.h"
37 #include "quota.h"
38 #include "rebalance.h"
39 #include "recovery.h"
40 #include "replicas.h"
41 #include "super.h"
42 #include "super-io.h"
43 #include "sysfs.h"
44
45 #include <linux/backing-dev.h>
46 #include <linux/blkdev.h>
47 #include <linux/debugfs.h>
48 #include <linux/device.h>
49 #include <linux/genhd.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/module.h>
53 #include <linux/percpu.h>
54 #include <linux/random.h>
55 #include <linux/sysfs.h>
56 #include <crypto/hash.h>
57
58 #include <trace/events/bcachefs.h>
59
60 MODULE_LICENSE("GPL");
61 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
62
63 #define KTYPE(type)                                                     \
64 struct kobj_type type ## _ktype = {                                     \
65         .release        = type ## _release,                             \
66         .sysfs_ops      = &type ## _sysfs_ops,                          \
67         .default_attrs  = type ## _files                                \
68 }
69
70 static void bch2_fs_release(struct kobject *);
71 static void bch2_dev_release(struct kobject *);
72
73 static void bch2_fs_internal_release(struct kobject *k)
74 {
75 }
76
77 static void bch2_fs_opts_dir_release(struct kobject *k)
78 {
79 }
80
81 static void bch2_fs_time_stats_release(struct kobject *k)
82 {
83 }
84
85 static KTYPE(bch2_fs);
86 static KTYPE(bch2_fs_internal);
87 static KTYPE(bch2_fs_opts_dir);
88 static KTYPE(bch2_fs_time_stats);
89 static KTYPE(bch2_dev);
90
91 static struct kset *bcachefs_kset;
92 static LIST_HEAD(bch_fs_list);
93 static DEFINE_MUTEX(bch_fs_list_lock);
94
95 static DECLARE_WAIT_QUEUE_HEAD(bch_read_only_wait);
96
97 static void bch2_dev_free(struct bch_dev *);
98 static int bch2_dev_alloc(struct bch_fs *, unsigned);
99 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
100 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
101
102 struct bch_fs *bch2_bdev_to_fs(struct block_device *bdev)
103 {
104         struct bch_fs *c;
105         struct bch_dev *ca;
106         unsigned i;
107
108         mutex_lock(&bch_fs_list_lock);
109         rcu_read_lock();
110
111         list_for_each_entry(c, &bch_fs_list, list)
112                 for_each_member_device_rcu(ca, c, i, NULL)
113                         if (ca->disk_sb.bdev == bdev) {
114                                 closure_get(&c->cl);
115                                 goto found;
116                         }
117         c = NULL;
118 found:
119         rcu_read_unlock();
120         mutex_unlock(&bch_fs_list_lock);
121
122         return c;
123 }
124
125 static struct bch_fs *__bch2_uuid_to_fs(uuid_le uuid)
126 {
127         struct bch_fs *c;
128
129         lockdep_assert_held(&bch_fs_list_lock);
130
131         list_for_each_entry(c, &bch_fs_list, list)
132                 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid_le)))
133                         return c;
134
135         return NULL;
136 }
137
138 struct bch_fs *bch2_uuid_to_fs(uuid_le uuid)
139 {
140         struct bch_fs *c;
141
142         mutex_lock(&bch_fs_list_lock);
143         c = __bch2_uuid_to_fs(uuid);
144         if (c)
145                 closure_get(&c->cl);
146         mutex_unlock(&bch_fs_list_lock);
147
148         return c;
149 }
150
151 int bch2_congested(void *data, int bdi_bits)
152 {
153         struct bch_fs *c = data;
154         struct backing_dev_info *bdi;
155         struct bch_dev *ca;
156         unsigned i;
157         int ret = 0;
158
159         rcu_read_lock();
160         if (bdi_bits & (1 << WB_sync_congested)) {
161                 /* Reads - check all devices: */
162                 for_each_readable_member(ca, c, i) {
163                         bdi = ca->disk_sb.bdev->bd_bdi;
164
165                         if (bdi_congested(bdi, bdi_bits)) {
166                                 ret = 1;
167                                 break;
168                         }
169                 }
170         } else {
171                 unsigned target = READ_ONCE(c->opts.foreground_target);
172                 const struct bch_devs_mask *devs = target
173                         ? bch2_target_to_mask(c, target)
174                         : &c->rw_devs[BCH_DATA_USER];
175
176                 for_each_member_device_rcu(ca, c, i, devs) {
177                         bdi = ca->disk_sb.bdev->bd_bdi;
178
179                         if (bdi_congested(bdi, bdi_bits)) {
180                                 ret = 1;
181                                 break;
182                         }
183                 }
184         }
185         rcu_read_unlock();
186
187         return ret;
188 }
189
190 /* Filesystem RO/RW: */
191
192 /*
193  * For startup/shutdown of RW stuff, the dependencies are:
194  *
195  * - foreground writes depend on copygc and rebalance (to free up space)
196  *
197  * - copygc and rebalance depend on mark and sweep gc (they actually probably
198  *   don't because they either reserve ahead of time or don't block if
199  *   allocations fail, but allocations can require mark and sweep gc to run
200  *   because of generation number wraparound)
201  *
202  * - all of the above depends on the allocator threads
203  *
204  * - allocator depends on the journal (when it rewrites prios and gens)
205  */
206
207 static void __bch2_fs_read_only(struct bch_fs *c)
208 {
209         struct bch_dev *ca;
210         bool wrote;
211         unsigned i, clean_passes = 0;
212         int ret;
213
214         bch2_rebalance_stop(c);
215
216         for_each_member_device(ca, c, i)
217                 bch2_copygc_stop(ca);
218
219         bch2_gc_thread_stop(c);
220
221         /*
222          * Flush journal before stopping allocators, because flushing journal
223          * blacklist entries involves allocating new btree nodes:
224          */
225         bch2_journal_flush_all_pins(&c->journal);
226
227         if (!test_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags))
228                 goto allocator_not_running;
229
230         do {
231                 wrote = false;
232
233                 ret = bch2_stripes_write(c, BTREE_INSERT_NOCHECK_RW, &wrote) ?:
234                         bch2_alloc_write(c, BTREE_INSERT_NOCHECK_RW, &wrote);
235
236                 if (ret && !test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
237                         bch2_fs_inconsistent(c, "error writing out alloc info %i", ret);
238
239                 if (ret)
240                         break;
241
242                 for_each_member_device(ca, c, i)
243                         bch2_dev_allocator_quiesce(c, ca);
244
245                 bch2_journal_flush_all_pins(&c->journal);
246
247                 /*
248                  * We need to explicitly wait on btree interior updates to complete
249                  * before stopping the journal, flushing all journal pins isn't
250                  * sufficient, because in the BTREE_INTERIOR_UPDATING_ROOT case btree
251                  * interior updates have to drop their journal pin before they're
252                  * fully complete:
253                  */
254                 closure_wait_event(&c->btree_interior_update_wait,
255                                    !bch2_btree_interior_updates_nr_pending(c));
256
257                 clean_passes = wrote ? 0 : clean_passes + 1;
258         } while (clean_passes < 2);
259 allocator_not_running:
260         for_each_member_device(ca, c, i)
261                 bch2_dev_allocator_stop(ca);
262
263         clear_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
264
265         bch2_fs_journal_stop(&c->journal);
266
267         /* XXX: mark super that alloc info is persistent */
268
269         /*
270          * the journal kicks off btree writes via reclaim - wait for in flight
271          * writes after stopping journal:
272          */
273         if (test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
274                 bch2_btree_flush_all_writes(c);
275         else
276                 bch2_btree_verify_flushed(c);
277
278         /*
279          * After stopping journal:
280          */
281         for_each_member_device(ca, c, i)
282                 bch2_dev_allocator_remove(c, ca);
283 }
284
285 static void bch2_writes_disabled(struct percpu_ref *writes)
286 {
287         struct bch_fs *c = container_of(writes, struct bch_fs, writes);
288
289         set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
290         wake_up(&bch_read_only_wait);
291 }
292
293 void bch2_fs_read_only(struct bch_fs *c)
294 {
295         if (!test_bit(BCH_FS_RW, &c->flags)) {
296                 cancel_delayed_work_sync(&c->journal.reclaim_work);
297                 return;
298         }
299
300         BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
301
302         /*
303          * Block new foreground-end write operations from starting - any new
304          * writes will return -EROFS:
305          *
306          * (This is really blocking new _allocations_, writes to previously
307          * allocated space can still happen until stopping the allocator in
308          * bch2_dev_allocator_stop()).
