]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/super.c
Update bcachefs sources to 380885b0b8 bcachefs: Fix counting iterators for reflink...
[bcachefs-tools-debian] / libbcachefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_update_interior.h"
17 #include "btree_io.h"
18 #include "chardev.h"
19 #include "checksum.h"
20 #include "clock.h"
21 #include "compress.h"
22 #include "debug.h"
23 #include "disk_groups.h"
24 #include "ec.h"
25 #include "error.h"
26 #include "fs.h"
27 #include "fs-io.h"
28 #include "fsck.h"
29 #include "inode.h"
30 #include "io.h"
31 #include "journal.h"
32 #include "journal_reclaim.h"
33 #include "journal_seq_blacklist.h"
34 #include "move.h"
35 #include "migrate.h"
36 #include "movinggc.h"
37 #include "quota.h"
38 #include "rebalance.h"
39 #include "recovery.h"
40 #include "replicas.h"
41 #include "super.h"
42 #include "super-io.h"
43 #include "sysfs.h"
44
45 #include <linux/backing-dev.h>
46 #include <linux/blkdev.h>
47 #include <linux/debugfs.h>
48 #include <linux/device.h>
49 #include <linux/genhd.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/module.h>
53 #include <linux/percpu.h>
54 #include <linux/random.h>
55 #include <linux/sysfs.h>
56 #include <crypto/hash.h>
57
58 #include <trace/events/bcachefs.h>
59
60 MODULE_LICENSE("GPL");
61 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
62
63 #define KTYPE(type)                                                     \
64 struct kobj_type type ## _ktype = {                                     \
65         .release        = type ## _release,                             \
66         .sysfs_ops      = &type ## _sysfs_ops,                          \
67         .default_attrs  = type ## _files                                \
68 }
69
70 static void bch2_fs_release(struct kobject *);
71 static void bch2_dev_release(struct kobject *);
72
73 static void bch2_fs_internal_release(struct kobject *k)
74 {
75 }
76
77 static void bch2_fs_opts_dir_release(struct kobject *k)
78 {
79 }
80
81 static void bch2_fs_time_stats_release(struct kobject *k)
82 {
83 }
84
85 static KTYPE(bch2_fs);
86 static KTYPE(bch2_fs_internal);
87 static KTYPE(bch2_fs_opts_dir);
88 static KTYPE(bch2_fs_time_stats);
89 static KTYPE(bch2_dev);
90
91 static struct kset *bcachefs_kset;
92 static LIST_HEAD(bch_fs_list);
93 static DEFINE_MUTEX(bch_fs_list_lock);
94
95 static DECLARE_WAIT_QUEUE_HEAD(bch_read_only_wait);
96
97 static void bch2_dev_free(struct bch_dev *);
98 static int bch2_dev_alloc(struct bch_fs *, unsigned);
99 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
100 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
101
102 struct bch_fs *bch2_bdev_to_fs(struct block_device *bdev)
103 {
104         struct bch_fs *c;
105         struct bch_dev *ca;
106         unsigned i;
107
108         mutex_lock(&bch_fs_list_lock);
109         rcu_read_lock();
110
111         list_for_each_entry(c, &bch_fs_list, list)
112                 for_each_member_device_rcu(ca, c, i, NULL)
113                         if (ca->disk_sb.bdev == bdev) {
114                                 closure_get(&c->cl);
115                                 goto found;
116                         }
117         c = NULL;
118 found:
119         rcu_read_unlock();
120         mutex_unlock(&bch_fs_list_lock);
121
122         return c;
123 }
124
125 static struct bch_fs *__bch2_uuid_to_fs(uuid_le uuid)
126 {
127         struct bch_fs *c;
128
129         lockdep_assert_held(&bch_fs_list_lock);
130
131         list_for_each_entry(c, &bch_fs_list, list)
132                 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid_le)))
133                         return c;
134
135         return NULL;
136 }
137
138 struct bch_fs *bch2_uuid_to_fs(uuid_le uuid)
139 {
140         struct bch_fs *c;
141
142         mutex_lock(&bch_fs_list_lock);
143         c = __bch2_uuid_to_fs(uuid);
144         if (c)
145                 closure_get(&c->cl);
146         mutex_unlock(&bch_fs_list_lock);
147
148         return c;
149 }
150
151 int bch2_congested(void *data, int bdi_bits)
152 {
153         struct bch_fs *c = data;
154         struct backing_dev_info *bdi;
155         struct bch_dev *ca;
156         unsigned i;
157         int ret = 0;
158
159         rcu_read_lock();
160         if (bdi_bits & (1 << WB_sync_congested)) {
161                 /* Reads - check all devices: */
162                 for_each_readable_member(ca, c, i) {
163                         bdi = ca->disk_sb.bdev->bd_bdi;
164
165                         if (bdi_congested(bdi, bdi_bits)) {
166                                 ret = 1;
167                                 break;
168                         }
169                 }
170         } else {
171                 unsigned target = READ_ONCE(c->opts.foreground_target);
172                 const struct bch_devs_mask *devs = target
173                         ? bch2_target_to_mask(c, target)
174                         : &c->rw_devs[BCH_DATA_USER];
175
176                 for_each_member_device_rcu(ca, c, i, devs) {
177                         bdi = ca->disk_sb.bdev->bd_bdi;
178
179                         if (bdi_congested(bdi, bdi_bits)) {
180                                 ret = 1;
181                                 break;
182                         }
183                 }
184         }
185         rcu_read_unlock();
186
187         return ret;
188 }
189
190 /* Filesystem RO/RW: */
191
192 /*
193  * For startup/shutdown of RW stuff, the dependencies are:
194  *
195  * - foreground writes depend on copygc and rebalance (to free up space)
196  *
197  * - copygc and rebalance depend on mark and sweep gc (they actually probably
198  *   don't because they either reserve ahead of time or don't block if
199  *   allocations fail, but allocations can require mark and sweep gc to run
200  *   because of generation number wraparound)
201  *
202  * - all of the above depends on the allocator threads
203  *
204  * - allocator depends on the journal (when it rewrites prios and gens)
205  */
206
207 static void __bch2_fs_read_only(struct bch_fs *c)
208 {
209         struct bch_dev *ca;
210         bool wrote;
211         unsigned i, clean_passes = 0;
212         int ret;
213
214         bch2_rebalance_stop(c);
215
216         for_each_member_device(ca, c, i)
217                 bch2_copygc_stop(ca);
218
219         bch2_gc_thread_stop(c);
220
221         /*
222          * Flush journal before stopping allocators, because flushing journal
223          * blacklist entries involves allocating new btree nodes:
224          */
225         bch2_journal_flush_all_pins(&c->journal);
226
227         if (!test_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags))
228                 goto allocator_not_running;
229
230         do {
231                 wrote = false;
232
233                 ret = bch2_stripes_write(c, BTREE_INSERT_NOCHECK_RW, &wrote) ?:
234                         bch2_alloc_write(c, BTREE_INSERT_NOCHECK_RW, &wrote);
235
236                 if (ret && !test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
237                         bch2_fs_inconsistent(c, "error writing out alloc info %i", ret);
238
239                 if (ret)
240                         break;
241
242                 for_each_member_device(ca, c, i)
243                         bch2_dev_allocator_quiesce(c, ca);
244
245                 bch2_journal_flush_all_pins(&c->journal);
246
247                 /*
248                  * We need to explicitly wait on btree interior updates to complete
249                  * before stopping the journal, flushing all journal pins isn't
250                  * sufficient, because in the BTREE_INTERIOR_UPDATING_ROOT case btree
251                  * interior updates have to drop their journal pin before they're
252                  * fully complete:
253                  */
254                 closure_wait_event(&c->btree_interior_update_wait,
255                                    !bch2_btree_interior_updates_nr_pending(c));
256
257                 clean_passes = wrote ? 0 : clean_passes + 1;
258         } while (clean_passes < 2);
259 allocator_not_running:
260         for_each_member_device(ca, c, i)
261                 bch2_dev_allocator_stop(ca);
262
263         clear_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
264
265         bch2_fs_journal_stop(&c->journal);
266
267         /* XXX: mark super that alloc info is persistent */
268
269         /*
270          * the journal kicks off btree writes via reclaim - wait for in flight
271          * writes after stopping journal:
272          */
273         if (test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
274                 bch2_btree_flush_all_writes(c);
275         else
276                 bch2_btree_verify_flushed(c);
277
278         /*
279          * After stopping journal:
280          */
281         for_each_member_device(ca, c, i)
282                 bch2_dev_allocator_remove(c, ca);
283 }
284
285 static void bch2_writes_disabled(struct percpu_ref *writes)
286 {
287         struct bch_fs *c = container_of(writes, struct bch_fs, writes);
288
289         set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
290         wake_up(&bch_read_only_wait);
291 }
292
293 void bch2_fs_read_only(struct bch_fs *c)
294 {
295         if (!test_bit(BCH_FS_RW, &c->flags)) {
296                 cancel_delayed_work_sync(&c->journal.reclaim_work);
297                 return;
298         }
299
300         BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
301
302         /*
303          * Block new foreground-end write operations from starting - any new
304          * writes will return -EROFS:
305          *
306          * (This is really blocking new _allocations_, writes to previously
307          * allocated space can still happen until stopping the allocator in
308          * bch2_dev_allocator_stop()).