309          */
310         percpu_ref_kill(&c->writes);
311
312         cancel_work_sync(&c->ec_stripe_delete_work);
313         cancel_delayed_work(&c->pd_controllers_update);
314
315         /*
316          * If we're not doing an emergency shutdown, we want to wait on
317          * outstanding writes to complete so they don't see spurious errors due
318          * to shutting down the allocator:
319          *
320          * If we are doing an emergency shutdown outstanding writes may
321          * hang until we shutdown the allocator so we don't want to wait
322          * on outstanding writes before shutting everything down - but
323          * we do need to wait on them before returning and signalling
324          * that going RO is complete:
325          */
326         wait_event(bch_read_only_wait,
327                    test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) ||
328                    test_bit(BCH_FS_EMERGENCY_RO, &c->flags));
329
330         __bch2_fs_read_only(c);
331
332         wait_event(bch_read_only_wait,
333                    test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
334
335         clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
336
337         if (!bch2_journal_error(&c->journal) &&
338             !test_bit(BCH_FS_ERROR, &c->flags) &&
339             !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) &&
340             test_bit(BCH_FS_STARTED, &c->flags) &&
341             !c->opts.norecovery)
342                 bch2_fs_mark_clean(c);
343
344         clear_bit(BCH_FS_RW, &c->flags);
345 }
346
347 static void bch2_fs_read_only_work(struct work_struct *work)
348 {
349         struct bch_fs *c =
350                 container_of(work, struct bch_fs, read_only_work);
351
352         mutex_lock(&c->state_lock);
353         bch2_fs_read_only(c);
354         mutex_unlock(&c->state_lock);
355 }
356
357 static void bch2_fs_read_only_async(struct bch_fs *c)
358 {
359         queue_work(system_long_wq, &c->read_only_work);
360 }
361
362 bool bch2_fs_emergency_read_only(struct bch_fs *c)
363 {
364         bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags);
365
366         bch2_fs_read_only_async(c);
367         bch2_journal_halt(&c->journal);
368
369         wake_up(&bch_read_only_wait);
370         return ret;
371 }
372
373 static int bch2_fs_read_write_late(struct bch_fs *c)
374 {
375         struct bch_dev *ca;
376         unsigned i;
377         int ret;
378
379         ret = bch2_gc_thread_start(c);
380         if (ret) {
381                 bch_err(c, "error starting gc thread");
382                 return ret;
383         }
384
385         for_each_rw_member(ca, c, i) {
386                 ret = bch2_copygc_start(c, ca);
387                 if (ret) {
388                         bch_err(c, "error starting copygc threads");
389                         percpu_ref_put(&ca->io_ref);
390                         return ret;
391                 }
392         }
393
394         ret = bch2_rebalance_start(c);
395         if (ret) {
396                 bch_err(c, "error starting rebalance thread");
397                 return ret;
398         }
399
400         schedule_delayed_work(&c->pd_controllers_update, 5 * HZ);
401
402         schedule_work(&c->ec_stripe_delete_work);
403
404         return 0;
405 }
406
407 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
408 {
409         struct bch_dev *ca;
410         unsigned i;
411         int ret;
412
413         if (test_bit(BCH_FS_RW, &c->flags))
414                 return 0;
415
416         /*
417          * nochanges is used for fsck -n mode - we have to allow going rw
418          * during recovery for that to work:
419          */
420         if (c->opts.norecovery ||
421             (c->opts.nochanges &&
422              (!early || c->opts.read_only)))
423                 return -EROFS;
424
425         ret = bch2_fs_mark_dirty(c);
426         if (ret)
427                 goto err;
428
429         for_each_rw_member(ca, c, i)
430                 bch2_dev_allocator_add(c, ca);
431         bch2_recalc_capacity(c);
432
433         if (!test_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags)) {
434                 ret = bch2_fs_allocator_start(c);
435                 if (ret) {
436                         bch_err(c, "error initializing allocator");
437                         goto err;
438                 }
439
440                 set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags);
441         }
442
443         for_each_rw_member(ca, c, i) {
444                 ret = bch2_dev_allocator_start(ca);
445                 if (ret) {
446                         bch_err(c, "error starting allocator threads");
447                         percpu_ref_put(&ca->io_ref);
448                         goto err;
449                 }
450         }
451
452         set_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
453
454         if (!early) {
455                 ret = bch2_fs_read_write_late(c);
456                 if (ret)
457                         goto err;
458         }
459
460         percpu_ref_reinit(&c->writes);
461         set_bit(BCH_FS_RW, &c->flags);
462
463         queue_delayed_work(c->journal_reclaim_wq,
464                            &c->journal.reclaim_work, 0);
465         return 0;
466 err:
467         __bch2_fs_read_only(c);
468         return ret;
469 }
470
471 int bch2_fs_read_write(struct bch_fs *c)
472 {
473         return __bch2_fs_read_write(c, false);
474 }
475
476 int bch2_fs_read_write_early(struct bch_fs *c)
477 {
478         lockdep_assert_held(&c->state_lock);
479
480         return __bch2_fs_read_write(c, true);
481 }
482
483 /* Filesystem startup/shutdown: */
484
485 static void bch2_fs_free(struct bch_fs *c)
486 {
487         unsigned i;
488
489         for (i = 0; i < BCH_TIME_STAT_NR; i++)
490                 bch2_time_stats_exit(&c->times[i]);
491
492         bch2_fs_quota_exit(c);
493         bch2_fs_fsio_exit(c);
494         bch2_fs_ec_exit(c);
495         bch2_fs_encryption_exit(c);
496         bch2_fs_io_exit(c);
497         bch2_fs_btree_iter_exit(c);
498         bch2_fs_btree_cache_exit(c);
499         bch2_fs_journal_exit(&c->journal);
500         bch2_io_clock_exit(&c->io_clock[WRITE]);
501         bch2_io_clock_exit(&c->io_clock[READ]);
502         bch2_fs_compress_exit(c);
503         percpu_free_rwsem(&c->mark_lock);
504         kfree(c->usage_scratch);
505         free_percpu(c->usage[1]);
506         free_percpu(c->usage[0]);
507         kfree(c->usage_base);
508         free_percpu(c->pcpu);
509         mempool_exit(&c->large_bkey_pool);
510         mempool_exit(&c->btree_bounce_pool);
511         bioset_exit(&c->btree_bio);
512         mempool_exit(&c->btree_interior_update_pool);
513         mempool_exit(&c->btree_reserve_pool);
514         mempool_exit(&c->fill_iter);
515         percpu_ref_exit(&c->writes);
516         kfree(c->replicas.entries);
517         kfree(c->replicas_gc.entries);
518         kfree(rcu_dereference_protected(c->disk_groups, 1));
519         kfree(c->journal_seq_blacklist_table);
520
521         if (c->journal_reclaim_wq)
522                 destroy_workqueue(c->journal_reclaim_wq);
523         if (c->copygc_wq)
524                 destroy_workqueue(c->copygc_wq);
525         if (c->wq)
526                 destroy_workqueue(c->wq);
527
528         free_pages((unsigned long) c->disk_sb.sb,
529                    c->disk_sb.page_order);
530         kvpfree(c, sizeof(*c));
531         module_put(THIS_MODULE);
532 }
533
534 static void bch2_fs_release(struct kobject *kobj)
535 {
536         struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
537
538         bch2_fs_free(c);
539 }
540
541 void bch2_fs_stop(struct bch_fs *c)
542 {
543         struct bch_dev *ca;
544         unsigned i;
545
546         bch_verbose(c, "shutting down");
547
548         set_bit(BCH_FS_STOPPING, &c->flags);
549
550         cancel_work_sync(&c->journal_seq_blacklist_gc_work);
551
552         for_each_member_device(ca, c, i)
553                 if (ca->kobj.state_in_sysfs &&
554                     ca->disk_sb.bdev)
555                         sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj,
556                                           "bcachefs");
557
558         if (c->kobj.state_in_sysfs)
559                 kobject_del(&c->kobj);
560
561         bch2_fs_debug_exit(c);
562         bch2_fs_chardev_exit(c);
563
564         kobject_put(&c->time_stats);
565         kobject_put(&c->opts_dir);
566         kobject_put(&c->internal);
567
568         mutex_lock(&bch_fs_list_lock);
569         list_del(&c->list);
570         mutex_unlock(&bch_fs_list_lock);
571
572         closure_sync(&c->cl);
573         closure_debug_destroy(&c->cl);
574
575         mutex_lock(&c->state_lock);
576         bch2_fs_read_only(c);
577         mutex_unlock(&c->state_lock);
578
579         /* btree prefetch might have kicked off reads in the background: */
580         bch2_btree_flush_all_reads(c);
581
582         for_each_member_device(ca, c, i)
583                 cancel_work_sync(&ca->io_error_work);
584
585         cancel_work_sync(&c->btree_write_error_work);
586         cancel_delayed_work_sync(&c->pd_controllers_update);
587         cancel_work_sync(&c->read_only_work);
588
589         for (i = 0; i < c->sb.nr_devices; i++)
590                 if (c->devs[i])
591                         bch2_dev_free(rcu_dereference_protected(c->devs[i], 1));
592
593         bch_verbose(c, "shutdown complete");
594
595         kobject_put(&c->kobj);
596 }
597
598 static const char *bch2_fs_online(struct bch_fs *c)
599 {
600         struct bch_dev *ca;
601         const char *err = NULL;
602         unsigned i;
603         int ret;
604
605         lockdep_assert_held(&bch_fs_list_lock);
606
607         if (!list_empty(&c->list))
608                 return NULL;
609
610         if (__bch2_uuid_to_fs(c->sb.uuid))
611                 return "filesystem UUID already open";
612
613         ret = bch2_fs_chardev_init(c);
614         if (ret)
615                 return "error creating character device";
616
617         bch2_fs_debug_init(c);
618
619         if (kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ||
620             kobject_add(&c->internal, &c->kobj, "internal") ||
621             kobject_add(&c->opts_dir, &c->kobj, "options") ||
622             kobject_add(&c->time_stats, &c->kobj, "time_stats") ||
623             bch2_opts_create_sysfs_files(&c->opts_dir))
624                 return "error creating sysfs objects";
625
626         mutex_lock(&c->state_lock);
627
628         err = "error creating sysfs objects";
629         __for_each_member_device(ca, c, i, NULL)
630                 if (bch2_dev_sysfs_online(c, ca))
631                         goto err;
632
633         list_add(&c->list, &bch_fs_list);
634         err = NULL;
635 err:
636         mutex_unlock(&c->state_lock);
637         return err;
638 }
639
640 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
641 {
642         struct bch_sb_field_members *mi;
643         struct bch_fs *c;
644         unsigned i, iter_size;
645         const char *err;
646
647         pr_verbose_init(opts, "");
648
649         c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
650         if (!c)
651                 goto out;
652
653         __module_get(THIS_MODULE);
654
655         c->minor                = -1;
656         c->disk_sb.fs_sb        = true;
657
658         mutex_init(&c->state_lock);
659         mutex_init(&c->sb_lock);
660         mutex_init(&c->replicas_gc_lock);
661         mutex_init(&c->btree_root_lock);
662         INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
663
664         init_rwsem(&c->gc_lock);
665
666         for (i = 0; i < BCH_TIME_STAT_NR; i++)
667                 bch2_time_stats_init(&c->times[i]);
668
669         bch2_fs_allocator_background_init(c);
670         bch2_fs_allocator_foreground_init(c);
671         bch2_fs_rebalance_init(c);
672         bch2_fs_quota_init(c);
673
674         INIT_LIST_HEAD(&c->list);
675
676         INIT_LIST_HEAD(&c->btree_interior_update_list);
677         mutex_init(&c->btree_reserve_cache_lock);
678         mutex_init(&c->btree_interior_update_lock);
679
680         mutex_init(&c->usage_scratch_lock);
681
682         mutex_init(&c->bio_bounce_pages_lock);
683
684         bio_list_init(&c->btree_write_error_list);
685         spin_lock_init(&c->btree_write_error_lock);
686         INIT_WORK(&c->btree_write_error_work, bch2_btree_write_error_work);
687
688         INIT_WORK(&c->journal_seq_blacklist_gc_work,
689                   bch2_blacklist_entries_gc);
690
691         INIT_LIST_HEAD(&c->fsck_errors);
692         mutex_init(&c->fsck_error_lock);
693
694         INIT_LIST_HEAD(&c->ec_new_stripe_list);
695         mutex_init(&c->ec_new_stripe_lock);
696         mutex_init(&c->ec_stripe_create_lock);
697         spin_lock_init(&c->ec_stripes_heap_lock);
698
699         seqcount_init(&c->gc_pos_lock);
700
701         seqcount_init(&c->usage_lock);
702
703         c->copy_gc_enabled              = 1;
704         c->rebalance.enabled            = 1;
705         c->promote_whole_extents        = true;
706
707         c->journal.write_time   = &c->times[BCH_TIME_journal_write];
708         c->journal.delay_time   = &c->times[BCH_TIME_journal_delay];
709         c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal];
710         c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
711
712         bch2_fs_btree_cache_init_early(&c->btree_cache);
713
714         if (percpu_init_rwsem(&c->mark_lock))
715                 goto err;
716
717         mutex_lock(&c->sb_lock);
718
719         if (bch2_sb_to_fs(c, sb)) {
720                 mutex_unlock(&c->sb_lock);
721                 goto err;
722         }
723
724         mutex_unlock(&c->sb_lock);
725
726         scnprintf(c->name, sizeof(c->name), "%pU", &c->sb.user_uuid);
727
728         c->opts = bch2_opts_default;
729         bch2_opts_apply(&c->opts, bch2_opts_from_sb(sb));
730         bch2_opts_apply(&c->opts, opts);
731
732         c->block_bits           = ilog2(c->opts.block_size);
733         c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
734
735         if (bch2_fs_init_fault("fs_alloc"))
736                 goto err;
737
738         iter_size = sizeof(struct sort_iter) +
739                 (btree_blocks(c) + 1) * 2 *
740                 sizeof(struct sort_iter_set);
741
742         if (!(c->wq = alloc_workqueue("bcachefs",
743                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
744             !(c->copygc_wq = alloc_workqueue("bcache_copygc",
745                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
746             !(c->journal_reclaim_wq = alloc_workqueue("bcache_journal",
747                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) ||
748             percpu_ref_init(&c->writes, bch2_writes_disabled,
749                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
750             mempool_init_kmalloc_pool(&c->btree_reserve_pool, 1,
751                                       sizeof(struct btree_reserve)) ||
752             mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
753                                       sizeof(struct btree_update)) ||
754             mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
755             bioset_init(&c->btree_bio, 1,
756                         max(offsetof(struct btree_read_bio, bio),
757                             offsetof(struct btree_write_bio, wbio.bio)),
758                         BIOSET_NEED_BVECS) ||
759             !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
760             mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1,
761                                         btree_bytes(c)) ||
762             mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
763             bch2_io_clock_init(&c->io_clock[READ]) ||
764             bch2_io_clock_init(&c->io_clock[WRITE]) ||
765             bch2_fs_journal_init(&c->journal) ||
766             bch2_fs_replicas_init(c) ||
767             bch2_fs_btree_cache_init(c) ||