309          */
310         percpu_ref_kill(&c->writes);
311
312         cancel_work_sync(&c->ec_stripe_delete_work);
313         cancel_delayed_work(&c->pd_controllers_update);
314
315         /*
316          * If we're not doing an emergency shutdown, we want to wait on
317          * outstanding writes to complete so they don't see spurious errors due
318          * to shutting down the allocator:
319          *
320          * If we are doing an emergency shutdown outstanding writes may
321          * hang until we shutdown the allocator so we don't want to wait
322          * on outstanding writes before shutting everything down - but
323          * we do need to wait on them before returning and signalling
324          * that going RO is complete:
325          */
326         wait_event(bch_read_only_wait,
327                    test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) ||
328                    test_bit(BCH_FS_EMERGENCY_RO, &c->flags));
329
330         __bch2_fs_read_only(c);
331
332         wait_event(bch_read_only_wait,
333                    test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
334
335         clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
336
337         if (!bch2_journal_error(&c->journal) &&
338             !test_bit(BCH_FS_ERROR, &c->flags) &&
339             !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) &&
340             test_bit(BCH_FS_STARTED, &c->flags) &&
341             !c->opts.norecovery)
342                 bch2_fs_mark_clean(c);
343
344         clear_bit(BCH_FS_RW, &c->flags);
345 }
346
347 static void bch2_fs_read_only_work(struct work_struct *work)
348 {
349         struct bch_fs *c =
350                 container_of(work, struct bch_fs, read_only_work);
351
352         mutex_lock(&c->state_lock);
353         bch2_fs_read_only(c);
354         mutex_unlock(&c->state_lock);
355 }
356
357 static void bch2_fs_read_only_async(struct bch_fs *c)
358 {
359         queue_work(system_long_wq, &c->read_only_work);
360 }
361
362 bool bch2_fs_emergency_read_only(struct bch_fs *c)
363 {
364         bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags);
365
366         bch2_fs_read_only_async(c);
367         bch2_journal_halt(&c->journal);
368
369         wake_up(&bch_read_only_wait);
370         return ret;
371 }
372
373 static int bch2_fs_read_write_late(struct bch_fs *c)
374 {
375         struct bch_dev *ca;
376         unsigned i;
377         int ret;
378
379         ret = bch2_gc_thread_start(c);
380         if (ret) {
381                 bch_err(c, "error starting gc thread");
382                 return ret;
383         }
384
385         for_each_rw_member(ca, c, i) {
386                 ret = bch2_copygc_start(c, ca);
387                 if (ret) {
388                         bch_err(c, "error starting copygc threads");
389                         percpu_ref_put(&ca->io_ref);
390                         return ret;
391                 }
392         }
393
394         ret = bch2_rebalance_start(c);
395         if (ret) {
396                 bch_err(c, "error starting rebalance thread");
397                 return ret;
398         }
399
400         schedule_delayed_work(&c->pd_controllers_update, 5 * HZ);
401
402         schedule_work(&c->ec_stripe_delete_work);
403
404         return 0;
405 }
406
407 int __bch2_fs_read_write(struct bch_fs *c, bool early)
408 {
409         struct bch_dev *ca;
410         unsigned i;
411         int ret;
412
413         if (test_bit(BCH_FS_RW, &c->flags))
414                 return 0;
415
416         /*
417          * nochanges is used for fsck -n mode - we have to allow going rw
418          * during recovery for that to work:
419          */
420         if (c->opts.norecovery ||
421             (c->opts.nochanges &&
422              (!early || c->opts.read_only)))
423                 return -EROFS;
424
425         ret = bch2_fs_mark_dirty(c);
426         if (ret)
427                 goto err;
428
429         for_each_rw_member(ca, c, i)
430                 bch2_dev_allocator_add(c, ca);
431         bch2_recalc_capacity(c);
432
433         if (!test_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags)) {
434                 ret = bch2_fs_allocator_start(c);
435                 if (ret) {
436                         bch_err(c, "error initializing allocator");
437                         goto err;
438                 }
439
440                 set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags);
441         }
442
443         for_each_rw_member(ca, c, i) {
444                 ret = bch2_dev_allocator_start(ca);
445                 if (ret) {
446                         bch_err(c, "error starting allocator threads");
447                         percpu_ref_put(&ca->io_ref);
448                         goto err;
449                 }
450         }
451
452         set_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
453
454         if (!early) {
455                 ret = bch2_fs_read_write_late(c);
456                 if (ret)
457                         goto err;
458         }
459
460         percpu_ref_reinit(&c->writes);
461         set_bit(BCH_FS_RW, &c->flags);
462
463         queue_delayed_work(c->journal_reclaim_wq,
464                            &c->journal.reclaim_work, 0);
465         return 0;
466 err:
467         __bch2_fs_read_only(c);
468         return ret;
469 }
470
471 int bch2_fs_read_write(struct bch_fs *c)
472 {
473         return __bch2_fs_read_write(c, false);
474 }
475
476 int bch2_fs_read_write_early(struct bch_fs *c)
477 {
478         lockdep_assert_held(&c->state_lock);
479
480         return __bch2_fs_read_write(c, true);
481 }
482
483 /* Filesystem startup/shutdown: */
484
485 static void bch2_fs_free(struct bch_fs *c)
486 {
487         unsigned i;
488
489         for (i = 0; i < BCH_TIME_STAT_NR; i++)
490                 bch2_time_stats_exit(&c->times[i]);
491
492         bch2_fs_quota_exit(c);
493         bch2_fs_fsio_exit(c);
494         bch2_fs_ec_exit(c);
495         bch2_fs_encryption_exit(c);
496         bch2_fs_io_exit(c);
497         bch2_fs_btree_iter_exit(c);
498         bch2_fs_btree_cache_exit(c);
499         bch2_fs_journal_exit(&c->journal);
500         bch2_io_clock_exit(&c->io_clock[WRITE]);
501         bch2_io_clock_exit(&c->io_clock[READ]);
502         bch2_fs_compress_exit(c);
503         percpu_free_rwsem(&c->mark_lock);
504         kfree(c->usage_scratch);
505         free_percpu(c->usage[1]);
506         free_percpu(c->usage[0]);
507         kfree(c->usage_base);
508         free_percpu(c->pcpu);
509         mempool_exit(&c->btree_bounce_pool);
510         bioset_exit(&c->btree_bio);
511         mempool_exit(&c->btree_interior_update_pool);
512         mempool_exit(&c->btree_reserve_pool);
513         mempool_exit(&c->fill_iter);
514         percpu_ref_exit(&c->writes);
515         kfree(c->replicas.entries);
516         kfree(c->replicas_gc.entries);
517         kfree(rcu_dereference_protected(c->disk_groups, 1));
518         kfree(c->journal_seq_blacklist_table);
519
520         if (c->journal_reclaim_wq)
521                 destroy_workqueue(c->journal_reclaim_wq);
522         if (c->copygc_wq)
523                 destroy_workqueue(c->copygc_wq);
524         if (c->wq)