768             bch2_fs_btree_iter_init(c) ||
769             bch2_fs_io_init(c) ||
770             bch2_fs_encryption_init(c) ||
771             bch2_fs_compress_init(c) ||
772             bch2_fs_ec_init(c) ||
773             bch2_fs_fsio_init(c))
774                 goto err;
775
776         mi = bch2_sb_get_members(c->disk_sb.sb);
777         for (i = 0; i < c->sb.nr_devices; i++)
778                 if (bch2_dev_exists(c->disk_sb.sb, mi, i) &&
779                     bch2_dev_alloc(c, i))
780                         goto err;
781
782         /*
783          * Now that all allocations have succeeded, init various refcounty
784          * things that let us shutdown:
785          */
786         closure_init(&c->cl, NULL);
787
788         c->kobj.kset = bcachefs_kset;
789         kobject_init(&c->kobj, &bch2_fs_ktype);
790         kobject_init(&c->internal, &bch2_fs_internal_ktype);
791         kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
792         kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
793
794         mutex_lock(&bch_fs_list_lock);
795         err = bch2_fs_online(c);
796         mutex_unlock(&bch_fs_list_lock);
797         if (err) {
798                 bch_err(c, "bch2_fs_online() error: %s", err);
799                 goto err;
800         }
801 out:
802         pr_verbose_init(opts, "ret %i", c ? 0 : -ENOMEM);
803         return c;
804 err:
805         bch2_fs_free(c);
806         c = NULL;
807         goto out;
808 }
809
810 noinline_for_stack
811 static void print_mount_opts(struct bch_fs *c)
812 {
813         enum bch_opt_id i;
814         char buf[512];
815         struct printbuf p = PBUF(buf);
816         bool first = true;
817
818         strcpy(buf, "(null)");
819
820         if (c->opts.read_only) {
821                 pr_buf(&p, "ro");
822                 first = false;
823         }
824
825         for (i = 0; i < bch2_opts_nr; i++) {
826                 const struct bch_option *opt = &bch2_opt_table[i];
827                 u64 v = bch2_opt_get_by_id(&c->opts, i);
828
829                 if (!(opt->mode & OPT_MOUNT))
830                         continue;
831
832                 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
833                         continue;
834
835                 if (!first)
836                         pr_buf(&p, ",");
837                 first = false;
838                 bch2_opt_to_text(&p, c, opt, v, OPT_SHOW_MOUNT_STYLE);
839         }
840
841         bch_info(c, "mounted with opts: %s", buf);
842 }
843
844 int bch2_fs_start(struct bch_fs *c)
845 {
846         const char *err = "cannot allocate memory";
847         struct bch_sb_field_members *mi;
848         struct bch_dev *ca;
849         time64_t now = ktime_get_real_seconds();
850         unsigned i;
851         int ret = -EINVAL;
852
853         mutex_lock(&c->state_lock);
854
855         BUG_ON(test_bit(BCH_FS_STARTED, &c->flags));
856
857         mutex_lock(&c->sb_lock);
858
859         for_each_online_member(ca, c, i)
860                 bch2_sb_from_fs(c, ca);
861
862         mi = bch2_sb_get_members(c->disk_sb.sb);
863         for_each_online_member(ca, c, i)
864                 mi->members[ca->dev_idx].last_mount = cpu_to_le64(now);
865
866         mutex_unlock(&c->sb_lock);
867
868         for_each_rw_member(ca, c, i)
869                 bch2_dev_allocator_add(c, ca);
870         bch2_recalc_capacity(c);
871
872         ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
873                 ? bch2_fs_recovery(c)
874                 : bch2_fs_initialize(c);
875         if (ret)
876                 goto err;
877
878         ret = bch2_opts_check_may_set(c);
879         if (ret)
880                 goto err;
881
882         err = "dynamic fault";
883         ret = -EINVAL;
884         if (bch2_fs_init_fault("fs_start"))
885                 goto err;
886
887         if (c->opts.read_only || c->opts.nochanges) {
888                 bch2_fs_read_only(c);
889         } else {
890                 err = "error going read write";
891                 ret = !test_bit(BCH_FS_RW, &c->flags)
892                         ? bch2_fs_read_write(c)
893                         : bch2_fs_read_write_late(c);
894                 if (ret)
895                         goto err;
896         }
897
898         set_bit(BCH_FS_STARTED, &c->flags);
899         print_mount_opts(c);
900         ret = 0;
901 out:
902         mutex_unlock(&c->state_lock);
903         return ret;
904 err:
905         switch (ret) {
906         case BCH_FSCK_ERRORS_NOT_FIXED:
907                 bch_err(c, "filesystem contains errors: please report this to the developers");
908                 pr_cont("mount with -o fix_errors to repair\n");
909                 err = "fsck error";
910                 break;
911         case BCH_FSCK_REPAIR_UNIMPLEMENTED:
912                 bch_err(c, "filesystem contains errors: please report this to the developers");
913                 pr_cont("repair unimplemented: inform the developers so that it can be added\n");
914                 err = "fsck error";
915                 break;
916         case BCH_FSCK_REPAIR_IMPOSSIBLE:
917                 bch_err(c, "filesystem contains errors, but repair impossible");
918                 err = "fsck error";
919                 break;
920         case BCH_FSCK_UNKNOWN_VERSION:
921                 err = "unknown metadata version";;
922                 break;
923         case -ENOMEM:
924                 err = "cannot allocate memory";
925                 break;
926         case -EIO:
927                 err = "IO error";
928                 break;
929         }
930
931         if (ret >= 0)
932                 ret = -EIO;
933         goto out;
934 }
935
936 static const char *bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
937 {
938         struct bch_sb_field_members *sb_mi;
939
940         sb_mi = bch2_sb_get_members(sb);
941         if (!sb_mi)
942                 return "Invalid superblock: member info area missing";
943
944         if (le16_to_cpu(sb->block_size) != c->opts.block_size)
945                 return "mismatched block size";
946
947         if (le16_to_cpu(sb_mi->members[sb->dev_idx].bucket_size) <
948             BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
949                 return "new cache bucket size is too small";
950
951         return NULL;
952 }
953
954 static const char *bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb)
955 {
956         struct bch_sb *newest =
957                 le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb;
958         struct bch_sb_field_members *mi = bch2_sb_get_members(newest);
959
960         if (uuid_le_cmp(fs->uuid, sb->uuid))
961                 return "device not a member of filesystem";
962
963         if (!bch2_dev_exists(newest, mi, sb->dev_idx))
964                 return "device has been removed";
965
966         if (fs->block_size != sb->block_size)
967                 return "mismatched block size";
968
969         return NULL;
970 }
971
972 /* Device startup/shutdown: */
973
974 static void bch2_dev_release(struct kobject *kobj)
975 {
976         struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
977
978         kfree(ca);
979 }
980
981 static void bch2_dev_free(struct bch_dev *ca)
982 {
983         cancel_work_sync(&ca->io_error_work);
984
985         if (ca->kobj.state_in_sysfs &&
986             ca->disk_sb.bdev)
987                 sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj,
988                                   "bcachefs");
989
990         if (ca->kobj.state_in_sysfs)
991                 kobject_del(&ca->kobj);
992
993         bch2_free_super(&ca->disk_sb);
994         bch2_dev_journal_exit(ca);
995
996         free_percpu(ca->io_done);
997         bioset_exit(&ca->replica_set);
998         bch2_dev_buckets_free(ca);
999         free_page((unsigned long) ca->sb_read_scratch);
1000
1001         bch2_time_stats_exit(&ca->io_latency[WRITE]);
1002         bch2_time_stats_exit(&ca->io_latency[READ]);
1003
1004         percpu_ref_exit(&ca->io_ref);
1005         percpu_ref_exit(&ca->ref);