525                 destroy_workqueue(c->wq);
526
527         free_pages((unsigned long) c->disk_sb.sb,
528                    c->disk_sb.page_order);
529         kvpfree(c, sizeof(*c));
530         module_put(THIS_MODULE);
531 }
532
533 static void bch2_fs_release(struct kobject *kobj)
534 {
535         struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
536
537         bch2_fs_free(c);
538 }
539
540 void bch2_fs_stop(struct bch_fs *c)
541 {
542         struct bch_dev *ca;
543         unsigned i;
544
545         bch_verbose(c, "shutting down");
546
547         set_bit(BCH_FS_STOPPING, &c->flags);
548
549         cancel_work_sync(&c->journal_seq_blacklist_gc_work);
550
551         for_each_member_device(ca, c, i)
552                 if (ca->kobj.state_in_sysfs &&
553                     ca->disk_sb.bdev)
554                         sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj,
555                                           "bcachefs");
556
557         if (c->kobj.state_in_sysfs)
558                 kobject_del(&c->kobj);
559
560         bch2_fs_debug_exit(c);
561         bch2_fs_chardev_exit(c);
562
563         kobject_put(&c->time_stats);
564         kobject_put(&c->opts_dir);
565         kobject_put(&c->internal);
566
567         mutex_lock(&bch_fs_list_lock);
568         list_del(&c->list);
569         mutex_unlock(&bch_fs_list_lock);
570
571         closure_sync(&c->cl);
572         closure_debug_destroy(&c->cl);
573
574         mutex_lock(&c->state_lock);
575         bch2_fs_read_only(c);
576         mutex_unlock(&c->state_lock);
577
578         /* btree prefetch might have kicked off reads in the background: */
579         bch2_btree_flush_all_reads(c);
580
581         for_each_member_device(ca, c, i)
582                 cancel_work_sync(&ca->io_error_work);
583
584         cancel_work_sync(&c->btree_write_error_work);
585         cancel_delayed_work_sync(&c->pd_controllers_update);
586         cancel_work_sync(&c->read_only_work);
587
588         for (i = 0; i < c->sb.nr_devices; i++)
589                 if (c->devs[i])
590                         bch2_dev_free(rcu_dereference_protected(c->devs[i], 1));
591
592         bch_verbose(c, "shutdown complete");
593
594         kobject_put(&c->kobj);
595 }
596
597 static const char *bch2_fs_online(struct bch_fs *c)
598 {
599         struct bch_dev *ca;
600         const char *err = NULL;
601         unsigned i;
602         int ret;
603
604         lockdep_assert_held(&bch_fs_list_lock);
605
606         if (!list_empty(&c->list))
607                 return NULL;
608
609         if (__bch2_uuid_to_fs(c->sb.uuid))
610                 return "filesystem UUID already open";
611
612         ret = bch2_fs_chardev_init(c);
613         if (ret)
614                 return "error creating character device";
615
616         bch2_fs_debug_init(c);
617
618         if (kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ||
619             kobject_add(&c->internal, &c->kobj, "internal") ||
620             kobject_add(&c->opts_dir, &c->kobj, "options") ||
621             kobject_add(&c->time_stats, &c->kobj, "time_stats") ||
622             bch2_opts_create_sysfs_files(&c->opts_dir))
623                 return "error creating sysfs objects";
624
625         mutex_lock(&c->state_lock);
626
627         err = "error creating sysfs objects";
628         __for_each_member_device(ca, c, i, NULL)
629                 if (bch2_dev_sysfs_online(c, ca))
630                         goto err;
631
632         list_add(&c->list, &bch_fs_list);
633         err = NULL;
634 err:
635         mutex_unlock(&c->state_lock);
636         return err;
637 }
638
639 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
640 {
641         struct bch_sb_field_members *mi;
642         struct bch_fs *c;
643         unsigned i, iter_size;
644         const char *err;
645
646         pr_verbose_init(opts, "");
647
648         c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
649         if (!c)
650                 goto out;
651
652         __module_get(THIS_MODULE);
653
654         c->minor                = -1;
655         c->disk_sb.fs_sb        = true;
656
657         mutex_init(&c->state_lock);
658         mutex_init(&c->sb_lock);
659         mutex_init(&c->replicas_gc_lock);
660         mutex_init(&c->btree_root_lock);
661         INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
662
663         init_rwsem(&c->gc_lock);
664
665         for (i = 0; i < BCH_TIME_STAT_NR; i++)
666                 bch2_time_stats_init(&c->times[i]);
667
668         bch2_fs_allocator_background_init(c);
669         bch2_fs_allocator_foreground_init(c);
670         bch2_fs_rebalance_init(c);
671         bch2_fs_quota_init(c);
672
673         INIT_LIST_HEAD(&c->list);
674
675         INIT_LIST_HEAD(&c->btree_interior_update_list);
676         mutex_init(&c->btree_reserve_cache_lock);
677         mutex_init(&c->btree_interior_update_lock);
678
679         mutex_init(&c->usage_scratch_lock);
680
681         mutex_init(&c->bio_bounce_pages_lock);
682
683         bio_list_init(&c->btree_write_error_list);
684         spin_lock_init(&c->btree_write_error_lock);
685         INIT_WORK(&c->btree_write_error_work, bch2_btree_write_error_work);
686
687         INIT_WORK(&c->journal_seq_blacklist_gc_work,
688                   bch2_blacklist_entries_gc);
689
690         INIT_LIST_HEAD(&c->fsck_errors);
691         mutex_init(&c->fsck_error_lock);
692
693         INIT_LIST_HEAD(&c->ec_new_stripe_list);
694         mutex_init(&c->ec_new_stripe_lock);
695         mutex_init(&c->ec_stripe_create_lock);
696         spin_lock_init(&c->ec_stripes_heap_lock);
697
698         seqcount_init(&c->gc_pos_lock);
699
700         seqcount_init(&c->usage_lock);
701
702         c->copy_gc_enabled              = 1;
703         c->rebalance.enabled            = 1;
704         c->promote_whole_extents        = true;
705
706         c->journal.write_time   = &c->times[BCH_TIME_journal_write];
707         c->journal.delay_time   = &c->times[BCH_TIME_journal_delay];
708         c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal];
709         c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
710
711         bch2_fs_btree_cache_init_early(&c->btree_cache);
712
713         if (percpu_init_rwsem(&c->mark_lock))
714                 goto err;
715
716         mutex_lock(&c->sb_lock);
717
718         if (bch2_sb_to_fs(c, sb)) {
719                 mutex_unlock(&c->sb_lock);
720                 goto err;
721         }
722
723         mutex_unlock(&c->sb_lock);
724
725         scnprintf(c->name, sizeof(c->name), "%pU", &c->sb.user_uuid);
726
727         c->opts = bch2_opts_default;
728         bch2_opts_apply(&c->opts, bch2_opts_from_sb(sb));
729         bch2_opts_apply(&c->opts, opts);
730
731         c->block_bits           = ilog2(c->opts.block_size);
732         c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
733
734         if (bch2_fs_init_fault("fs_alloc"))
735                 goto err;
736
737         iter_size = sizeof(struct btree_node_iter_large) +
738                 (btree_blocks(c) + 1) * 2 *
739                 sizeof(struct btree_node_iter_set);
740
741         if (!(c->wq = alloc_workqueue("bcachefs",
742                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
743             !(c->copygc_wq = alloc_workqueue("bcache_copygc",
744                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
745             !(c->journal_reclaim_wq = alloc_workqueue("bcache_journal",
746                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) ||
747             percpu_ref_init(&c->writes, bch2_writes_disabled,
748                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
749             mempool_init_kmalloc_pool(&c->btree_reserve_pool, 1,
750                                       sizeof(struct btree_reserve)) ||
751             mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
752                                       sizeof(struct btree_update)) ||
753             mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
754             bioset_init(&c->btree_bio, 1,
755                         max(offsetof(struct btree_read_bio, bio),
756                             offsetof(struct btree_write_bio, wbio.bio)),
757                         BIOSET_NEED_BVECS) ||
758             !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
759             mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1,
760                                         btree_bytes(c)) ||
761             bch2_io_clock_init(&c->io_clock[READ]) ||
762             bch2_io_clock_init(&c->io_clock[WRITE]) ||
763             bch2_fs_journal_init(&c->journal) ||
764             bch2_fs_replicas_init(c) ||
765             bch2_fs_btree_cache_init(c) ||
766             bch2_fs_btree_iter_init(c) ||
767             bch2_fs_io_init(c) ||
768             bch2_fs_encryption_init(c) ||
769             bch2_fs_compress_init(c) ||
770             bch2_fs_ec_init(c) ||
771             bch2_fs_fsio_init(c))
772                 goto err;
773
774         mi = bch2_sb_get_members(c->disk_sb.sb);
775         for (i = 0; i < c->sb.nr_devices; i++)
776                 if (bch2_dev_exists(c->disk_sb.sb, mi, i) &&
777                     bch2_dev_alloc(c, i))
778                         goto err;
779
780         /*
781          * Now that all allocations have succeeded, init various refcounty
782          * things that let us shutdown:
783          */
784         closure_init(&c->cl, NULL);
785
786         c->kobj.kset = bcachefs_kset;
787         kobject_init(&c->kobj, &bch2_fs_ktype);
788         kobject_init(&c->internal, &bch2_fs_internal_ktype);
789         kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
790         kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
791
792         mutex_lock(&bch_fs_list_lock);
793         err = bch2_fs_online(c);
794         mutex_unlock(&bch_fs_list_lock);
795         if (err) {
796                 bch_err(c, "bch2_fs_online() error: %s", err);
797                 goto err;
798         }
799 out:
800         pr_verbose_init(opts, "ret %i", c ? 0 : -ENOMEM);
801         return c;
802 err:
803         bch2_fs_free(c);
804         c = NULL;
805         goto out;
806 }
807
808 noinline_for_stack
809 static void print_mount_opts(struct bch_fs *c)
810 {
811         enum bch_opt_id i;
812         char buf[512];
813         struct printbuf p = PBUF(buf);
814         bool first = true;
815
816         strcpy(buf, "(null)");
817
818         if (c->opts.read_only) {
819                 pr_buf(&p, "ro");
820                 first = false;
821         }
822
823         for (i = 0; i < bch2_opts_nr; i++) {
824                 const struct bch_option *opt = &bch2_opt_table[i];
825                 u64 v = bch2_opt_get_by_id(&c->opts, i);
826
827                 if (!(opt->mode & OPT_MOUNT))
828                         continue;
829
830                 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
831                         continue;
832
833                 if (!first)
834                         pr_buf(&p, ",");
835                 first = false;
836                 bch2_opt_to_text(&p, c, opt, v, OPT_SHOW_MOUNT_STYLE);
837         }
838
839         bch_info(c, "mounted with opts: %s", buf);
840 }
841
842 int bch2_fs_start(struct bch_fs *c)
843 {
844         const char *err = "cannot allocate memory";
845         struct bch_sb_field_members *mi;
846         struct bch_dev *ca;
847         time64_t now = ktime_get_real_seconds();
848         unsigned i;
849         int ret = -EINVAL;
850
851         mutex_lock(&c->state_lock);
852
853         BUG_ON(test_bit(BCH_FS_STARTED, &c->flags));
854
855         mutex_lock(&c->sb_lock);
856
857         for_each_online_member(ca, c, i)
858                 bch2_sb_from_fs(c, ca);
859
860         mi = bch2_sb_get_members(c->disk_sb.sb);
861         for_each_online_member(ca, c, i)
862                 mi->members[ca->dev_idx].last_mount = cpu_to_le64(now);
863
864         mutex_unlock(&c->sb_lock);
865
866         for_each_rw_member(ca, c, i)
867                 bch2_dev_allocator_add(c, ca);
868         bch2_recalc_capacity(c);
869
870         ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
871                 ? bch2_fs_recovery(c)
872                 : bch2_fs_initialize(c);
873         if (ret)
874                 goto err;
875
876         ret = bch2_opts_check_may_set(c);
877         if (ret)
878                 goto err;
879
880         err = "dynamic fault";
881         ret = -EINVAL;
882         if (bch2_fs_init_fault("fs_start"))
883                 goto err;
884
885         if (c->opts.read_only || c->opts.nochanges) {
886                 bch2_fs_read_only(c);
887         } else {
888                 err = "error going read write";
889                 ret = !test_bit(BCH_FS_RW, &c->flags)
890                         ? bch2_fs_read_write(c)
891                         : bch2_fs_read_write_late(c);
892                 if (ret)
893                         goto err;
894         }
895
896         set_bit(BCH_FS_STARTED, &c->flags);
897         print_mount_opts(c);
898         ret = 0;
899 out:
900         mutex_unlock(&c->state_lock);
901         return ret;
902 err:
903         switch (ret) {
904         case BCH_FSCK_ERRORS_NOT_FIXED:
905                 bch_err(c, "filesystem contains errors: please report this to the developers");
906                 pr_cont("mount with -o fix_errors to repair\n");
907                 err = "fsck error";
908                 break;
909         case BCH_FSCK_REPAIR_UNIMPLEMENTED:
910                 bch_err(c, "filesystem contains errors: please report this to the developers");
911                 pr_cont("repair unimplemented: inform the developers so that it can be added\n");
912                 err = "fsck error";
913                 break;
914         case BCH_FSCK_REPAIR_IMPOSSIBLE:
915                 bch_err(c, "filesystem contains errors, but repair impossible");
916                 err = "fsck error";
917                 break;
918         case BCH_FSCK_UNKNOWN_VERSION:
919                 err = "unknown metadata version";;
920                 break;
921         case -ENOMEM:
922                 err = "cannot allocate memory";
923                 break;
924         case -EIO:
925                 err = "IO error";
926                 break;
927         }
928
929         if (ret >= 0)
930                 ret = -EIO;
931         goto out;
932 }
933
934 static const char *bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
935 {