1006         kobject_put(&ca->kobj);
1007 }
1008
1009 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1010 {
1011
1012         lockdep_assert_held(&c->state_lock);
1013
1014         if (percpu_ref_is_zero(&ca->io_ref))
1015                 return;
1016
1017         __bch2_dev_read_only(c, ca);
1018
1019         reinit_completion(&ca->io_ref_completion);
1020         percpu_ref_kill(&ca->io_ref);
1021         wait_for_completion(&ca->io_ref_completion);
1022
1023         if (ca->kobj.state_in_sysfs) {
1024                 struct kobject *block =
1025                         &part_to_dev(ca->disk_sb.bdev->bd_part)->kobj;
1026
1027                 sysfs_remove_link(block, "bcachefs");
1028                 sysfs_remove_link(&ca->kobj, "block");
1029         }
1030
1031         bch2_free_super(&ca->disk_sb);
1032         bch2_dev_journal_exit(ca);
1033 }
1034
1035 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1036 {
1037         struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1038
1039         complete(&ca->ref_completion);
1040 }
1041
1042 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1043 {
1044         struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1045
1046         complete(&ca->io_ref_completion);
1047 }
1048
1049 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1050 {
1051         int ret;
1052
1053         if (!c->kobj.state_in_sysfs)
1054                 return 0;
1055
1056         if (!ca->kobj.state_in_sysfs) {
1057                 ret = kobject_add(&ca->kobj, &c->kobj,
1058                                   "dev-%u", ca->dev_idx);
1059                 if (ret)
1060                         return ret;
1061         }
1062
1063         if (ca->disk_sb.bdev) {
1064                 struct kobject *block =
1065                         &part_to_dev(ca->disk_sb.bdev->bd_part)->kobj;
1066
1067                 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1068                 if (ret)
1069                         return ret;
1070                 ret = sysfs_create_link(&ca->kobj, block, "block");
1071                 if (ret)
1072                         return ret;
1073         }
1074
1075         return 0;
1076 }
1077
1078 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1079                                         struct bch_member *member)
1080 {
1081         struct bch_dev *ca;
1082
1083         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1084         if (!ca)
1085                 return NULL;
1086
1087         kobject_init(&ca->kobj, &bch2_dev_ktype);
1088         init_completion(&ca->ref_completion);
1089         init_completion(&ca->io_ref_completion);
1090
1091         init_rwsem(&ca->bucket_lock);
1092
1093         writepoint_init(&ca->copygc_write_point, BCH_DATA_USER);
1094
1095         bch2_dev_copygc_init(ca);
1096
1097         INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1098
1099         bch2_time_stats_init(&ca->io_latency[READ]);
1100         bch2_time_stats_init(&ca->io_latency[WRITE]);
1101
1102         ca->mi = bch2_mi_to_cpu(member);
1103         ca->uuid = member->uuid;
1104
1105         if (opt_defined(c->opts, discard))
1106                 ca->mi.discard = opt_get(c->opts, discard);
1107
1108         if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
1109                             0, GFP_KERNEL) ||
1110             percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1111                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1112             !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1113             bch2_dev_buckets_alloc(c, ca) ||
1114             bioset_init(&ca->replica_set, 4,
1115                         offsetof(struct bch_write_bio, bio), 0) ||
1116             !(ca->io_done       = alloc_percpu(*ca->io_done)))
1117                 goto err;
1118
1119         return ca;
1120 err:
1121         bch2_dev_free(ca);
1122         return NULL;
1123 }
1124
1125 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1126                             unsigned dev_idx)
1127 {
1128         ca->dev_idx = dev_idx;
1129         __set_bit(ca->dev_idx, ca->self.d);
1130         scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1131
1132         ca->fs = c;
1133         rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1134
1135         if (bch2_dev_sysfs_online(c, ca))
1136                 pr_warn("error creating sysfs objects");
1137 }
1138
1139 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1140 {
1141         struct bch_member *member =
1142                 bch2_sb_get_members(c->disk_sb.sb)->members + dev_idx;
1143         struct bch_dev *ca = NULL;
1144         int ret = 0;
1145
1146         pr_verbose_init(c->opts, "");
1147
1148         if (bch2_fs_init_fault("dev_alloc"))
1149                 goto err;
1150
1151         ca = __bch2_dev_alloc(c, member);
1152         if (!ca)
1153                 goto err;
1154
1155         bch2_dev_attach(c, ca, dev_idx);
1156 out:
1157         pr_verbose_init(c->opts, "ret %i", ret);
1158         return ret;
1159 err:
1160         if (ca)
1161                 bch2_dev_free(ca);
1162         ret = -ENOMEM;
1163         goto out;
1164 }
1165
1166 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1167 {
1168         unsigned ret;
1169
1170         if (bch2_dev_is_online(ca)) {
1171                 bch_err(ca, "already have device online in slot %u",
1172                         sb->sb->dev_idx);
1173                 return -EINVAL;
1174         }
1175
1176         if (get_capacity(sb->bdev->bd_disk) <
1177             ca->mi.bucket_size * ca->mi.nbuckets) {
1178                 bch_err(ca, "cannot online: device too small");
1179                 return -EINVAL;
1180         }
1181
1182         BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1183
1184         if (get_capacity(sb->bdev->bd_disk) <
1185             ca->mi.bucket_size * ca->mi.nbuckets) {
1186                 bch_err(ca, "device too small");
1187                 return -EINVAL;
1188         }
1189
1190         ret = bch2_dev_journal_init(ca, sb->sb);
1191         if (ret)
1192                 return ret;
1193
1194         /* Commit: */
1195         ca->disk_sb = *sb;
1196         if (sb->mode & FMODE_EXCL)
1197                 ca->disk_sb.bdev->bd_holder = ca;
1198         memset(sb, 0, sizeof(*sb));
1199
1200         percpu_ref_reinit(&ca->io_ref);
1201
1202         return 0;
1203 }
1204
1205 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1206 {
1207         struct bch_dev *ca;
1208         int ret;
1209
1210         lockdep_assert_held(&c->state_lock);
1211
1212         if (le64_to_cpu(sb->sb->seq) >
1213             le64_to_cpu(c->disk_sb.sb->seq))
1214                 bch2_sb_to_fs(c, sb->sb);
1215
1216         BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1217                !c->devs[sb->sb->dev_idx]);
1218
1219         ca = bch_dev_locked(c, sb->sb->dev_idx);
1220
1221         ret = __bch2_dev_attach_bdev(ca, sb);
1222         if (ret)
1223                 return ret;
1224
1225         if (test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags) &&
1226             !percpu_u64_get(&ca->usage[0]->buckets[BCH_DATA_SB])) {
1227                 mutex_lock(&c->sb_lock);
1228                 bch2_mark_dev_superblock(ca->fs, ca, 0);
1229                 mutex_unlock(&c->sb_lock);
1230         }
1231
1232         bch2_dev_sysfs_online(c, ca);
1233
1234         if (c->sb.nr_devices == 1)
1235                 bdevname(ca->disk_sb.bdev, c->name);
1236         bdevname(ca->disk_sb.bdev, ca->name);
1237
1238         rebalance_wakeup(c);
1239         return 0;
1240 }
1241
1242 /* Device management: */
1243
1244 /*
1245  * Note: this function is also used by the error paths - when a particular
1246  * device sees an error, we call it to determine whether we can just set the
1247  * device RO, or - if this function returns false - we'll set the whole
1248  * filesystem RO:
1249  *
1250  * XXX: maybe we should be more explicit about whether we're changing state
1251  * because we got an error or what have you?
1252  */
1253 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1254                             enum bch_member_state new_state, int flags)
1255 {
1256         struct bch_devs_mask new_online_devs;
1257         struct replicas_status s;
1258         struct bch_dev *ca2;
1259         int i, nr_rw = 0, required;
1260
1261         lockdep_assert_held(&c->state_lock);
1262
1263         switch (new_state) {
1264         case BCH_MEMBER_STATE_RW:
1265                 return true;
1266         case BCH_MEMBER_STATE_RO:
1267                 if (ca->mi.state != BCH_MEMBER_STATE_RW)
1268                         return true;
1269
1270                 /* do we have enough devices to write to?  */
1271                 for_each_member_device(ca2, c, i)
1272                         if (ca2 != ca)
1273                                 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_RW;
1274
1275                 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1276                                ? c->opts.metadata_replicas
1277                                : c->opts.metadata_replicas_required,
1278                                !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1279                                ? c->opts.data_replicas
1280                                : c->opts.data_replicas_required);
1281
1282                 return nr_rw >= required;
1283         case BCH_MEMBER_STATE_FAILED:
1284         case BCH_MEMBER_STATE_SPARE:
1285                 if (ca->mi.state != BCH_MEMBER_STATE_RW &&
1286                     ca->mi.state != BCH_MEMBER_STATE_RO)
1287                         return true;
1288
1289                 /* do we have enough devices to read from?  */
1290                 new_online_devs = bch2_online_devs(c);
1291                 __clear_bit(ca->dev_idx, new_online_devs.d);
1292
1293                 s = __bch2_replicas_status(c, new_online_devs);
1294
1295                 return bch2_have_enough_devs(s, flags);
1296         default:
1297                 BUG();
1298         }
1299 }
1300
1301 static bool bch2_fs_may_start(struct bch_fs *c)
1302 {
1303         struct replicas_status s;
1304         struct bch_sb_field_members *mi;
1305         struct bch_dev *ca;
1306         unsigned i, flags = c->opts.degraded
1307                 ? BCH_FORCE_IF_DEGRADED
1308                 : 0;
1309
1310         if (!c->opts.degraded) {
1311                 mutex_lock(&c->sb_lock);
1312                 mi = bch2_sb_get_members(c->disk_sb.sb);
1313
1314                 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1315                         if (!bch2_dev_exists(c->disk_sb.sb, mi, i))
1316                                 continue;
1317
1318                         ca = bch_dev_locked(c, i);
1319
1320                         if (!bch2_dev_is_online(ca) &&
1321                             (ca->mi.state == BCH_MEMBER_STATE_RW ||
1322                              ca->mi.state == BCH_MEMBER_STATE_RO)) {
1323                                 mutex_unlock(&c->sb_lock);
1324                                 return false;
1325                         }
1326                 }
1327                 mutex_unlock(&c->sb_lock);
1328         }
1329
1330         s = bch2_replicas_status(c);
1331
1332         return bch2_have_enough_devs(s, flags);
1333 }
1334
1335 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1336 {
1337         bch2_copygc_stop(ca);
1338
1339         /*
1340          * The allocator thread itself allocates btree nodes, so stop it first:
1341          */
1342         bch2_dev_allocator_stop(ca);
1343         bch2_dev_allocator_remove(c, ca);
1344         bch2_dev_journal_stop(&c->journal, ca);
1345 }
1346
1347 static const char *__bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1348 {
1349         lockdep_assert_held(&c->state_lock);
1350
1351         BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW);
1352
1353         bch2_dev_allocator_add(c, ca);
1354         bch2_recalc_capacity(c);
1355
1356         if (bch2_dev_allocator_start(ca))
1357                 return "error starting allocator thread";
1358
1359         if (bch2_copygc_start(c, ca))
1360                 return "error starting copygc thread";
1361
1362         return NULL;
1363 }
1364
1365 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1366                          enum bch_member_state new_state, int flags)
1367 {
1368         struct bch_sb_field_members *mi;
1369         int ret = 0;
1370
1371         if (ca->mi.state == new_state)
1372                 return 0;
1373
1374         if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1375                 return -EINVAL;
1376
1377         if (new_state != BCH_MEMBER_STATE_RW)
1378                 __bch2_dev_read_only(c, ca);
1379
1380         bch_notice(ca, "%s", bch2_dev_state[new_state]);
1381
1382         mutex_lock(&c->sb_lock);
1383         mi = bch2_sb_get_members(c->disk_sb.sb);
1384         SET_BCH_MEMBER_STATE(&mi->members[ca->dev_idx], new_state);
1385         bch2_write_super(c);
1386         mutex_unlock(&c->sb_lock);
1387
1388         if (new_state == BCH_MEMBER_STATE_RW &&
1389             __bch2_dev_read_write(c, ca))
1390                 ret = -ENOMEM;
1391
1392         rebalance_wakeup(c);
1393
1394         return ret;
1395 }
1396
1397 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1398                        enum bch_member_state new_state, int flags)
1399 {
1400         int ret;
1401
1402         mutex_lock(&c->state_lock);
1403         ret = __bch2_dev_set_state(c, ca, new_state, flags);
1404         mutex_unlock(&c->state_lock);
1405
1406         return ret;
1407 }
1408
1409 /* Device add/removal: */
1410
1411 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1412 {
1413         struct bch_sb_field_members *mi;
1414         unsigned dev_idx = ca->dev_idx, data;
1415         int ret = -EINVAL;
1416
1417         mutex_lock(&c->state_lock);
1418
1419         percpu_ref_put(&ca->ref); /* XXX */
1420
1421         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
1422                 bch_err(ca, "Cannot remove without losing data");
1423                 goto err;
1424         }
1425
1426         __bch2_dev_read_only(c, ca);
1427
1428         /*
1429          * XXX: verify that dev_idx is really not in use anymore, anywhere
1430          *
1431          * flag_data_bad() does not check btree pointers
1432          */
1433         ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1434         if (ret) {
1435                 bch_err(ca, "Remove failed: error %i dropping data", ret);
1436                 goto err;
1437         }
1438
1439         ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1440         if (ret) {
1441                 bch_err(ca, "Remove failed: error %i flushing journal", ret);
1442                 goto err;
1443         }
1444
1445         data = bch2_dev_has_data(c, ca);
1446         if (data) {
1447                 char data_has_str[100];
1448
1449                 bch2_flags_to_text(&PBUF(data_has_str),
1450                                    bch2_data_types, data);
1451                 bch_err(ca, "Remove failed, still has data (%s)", data_has_str);
1452                 ret = -EBUSY;
1453                 goto err;
1454         }
1455
1456         ret = bch2_btree_delete_range(c, BTREE_ID_ALLOC,
1457                                       POS(ca->dev_idx, 0),
1458                                       POS(ca->dev_idx + 1, 0),
1459                                       NULL);
1460         if (ret) {
1461                 bch_err(ca, "Remove failed, error deleting alloc info");
1462                 goto err;
1463         }
1464
1465         /*
1466          * must flush all existing journal entries, they might have
1467          * (overwritten) keys that point to the device we're removing:
1468          */
1469         bch2_journal_flush_all_pins(&c->journal);
1470         ret = bch2_journal_error(&c->journal);
1471         if (ret) {
1472                 bch_err(ca, "Remove failed, journal error");
1473                 goto err;
1474         }
1475
1476         __bch2_dev_offline(c, ca);
1477
1478         mutex_lock(&c->sb_lock);
1479         rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1480         mutex_unlock(&c->sb_lock);
1481
1482         percpu_ref_kill(&ca->ref);
1483         wait_for_completion(&ca->ref_completion);
1484
1485         bch2_dev_free(ca);
1486
1487         /*
1488          * Free this device's slot in the bch_member array - all pointers to
1489          * this device must be gone:
1490          */
1491         mutex_lock(&c->sb_lock);
1492         mi = bch2_sb_get_members(c->disk_sb.sb);
1493         memset(&mi->members[dev_idx].uuid, 0, sizeof(mi->members[dev_idx].uuid));
1494
1495         bch2_write_super(c);
1496
1497         mutex_unlock(&c->sb_lock);
1498         mutex_unlock(&c->state_lock);
1499         return 0;
1500 err:
1501         if (ca->mi.state == BCH_MEMBER_STATE_RW &&
1502             !percpu_ref_is_zero(&ca->io_ref))
1503                 __bch2_dev_read_write(c, ca);
1504         mutex_unlock(&c->state_lock);
1505         return ret;
1506 }
1507
1508 static void dev_usage_clear(struct bch_dev *ca)
1509 {
1510         struct bucket_array *buckets;
1511
1512         percpu_memset(ca->usage[0], 0, sizeof(*ca->usage[0]));
1513
1514         down_read(&ca->bucket_lock);
1515         buckets = bucket_array(ca);
1516
1517         memset(buckets->b, 0, sizeof(buckets->b[0]) * buckets->nbuckets);
1518         up_read(&ca->bucket_lock);
1519 }
1520
1521 /* Add new device to running filesystem: */
1522 int bch2_dev_add(struct bch_fs *c, const char *path)
1523 {
1524         struct bch_opts opts = bch2_opts_empty();
1525         struct bch_sb_handle sb;
1526         const char *err;
1527         struct bch_dev *ca = NULL;
1528         struct bch_sb_field_members *mi;
1529         struct bch_member dev_mi;
1530         unsigned dev_idx, nr_devices, u64s;
1531         int ret;
1532
1533         ret = bch2_read_super(path, &opts, &sb);
1534         if (ret)
1535                 return ret;
1536
1537         err = bch2_sb_validate(&sb);
1538         if (err)
1539                 return -EINVAL;
1540
1541         dev_mi = bch2_sb_get_members(sb.sb)->members[sb.sb->dev_idx];
1542
1543         err = bch2_dev_may_add(sb.sb, c);
1544         if (err)
1545                 return -EINVAL;
1546
1547         ca = __bch2_dev_alloc(c, &dev_mi);
1548         if (!ca) {
1549                 bch2_free_super(&sb);
1550                 return -ENOMEM;
1551         }
1552
1553         ret = __bch2_dev_attach_bdev(ca, &sb);
1554         if (ret) {
1555                 bch2_dev_free(ca);
1556                 return ret;
1557         }
1558
1559         /*
1560          * We want to allocate journal on the new device before adding the new
1561          * device to the filesystem because allocating after we attach requires
1562          * spinning up the allocator thread, and the allocator thread requires
1563          * doing btree writes, which if the existing devices are RO isn't going
1564          * to work
1565          *
1566          * So we have to mark where the superblocks are, but marking allocated
1567          * data normally updates the filesystem usage too, so we have to mark,
1568          * allocate the journal, reset all the marks, then remark after we
1569          * attach...