936         struct bch_sb_field_members *sb_mi;
937
938         sb_mi = bch2_sb_get_members(sb);
939         if (!sb_mi)
940                 return "Invalid superblock: member info area missing";
941
942         if (le16_to_cpu(sb->block_size) != c->opts.block_size)
943                 return "mismatched block size";
944
945         if (le16_to_cpu(sb_mi->members[sb->dev_idx].bucket_size) <
946             BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
947                 return "new cache bucket size is too small";
948
949         return NULL;
950 }
951
952 static const char *bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb)
953 {
954         struct bch_sb *newest =
955                 le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb;
956         struct bch_sb_field_members *mi = bch2_sb_get_members(newest);
957
958         if (uuid_le_cmp(fs->uuid, sb->uuid))
959                 return "device not a member of filesystem";
960
961         if (!bch2_dev_exists(newest, mi, sb->dev_idx))
962                 return "device has been removed";
963
964         if (fs->block_size != sb->block_size)
965                 return "mismatched block size";
966
967         return NULL;
968 }
969
970 /* Device startup/shutdown: */
971
972 static void bch2_dev_release(struct kobject *kobj)
973 {
974         struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
975
976         kfree(ca);
977 }
978
979 static void bch2_dev_free(struct bch_dev *ca)
980 {
981         cancel_work_sync(&ca->io_error_work);
982
983         if (ca->kobj.state_in_sysfs &&
984             ca->disk_sb.bdev)
985                 sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj,
986                                   "bcachefs");
987
988         if (ca->kobj.state_in_sysfs)
989                 kobject_del(&ca->kobj);
990
991         bch2_free_super(&ca->disk_sb);
992         bch2_dev_journal_exit(ca);
993
994         free_percpu(ca->io_done);
995         bioset_exit(&ca->replica_set);
996         bch2_dev_buckets_free(ca);
997         free_page((unsigned long) ca->sb_read_scratch);
998
999         bch2_time_stats_exit(&ca->io_latency[WRITE]);
1000         bch2_time_stats_exit(&ca->io_latency[READ]);
1001
1002         percpu_ref_exit(&ca->io_ref);
1003         percpu_ref_exit(&ca->ref);
1004         kobject_put(&ca->kobj);
1005 }
1006
1007 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1008 {
1009
1010         lockdep_assert_held(&c->state_lock);
1011
1012         if (percpu_ref_is_zero(&ca->io_ref))
1013                 return;
1014
1015         __bch2_dev_read_only(c, ca);
1016
1017         reinit_completion(&ca->io_ref_completion);
1018         percpu_ref_kill(&ca->io_ref);
1019         wait_for_completion(&ca->io_ref_completion);
1020
1021         if (ca->kobj.state_in_sysfs) {
1022                 struct kobject *block =
1023                         &part_to_dev(ca->disk_sb.bdev->bd_part)->kobj;
1024
1025                 sysfs_remove_link(block, "bcachefs");
1026                 sysfs_remove_link(&ca->kobj, "block");
1027         }
1028
1029         bch2_free_super(&ca->disk_sb);
1030         bch2_dev_journal_exit(ca);
1031 }
1032
1033 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1034 {
1035         struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1036
1037         complete(&ca->ref_completion);
1038 }
1039
1040 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1041 {
1042         struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1043
1044         complete(&ca->io_ref_completion);
1045 }
1046
1047 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1048 {
1049         int ret;
1050
1051         if (!c->kobj.state_in_sysfs)
1052                 return 0;
1053
1054         if (!ca->kobj.state_in_sysfs) {
1055                 ret = kobject_add(&ca->kobj, &c->kobj,
1056                                   "dev-%u", ca->dev_idx);
1057                 if (ret)
1058                         return ret;
1059         }
1060
1061         if (ca->disk_sb.bdev) {
1062                 struct kobject *block =
1063                         &part_to_dev(ca->disk_sb.bdev->bd_part)->kobj;
1064
1065                 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1066                 if (ret)
1067                         return ret;
1068                 ret = sysfs_create_link(&ca->kobj, block, "block");
1069                 if (ret)
1070                         return ret;
1071         }
1072
1073         return 0;
1074 }
1075
1076 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1077                                         struct bch_member *member)
1078 {
1079         struct bch_dev *ca;
1080
1081         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1082         if (!ca)
1083                 return NULL;
1084
1085         kobject_init(&ca->kobj, &bch2_dev_ktype);
1086         init_completion(&ca->ref_completion);
1087         init_completion(&ca->io_ref_completion);
1088
1089         init_rwsem(&ca->bucket_lock);
1090
1091         writepoint_init(&ca->copygc_write_point, BCH_DATA_USER);
1092
1093         spin_lock_init(&ca->freelist_lock);
1094         bch2_dev_copygc_init(ca);
1095
1096         INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1097
1098         bch2_time_stats_init(&ca->io_latency[READ]);
1099         bch2_time_stats_init(&ca->io_latency[WRITE]);
1100
1101         ca->mi = bch2_mi_to_cpu(member);
1102         ca->uuid = member->uuid;
1103
1104         if (opt_defined(c->opts, discard))
1105                 ca->mi.discard = opt_get(c->opts, discard);
1106
1107         if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
1108                             0, GFP_KERNEL) ||
1109             percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1110                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1111             !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1112             bch2_dev_buckets_alloc(c, ca) ||
1113             bioset_init(&ca->replica_set, 4,
1114                         offsetof(struct bch_write_bio, bio), 0) ||
1115             !(ca->io_done       = alloc_percpu(*ca->io_done)))
1116                 goto err;
1117
1118         return ca;
1119 err:
1120         bch2_dev_free(ca);
1121         return NULL;
1122 }
1123
1124 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1125                             unsigned dev_idx)
1126 {
1127         ca->dev_idx = dev_idx;
1128         __set_bit(ca->dev_idx, ca->self.d);
1129         scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1130
1131         ca->fs = c;
1132         rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1133
1134         if (bch2_dev_sysfs_online(c, ca))
1135                 pr_warn("error creating sysfs objects");
1136 }
1137
1138 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1139 {
1140         struct bch_member *member =
1141                 bch2_sb_get_members(c->disk_sb.sb)->members + dev_idx;
1142         struct bch_dev *ca = NULL;
1143         int ret = 0;
1144
1145         pr_verbose_init(c->opts, "");
1146
1147         if (bch2_fs_init_fault("dev_alloc"))
1148                 goto err;
1149
1150         ca = __bch2_dev_alloc(c, member);
1151         if (!ca)
1152                 goto err;
1153