1570          */
1571         bch2_mark_dev_superblock(ca->fs, ca, 0);
1572
1573         err = "journal alloc failed";
1574         ret = bch2_dev_journal_alloc(ca);
1575         if (ret)
1576                 goto err;
1577
1578         dev_usage_clear(ca);
1579
1580         mutex_lock(&c->state_lock);
1581         mutex_lock(&c->sb_lock);
1582
1583         err = "insufficient space in new superblock";
1584         ret = bch2_sb_from_fs(c, ca);
1585         if (ret)
1586                 goto err_unlock;
1587
1588         mi = bch2_sb_get_members(ca->disk_sb.sb);
1589
1590         if (!bch2_sb_resize_members(&ca->disk_sb,
1591                                 le32_to_cpu(mi->field.u64s) +
1592                                 sizeof(dev_mi) / sizeof(u64))) {
1593                 ret = -ENOSPC;
1594                 goto err_unlock;
1595         }
1596
1597         if (dynamic_fault("bcachefs:add:no_slot"))
1598                 goto no_slot;
1599
1600         mi = bch2_sb_get_members(c->disk_sb.sb);
1601         for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1602                 if (!bch2_dev_exists(c->disk_sb.sb, mi, dev_idx))
1603                         goto have_slot;
1604 no_slot:
1605         err = "no slots available in superblock";
1606         ret = -ENOSPC;
1607         goto err_unlock;
1608
1609 have_slot:
1610         nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1611         u64s = (sizeof(struct bch_sb_field_members) +
1612                 sizeof(struct bch_member) * nr_devices) / sizeof(u64);
1613
1614         err = "no space in superblock for member info";
1615         ret = -ENOSPC;
1616
1617         mi = bch2_sb_resize_members(&c->disk_sb, u64s);
1618         if (!mi)
1619                 goto err_unlock;
1620
1621         /* success: */
1622
1623         mi->members[dev_idx] = dev_mi;
1624         mi->members[dev_idx].last_mount = cpu_to_le64(ktime_get_real_seconds());
1625         c->disk_sb.sb->nr_devices       = nr_devices;
1626
1627         ca->disk_sb.sb->dev_idx = dev_idx;
1628         bch2_dev_attach(c, ca, dev_idx);
1629
1630         bch2_mark_dev_superblock(c, ca, 0);
1631
1632         bch2_write_super(c);
1633         mutex_unlock(&c->sb_lock);
1634
1635         if (ca->mi.state == BCH_MEMBER_STATE_RW) {
1636                 err = __bch2_dev_read_write(c, ca);
1637                 if (err)
1638                         goto err_late;
1639         }
1640
1641         mutex_unlock(&c->state_lock);
1642         return 0;
1643
1644 err_unlock:
1645         mutex_unlock(&c->sb_lock);
1646         mutex_unlock(&c->state_lock);
1647 err:
1648         if (ca)
1649                 bch2_dev_free(ca);
1650         bch2_free_super(&sb);
1651         bch_err(c, "Unable to add device: %s", err);
1652         return ret;
1653 err_late:
1654         bch_err(c, "Error going rw after adding device: %s", err);
1655         return -EINVAL;
1656 }
1657
1658 /* Hot add existing device to running filesystem: */
1659 int bch2_dev_online(struct bch_fs *c, const char *path)
1660 {
1661         struct bch_opts opts = bch2_opts_empty();
1662         struct bch_sb_handle sb = { NULL };
1663         struct bch_sb_field_members *mi;
1664         struct bch_dev *ca;
1665         unsigned dev_idx;
1666         const char *err;
1667         int ret;
1668
1669         mutex_lock(&c->state_lock);
1670
1671         ret = bch2_read_super(path, &opts, &sb);
1672         if (ret) {
1673                 mutex_unlock(&c->state_lock);
1674                 return ret;
1675         }
1676
1677         dev_idx = sb.sb->dev_idx;
1678
1679         err = bch2_dev_in_fs(c->disk_sb.sb, sb.sb);
1680         if (err)
1681                 goto err;
1682
1683         if (bch2_dev_attach_bdev(c, &sb)) {
1684                 err = "bch2_dev_attach_bdev() error";
1685                 goto err;
1686         }
1687
1688         ca = bch_dev_locked(c, dev_idx);
1689         if (ca->mi.state == BCH_MEMBER_STATE_RW) {
1690                 err = __bch2_dev_read_write(c, ca);
1691                 if (err)
1692                         goto err;
1693         }
1694
1695         mutex_lock(&c->sb_lock);
1696         mi = bch2_sb_get_members(c->disk_sb.sb);
1697
1698         mi->members[ca->dev_idx].last_mount =
1699                 cpu_to_le64(ktime_get_real_seconds());
1700
1701         bch2_write_super(c);
1702         mutex_unlock(&c->sb_lock);
1703
1704         mutex_unlock(&c->state_lock);
1705         return 0;
1706 err:
1707         mutex_unlock(&c->state_lock);
1708         bch2_free_super(&sb);
1709         bch_err(c, "error bringing %s online: %s", path, err);
1710         return -EINVAL;
1711 }
1712
1713 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1714 {
1715         mutex_lock(&c->state_lock);
1716
1717         if (!bch2_dev_is_online(ca)) {
1718                 bch_err(ca, "Already offline");
1719                 mutex_unlock(&c->state_lock);
1720                 return 0;
1721         }
1722
1723         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
1724                 bch_err(ca, "Cannot offline required disk");
1725                 mutex_unlock(&c->state_lock);
1726                 return -EINVAL;
1727         }
1728
1729         __bch2_dev_offline(c, ca);
1730
1731         mutex_unlock(&c->state_lock);
1732         return 0;
1733 }
1734
1735 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1736 {
1737         struct bch_member *mi;
1738         int ret = 0;
1739
1740         mutex_lock(&c->state_lock);
1741
1742         if (nbuckets < ca->mi.nbuckets) {
1743                 bch_err(ca, "Cannot shrink yet");
1744                 ret = -EINVAL;
1745                 goto err;
1746         }
1747
1748         if (bch2_dev_is_online(ca) &&
1749             get_capacity(ca->disk_sb.bdev->bd_disk) <
1750             ca->mi.bucket_size * nbuckets) {
1751                 bch_err(ca, "New size larger than device");
1752                 ret = -EINVAL;
1753                 goto err;
1754         }
1755
1756         ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1757         if (ret) {
1758                 bch_err(ca, "Resize error: %i", ret);
1759                 goto err;
1760         }
1761
1762         mutex_lock(&c->sb_lock);
1763         mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx];
1764         mi->nbuckets = cpu_to_le64(nbuckets);
1765
1766         bch2_write_super(c);
1767         mutex_unlock(&c->sb_lock);
1768
1769         bch2_recalc_capacity(c);
1770 err:
1771         mutex_unlock(&c->state_lock);
1772         return ret;
1773 }
1774
1775 /* return with ref on ca->ref: */
1776 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *path)
1777 {
1778