1154         bch2_dev_attach(c, ca, dev_idx);
1155 out:
1156         pr_verbose_init(c->opts, "ret %i", ret);
1157         return ret;
1158 err:
1159         if (ca)
1160                 bch2_dev_free(ca);
1161         ret = -ENOMEM;
1162         goto out;
1163 }
1164
1165 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1166 {
1167         unsigned ret;
1168
1169         if (bch2_dev_is_online(ca)) {
1170                 bch_err(ca, "already have device online in slot %u",
1171                         sb->sb->dev_idx);
1172                 return -EINVAL;
1173         }
1174
1175         if (get_capacity(sb->bdev->bd_disk) <
1176             ca->mi.bucket_size * ca->mi.nbuckets) {
1177                 bch_err(ca, "cannot online: device too small");
1178                 return -EINVAL;
1179         }
1180
1181         BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1182
1183         if (get_capacity(sb->bdev->bd_disk) <
1184             ca->mi.bucket_size * ca->mi.nbuckets) {
1185                 bch_err(ca, "device too small");
1186                 return -EINVAL;
1187         }
1188
1189         ret = bch2_dev_journal_init(ca, sb->sb);
1190         if (ret)
1191                 return ret;
1192
1193         /* Commit: */
1194         ca->disk_sb = *sb;
1195         if (sb->mode & FMODE_EXCL)
1196                 ca->disk_sb.bdev->bd_holder = ca;
1197         memset(sb, 0, sizeof(*sb));
1198
1199         percpu_ref_reinit(&ca->io_ref);
1200
1201         return 0;
1202 }
1203
1204 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1205 {
1206         struct bch_dev *ca;
1207         int ret;
1208
1209         lockdep_assert_held(&c->state_lock);
1210
1211         if (le64_to_cpu(sb->sb->seq) >
1212             le64_to_cpu(c->disk_sb.sb->seq))
1213                 bch2_sb_to_fs(c, sb->sb);
1214
1215         BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1216                !c->devs[sb->sb->dev_idx]);
1217
1218         ca = bch_dev_locked(c, sb->sb->dev_idx);
1219
1220         ret = __bch2_dev_attach_bdev(ca, sb);
1221         if (ret)
1222                 return ret;
1223
1224         if (test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags) &&
1225             !percpu_u64_get(&ca->usage[0]->buckets[BCH_DATA_SB])) {
1226                 mutex_lock(&c->sb_lock);
1227                 bch2_mark_dev_superblock(ca->fs, ca, 0);
1228                 mutex_unlock(&c->sb_lock);
1229         }
1230
1231         bch2_dev_sysfs_online(c, ca);
1232
1233         if (c->sb.nr_devices == 1)
1234                 bdevname(ca->disk_sb.bdev, c->name);
1235         bdevname(ca->disk_sb.bdev, ca->name);
1236
1237         rebalance_wakeup(c);
1238         return 0;
1239 }
1240
1241 /* Device management: */
1242
1243 /*
1244  * Note: this function is also used by the error paths - when a particular
1245  * device sees an error, we call it to determine whether we can just set the
1246  * device RO, or - if this function returns false - we'll set the whole
1247  * filesystem RO:
1248  *
1249  * XXX: maybe we should be more explicit about whether we're changing state
1250  * because we got an error or what have you?
1251  */
1252 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1253                             enum bch_member_state new_state, int flags)
1254 {
1255         struct bch_devs_mask new_online_devs;
1256         struct replicas_status s;
1257         struct bch_dev *ca2;
1258         int i, nr_rw = 0, required;
1259
1260         lockdep_assert_held(&c->state_lock);
1261
1262         switch (new_state) {
1263         case BCH_MEMBER_STATE_RW:
1264                 return true;
1265         case BCH_MEMBER_STATE_RO:
1266                 if (ca->mi.state != BCH_MEMBER_STATE_RW)
1267                         return true;
1268
1269                 /* do we have enough devices to write to?  */
1270                 for_each_member_device(ca2, c, i)
1271                         if (ca2 != ca)
1272                                 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_RW;
1273
1274                 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1275                                ? c->opts.metadata_replicas
1276                                : c->opts.metadata_replicas_required,
1277                                !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1278                                ? c->opts.data_replicas
1279                                : c->opts.data_replicas_required);
1280
1281                 return nr_rw >= required;
1282         case BCH_MEMBER_STATE_FAILED:
1283         case BCH_MEMBER_STATE_SPARE:
1284                 if (ca->mi.state != BCH_MEMBER_STATE_RW &&
1285                     ca->mi.state != BCH_MEMBER_STATE_RO)
1286                         return true;
1287
1288                 /* do we have enough devices to read from?  */
1289                 new_online_devs = bch2_online_devs(c);
1290                 __clear_bit(ca->dev_idx, new_online_devs.d);
1291
1292                 s = __bch2_replicas_status(c, new_online_devs);
1293
1294                 return bch2_have_enough_devs(s, flags);
1295         default:
1296                 BUG();
1297         }
1298 }
1299
1300 static bool bch2_fs_may_start(struct bch_fs *c)
1301 {
1302         struct replicas_status s;
1303         struct bch_sb_field_members *mi;
1304         struct bch_dev *ca;
1305         unsigned i, flags = c->opts.degraded
1306                 ? BCH_FORCE_IF_DEGRADED
1307                 : 0;
1308
1309         if (!c->opts.degraded) {
1310                 mutex_lock(&c->sb_lock);
1311                 mi = bch2_sb_get_members(c->disk_sb.sb);
1312
1313                 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1314                         if (!bch2_dev_exists(c->disk_sb.sb, mi, i))
1315                                 continue;
1316
1317                         ca = bch_dev_locked(c, i);
1318
1319                         if (!bch2_dev_is_online(ca) &&
1320                             (ca->mi.state == BCH_MEMBER_STATE_RW ||
1321                              ca->mi.state == BCH_MEMBER_STATE_RO)) {
1322                                 mutex_unlock(&c->sb_lock);
1323                                 return false;
1324                         }
1325                 }
1326                 mutex_unlock(&c->sb_lock);
1327         }
1328
1329         s = bch2_replicas_status(c);
1330
1331         return bch2_have_enough_devs(s, flags);
1332 }
1333
1334 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1335 {
1336         bch2_copygc_stop(ca);
1337
1338         /*
1339          * The allocator thread itself allocates btree nodes, so stop it first:
1340          */
1341         bch2_dev_allocator_stop(ca);
1342         bch2_dev_allocator_remove(c, ca);
1343         bch2_dev_journal_stop(&c->journal, ca);
1344 }
1345
1346 static const char *__bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1347 {
1348         lockdep_assert_held(&c->state_lock);
1349
1350         BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW);
1351
1352         bch2_dev_allocator_add(c, ca);
1353         bch2_recalc_capacity(c);
1354
1355         if (bch2_dev_allocator_start(ca))
1356                 return "error starting allocator thread";
1357