1779         struct block_device *bdev = lookup_bdev(path);
1780         struct bch_dev *ca;
1781         unsigned i;
1782
1783         if (IS_ERR(bdev))
1784                 return ERR_CAST(bdev);
1785
1786         for_each_member_device(ca, c, i)
1787                 if (ca->disk_sb.bdev == bdev)
1788                         goto found;
1789
1790         ca = ERR_PTR(-ENOENT);
1791 found:
1792         bdput(bdev);
1793         return ca;
1794 }
1795
1796 /* Filesystem open: */
1797
1798 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
1799                             struct bch_opts opts)
1800 {
1801         struct bch_sb_handle *sb = NULL;
1802         struct bch_fs *c = NULL;
1803         unsigned i, best_sb = 0;
1804         const char *err;
1805         int ret = -ENOMEM;
1806
1807         pr_verbose_init(opts, "");
1808
1809         if (!nr_devices) {
1810                 c = ERR_PTR(-EINVAL);
1811                 goto out2;
1812         }
1813
1814         if (!try_module_get(THIS_MODULE)) {
1815                 c = ERR_PTR(-ENODEV);
1816                 goto out2;
1817         }
1818
1819         sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL);
1820         if (!sb)
1821                 goto err;
1822
1823         for (i = 0; i < nr_devices; i++) {
1824                 ret = bch2_read_super(devices[i], &opts, &sb[i]);
1825                 if (ret)
1826                         goto err;
1827
1828                 err = bch2_sb_validate(&sb[i]);
1829                 if (err)
1830                         goto err_print;
1831         }
1832
1833         for (i = 1; i < nr_devices; i++)
1834                 if (le64_to_cpu(sb[i].sb->seq) >
1835                     le64_to_cpu(sb[best_sb].sb->seq))
1836                         best_sb = i;
1837
1838         for (i = 0; i < nr_devices; i++) {
1839                 err = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb);
1840                 if (err)
1841                         goto err_print;
1842         }
1843
1844         ret = -ENOMEM;
1845         c = bch2_fs_alloc(sb[best_sb].sb, opts);
1846         if (!c)
1847                 goto err;
1848
1849         err = "bch2_dev_online() error";
1850         mutex_lock(&c->state_lock);
1851         for (i = 0; i < nr_devices; i++)
1852                 if (bch2_dev_attach_bdev(c, &sb[i])) {
1853                         mutex_unlock(&c->state_lock);
1854                         goto err_print;
1855                 }
1856         mutex_unlock(&c->state_lock);
1857
1858         err = "insufficient devices";
1859         if (!bch2_fs_may_start(c))
1860                 goto err_print;
1861
1862         if (!c->opts.nostart) {
1863                 ret = bch2_fs_start(c);
1864                 if (ret)
1865                         goto err;
1866         }
1867 out:
1868         kfree(sb);
1869         module_put(THIS_MODULE);
1870 out2:
1871         pr_verbose_init(opts, "ret %i", PTR_ERR_OR_ZERO(c));
1872         return c;
1873 err_print:
1874         pr_err("bch_fs_open err opening %s: %s",
1875                devices[0], err);
1876         ret = -EINVAL;
1877 err:
1878         if (c)
1879                 bch2_fs_stop(c);
1880         for (i = 0; i < nr_devices; i++)
1881                 bch2_free_super(&sb[i]);
1882         c = ERR_PTR(ret);
1883         goto out;
1884 }
1885
1886 static const char *__bch2_fs_open_incremental(struct bch_sb_handle *sb,
1887                                               struct bch_opts opts)
1888 {
1889         const char *err;
1890         struct bch_fs *c;
1891         bool allocated_fs = false;
1892         int ret;
1893
1894         err = bch2_sb_validate(sb);
1895         if (err)
1896                 return err;
1897
1898         mutex_lock(&bch_fs_list_lock);
1899         c = __bch2_uuid_to_fs(sb->sb->uuid);
1900         if (c) {
1901                 closure_get(&c->cl);
1902
1903                 err = bch2_dev_in_fs(c->disk_sb.sb, sb->sb);
1904                 if (err)
1905                         goto err;
1906         } else {
1907                 c = bch2_fs_alloc(sb->sb, opts);
1908                 err = "cannot allocate memory";
1909                 if (!c)
1910                         goto err;
1911
1912                 allocated_fs = true;
1913         }
1914
1915         err = "bch2_dev_online() error";
1916
1917         mutex_lock(&c->sb_lock);
1918         if (bch2_dev_attach_bdev(c, sb)) {
1919                 mutex_unlock(&c->sb_lock);
1920                 goto err;
1921         }
1922         mutex_unlock(&c->sb_lock);
1923
1924         if (!c->opts.nostart && bch2_fs_may_start(c)) {
1925                 err = "error starting filesystem";
1926                 ret = bch2_fs_start(c);
1927                 if (ret)
1928                         goto err;
1929         }
1930
1931         closure_put(&c->cl);
1932         mutex_unlock(&bch_fs_list_lock);
1933
1934         return NULL;
1935 err:
1936         mutex_unlock(&bch_fs_list_lock);
1937
1938         if (allocated_fs)
1939                 bch2_fs_stop(c);
1940         else if (c)
1941                 closure_put(&c->cl);
1942
1943         return err;
1944 }
1945
1946 const char *bch2_fs_open_incremental(const char *path)
1947 {
1948         struct bch_sb_handle sb;
1949         struct bch_opts opts = bch2_opts_empty();
1950         const char *err;
1951
1952         if (bch2_read_super(path, &opts, &sb))
1953                 return "error reading superblock";
1954
1955         err = __bch2_fs_open_incremental(&sb, opts);
1956         bch2_free_super(&sb);
1957
1958         return err;
1959 }
1960
1961 /* Global interfaces/init */
1962
1963 static void bcachefs_exit(void)
1964 {
1965         bch2_debug_exit();
1966         bch2_vfs_exit();
1967         bch2_chardev_exit();
1968         if (bcachefs_kset)
1969                 kset_unregister(bcachefs_kset);
1970 }
1971
1972 static int __init bcachefs_init(void)
1973 {
1974         bch2_bkey_pack_test();
1975         bch2_inode_pack_test();
1976
1977         if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
1978             bch2_chardev_init() ||
1979             bch2_vfs_init() ||
1980             bch2_debug_init())
1981                 goto err;
1982
1983         return 0;
1984 err:
1985         bcachefs_exit();
1986         return -ENOMEM;
1987 }
1988
1989 #define BCH_DEBUG_PARAM(name, description)                      \
1990         bool bch2_##name;                                       \
1991         module_param_named(name, bch2_##name, bool, 0644);      \
1992         MODULE_PARM_DESC(name, description);
1993 BCH_DEBUG_PARAMS()
1994 #undef BCH_DEBUG_PARAM
1995
1996 module_exit(bcachefs_exit);
1997 module_init(bcachefs_init);