1358         if (bch2_copygc_start(c, ca))
1359                 return "error starting copygc thread";
1360
1361         return NULL;
1362 }
1363
1364 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1365                          enum bch_member_state new_state, int flags)
1366 {
1367         struct bch_sb_field_members *mi;
1368         int ret = 0;
1369
1370         if (ca->mi.state == new_state)
1371                 return 0;
1372
1373         if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1374                 return -EINVAL;
1375
1376         if (new_state != BCH_MEMBER_STATE_RW)
1377                 __bch2_dev_read_only(c, ca);
1378
1379         bch_notice(ca, "%s", bch2_dev_state[new_state]);
1380
1381         mutex_lock(&c->sb_lock);
1382         mi = bch2_sb_get_members(c->disk_sb.sb);
1383         SET_BCH_MEMBER_STATE(&mi->members[ca->dev_idx], new_state);
1384         bch2_write_super(c);
1385         mutex_unlock(&c->sb_lock);
1386
1387         if (new_state == BCH_MEMBER_STATE_RW &&
1388             __bch2_dev_read_write(c, ca))
1389                 ret = -ENOMEM;
1390
1391         rebalance_wakeup(c);
1392
1393         return ret;
1394 }
1395
1396 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1397                        enum bch_member_state new_state, int flags)
1398 {
1399         int ret;
1400
1401         mutex_lock(&c->state_lock);
1402         ret = __bch2_dev_set_state(c, ca, new_state, flags);
1403         mutex_unlock(&c->state_lock);
1404
1405         return ret;
1406 }
1407
1408 /* Device add/removal: */
1409
1410 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1411 {
1412         struct bch_sb_field_members *mi;
1413         unsigned dev_idx = ca->dev_idx, data;
1414         int ret = -EINVAL;
1415
1416         mutex_lock(&c->state_lock);
1417
1418         percpu_ref_put(&ca->ref); /* XXX */
1419
1420         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
1421                 bch_err(ca, "Cannot remove without losing data");
1422                 goto err;
1423         }
1424
1425         __bch2_dev_read_only(c, ca);
1426
1427         /*
1428          * XXX: verify that dev_idx is really not in use anymore, anywhere
1429          *
1430          * flag_data_bad() does not check btree pointers
1431          */
1432         ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1433         if (ret) {
1434                 bch_err(ca, "Remove failed: error %i dropping data", ret);
1435                 goto err;
1436         }
1437
1438         ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1439         if (ret) {
1440                 bch_err(ca, "Remove failed: error %i flushing journal", ret);
1441                 goto err;
1442         }
1443
1444         data = bch2_dev_has_data(c, ca);
1445         if (data) {
1446                 char data_has_str[100];
1447
1448                 bch2_flags_to_text(&PBUF(data_has_str),
1449                                    bch2_data_types, data);
1450                 bch_err(ca, "Remove failed, still has data (%s)", data_has_str);
1451                 ret = -EBUSY;
1452                 goto err;
1453         }
1454
1455         ret = bch2_btree_delete_range(c, BTREE_ID_ALLOC,
1456                                       POS(ca->dev_idx, 0),
1457                                       POS(ca->dev_idx + 1, 0),
1458                                       NULL);
1459         if (ret) {
1460                 bch_err(ca, "Remove failed, error deleting alloc info");
1461                 goto err;
1462         }
1463
1464         /*
1465          * must flush all existing journal entries, they might have
1466          * (overwritten) keys that point to the device we're removing:
1467          */
1468         bch2_journal_flush_all_pins(&c->journal);
1469         ret = bch2_journal_error(&c->journal);
1470         if (ret) {
1471                 bch_err(ca, "Remove failed, journal error");
1472                 goto err;
1473         }
1474
1475         __bch2_dev_offline(c, ca);
1476
1477         mutex_lock(&c->sb_lock);
1478         rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1479         mutex_unlock(&c->sb_lock);
1480
1481         percpu_ref_kill(&ca->ref);
1482         wait_for_completion(&ca->ref_completion);
1483
1484         bch2_dev_free(ca);
1485
1486         /*
1487          * Free this device's slot in the bch_member array - all pointers to
1488          * this device must be gone:
1489          */
1490         mutex_lock(&c->sb_lock);
1491         mi = bch2_sb_get_members(c->disk_sb.sb);
1492         memset(&mi->members[dev_idx].uuid, 0, sizeof(mi->members[dev_idx].uuid));
1493
1494         bch2_write_super(c);
1495
1496         mutex_unlock(&c->sb_lock);
1497         mutex_unlock(&c->state_lock);
1498         return 0;
1499 err:
1500         if (ca->mi.state == BCH_MEMBER_STATE_RW &&
1501             !percpu_ref_is_zero(&ca->io_ref))
1502                 __bch2_dev_read_write(c, ca);
1503         mutex_unlock(&c->state_lock);
1504         return ret;
1505 }
1506
1507 static void dev_usage_clear(struct bch_dev *ca)
1508 {
1509         struct bucket_array *buckets;
1510
1511         percpu_memset(ca->usage[0], 0, sizeof(*ca->usage[0]));
1512
1513         down_read(&ca->bucket_lock);
1514         buckets = bucket_array(ca);
1515
1516         memset(buckets->b, 0, sizeof(buckets->b[0]) * buckets->nbuckets);
1517         up_read(&ca->bucket_lock);
1518 }
1519
1520 /* Add new device to running filesystem: */
1521 int bch2_dev_add(struct bch_fs *c, const char *path)
1522 {
1523         struct bch_opts opts = bch2_opts_empty();
1524         struct bch_sb_handle sb;
1525         const char *err;
1526         struct bch_dev *ca = NULL;
1527         struct bch_sb_field_members *mi;
1528         struct bch_member dev_mi;
1529         unsigned dev_idx, nr_devices, u64s;
1530         int ret;
1531
1532         ret = bch2_read_super(path, &opts, &sb);
1533         if (ret)
1534                 return ret;
1535
1536         err = bch2_sb_validate(&sb);
1537         if (err)
1538                 return -EINVAL;
1539
1540         dev_mi = bch2_sb_get_members(sb.sb)->members[sb.sb->dev_idx];
1541
1542         err = bch2_dev_may_add(sb.sb, c);
1543         if (err)
1544                 return -EINVAL;
1545
1546         ca = __bch2_dev_alloc(c, &dev_mi);
1547         if (!ca) {
1548                 bch2_free_super(&sb);
1549                 return -ENOMEM;
1550         }
1551
1552         ret = __bch2_dev_attach_bdev(ca, &sb);
1553         if (ret) {
1554                 bch2_dev_free(ca);
1555                 return ret;
1556         }
1557
1558         /*
1559          * We want to allocate journal on the new device before adding the new
1560          * device to the filesystem because allocating after we attach requires
1561          * spinning up the allocator thread, and the allocator thread requires
1562          * doing btree writes, which if the existing devices are RO isn't going
1563          * to work
1564          *
1565          * So we have to mark where the superblocks are, but marking allocated
1566          * data normally updates the filesystem usage too, so we have to mark,
1567          * allocate the journal, reset all the marks, then remark after we
1568          * attach...
1569          */
1570         bch2_mark_dev_superblock(ca->fs, ca, 0);
1571
1572         err = "journal alloc failed";
1573         ret = bch2_dev_journal_alloc(ca);
1574         if (ret)
1575                 goto err;
1576
1577         dev_usage_clear(ca);
1578
1579         mutex_lock(&c->state_lock);
1580         mutex_lock(&c->sb_lock);
1581
1582         err = "insufficient space in new superblock";
1583         ret = bch2_sb_from_fs(c, ca);
1584         if (ret)
1585                 goto err_unlock;
1586
1587         mi = bch2_sb_get_members(ca->disk_sb.sb);
1588
1589         if (!bch2_sb_resize_members(&ca->disk_sb,
1590                                 le32_to_cpu(mi->field.u64s) +
1591                                 sizeof(dev_mi) / sizeof(u64))) {
1592                 ret = -ENOSPC;
1593                 goto err_unlock;
1594         }
1595
1596         if (dynamic_fault("bcachefs:add:no_slot"))
1597                 goto no_slot;
1598
1599         mi = bch2_sb_get_members(c->disk_sb.sb);
1600         for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1601                 if (!bch2_dev_exists(c->disk_sb.sb, mi, dev_idx))
1602                         goto have_slot;
1603 no_slot:
1604         err = "no slots available in superblock";
1605         ret = -ENOSPC;
1606         goto err_unlock;
1607
1608 have_slot:
1609         nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1610         u64s = (sizeof(struct bch_sb_field_members) +
1611                 sizeof(struct bch_member) * nr_devices) / sizeof(u64);
1612
1613         err = "no space in superblock for member info";
1614         ret = -ENOSPC;
1615
1616         mi = bch2_sb_resize_members(&c->disk_sb, u64s);
1617         if (!mi)
1618                 goto err_unlock;
1619
1620         /* success: */
1621
1622         mi->members[dev_idx] = dev_mi;
1623         mi->members[dev_idx].last_mount = cpu_to_le64(ktime_get_real_seconds());
1624         c->disk_sb.sb->nr_devices       = nr_devices;
1625
1626         ca->disk_sb.sb->dev_idx = dev_idx;
1627         bch2_dev_attach(c, ca, dev_idx);
1628
1629         bch2_mark_dev_superblock(c, ca, 0);
1630
1631         bch2_write_super(c);
1632         mutex_unlock(&c->sb_lock);
1633
1634         if (ca->mi.state == BCH_MEMBER_STATE_RW) {
1635                 err = __bch2_dev_read_write(c, ca);
1636                 if (err)
1637                         goto err_late;
1638         }
1639
1640         mutex_unlock(&c->state_lock);
1641         return 0;
1642
1643 err_unlock:
1644         mutex_unlock(&c->sb_lock);
1645         mutex_unlock(&c->state_lock);
1646 err:
1647         if (ca)
1648                 bch2_dev_free(ca);
1649         bch2_free_super(&sb);
1650         bch_err(c, "Unable to add device: %s", err);
1651         return ret;
1652 err_late:
1653         bch_err(c, "Error going rw after adding device: %s", err);
1654         return -EINVAL;
1655 }
1656
1657 /* Hot add existing device to running filesystem: */
1658 int bch2_dev_online(struct bch_fs *c, const char *path)
1659 {
1660         struct bch_opts opts = bch2_opts_empty();
1661         struct bch_sb_handle sb = { NULL };
1662         struct bch_sb_field_members *mi;
1663         struct bch_dev *ca;
1664         unsigned dev_idx;
1665         const char *err;
1666         int ret;
1667
1668         mutex_lock(&c->state_lock);
1669
1670         ret = bch2_read_super(path, &opts, &sb);
1671         if (ret) {
1672                 mutex_unlock(&c->state_lock);
1673                 return ret;
1674         }
1675
1676         dev_idx = sb.sb->dev_idx;
1677
1678         err = bch2_dev_in_fs(c->disk_sb.sb, sb.sb);
1679         if (err)
1680                 goto err;
1681
1682         if (bch2_dev_attach_bdev(c, &sb)) {
1683                 err = "bch2_dev_attach_bdev() error";
1684                 goto err;
1685         }
1686
1687         ca = bch_dev_locked(c, dev_idx);
1688         if (ca->mi.state == BCH_MEMBER_STATE_RW) {
1689                 err = __bch2_dev_read_write(c, ca);
1690                 if (err)
1691                         goto err;
1692         }
1693
1694         mutex_lock(&c->sb_lock);
1695         mi = bch2_sb_get_members(c->disk_sb.sb);
1696
1697         mi->members[ca->dev_idx].last_mount =
1698                 cpu_to_le64(ktime_get_real_seconds());
1699
1700         bch2_write_super(c);
1701         mutex_unlock(&c->sb_lock);
1702
1703         mutex_unlock(&c->state_lock);
1704         return 0;
1705 err:
1706         mutex_unlock(&c->state_lock);
1707         bch2_free_super(&sb);
1708         bch_err(c, "error bringing %s online: %s", path, err);
1709         return -EINVAL;
1710 }
1711
1712 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1713 {
1714         mutex_lock(&c->state_lock);
1715
1716         if (!bch2_dev_is_online(ca)) {
1717                 bch_err(ca, "Already offline");
1718                 mutex_unlock(&c->state_lock);
1719                 return 0;
1720         }
1721
1722         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
1723                 bch_err(ca, "Cannot offline required disk");
1724                 mutex_unlock(&c->state_lock);
1725                 return -EINVAL;
1726         }
1727
1728         __bch2_dev_offline(c, ca);
1729
1730         mutex_unlock(&c->state_lock);
1731         return 0;
1732 }
1733
1734 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1735 {
1736         struct bch_member *mi;
1737         int ret = 0;
1738
1739         mutex_lock(&c->state_lock);
1740
1741         if (nbuckets < ca->mi.nbuckets) {
1742                 bch_err(ca, "Cannot shrink yet");
1743                 ret = -EINVAL;
1744                 goto err;
1745         }
1746
1747         if (bch2_dev_is_online(ca) &&
1748             get_capacity(ca->disk_sb.bdev->bd_disk) <
1749             ca->mi.bucket_size * nbuckets) {
1750                 bch_err(ca, "New size larger than device");
1751                 ret = -EINVAL;
1752                 goto err;
1753         }
1754
1755         ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1756         if (ret) {
1757                 bch_err(ca, "Resize error: %i", ret);
1758                 goto err;
1759         }
1760
1761         mutex_lock(&c->sb_lock);
1762         mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx];
1763         mi->nbuckets = cpu_to_le64(nbuckets);
1764
1765         bch2_write_super(c);
1766         mutex_unlock(&c->sb_lock);
1767
1768         bch2_recalc_capacity(c);
1769 err:
1770         mutex_unlock(&c->state_lock);
1771         return ret;
1772 }
1773
1774 /* return with ref on ca->ref: */
1775 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *path)
1776 {
1777
1778         struct block_device *bdev = lookup_bdev(path);
1779         struct bch_dev *ca;
1780         unsigned i;
1781
1782         if (IS_ERR(bdev))
1783                 return ERR_CAST(bdev);
1784
1785         for_each_member_device(ca, c, i)
1786                 if (ca->disk_sb.bdev == bdev)
1787                         goto found;
1788
1789         ca = ERR_PTR(-ENOENT);
1790 found:
1791         bdput(bdev);
1792         return ca;
1793 }
1794
1795 /* Filesystem open: */
1796
1797 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
1798                             struct bch_opts opts)
1799 {
1800         struct bch_sb_handle *sb = NULL;
1801         struct bch_fs *c = NULL;
1802         unsigned i, best_sb = 0;
1803         const char *err;
1804         int ret = -ENOMEM;
1805
1806         pr_verbose_init(opts, "");
1807
1808         if (!nr_devices) {
1809                 c = ERR_PTR(-EINVAL);
1810                 goto out2;
1811         }
1812
1813         if (!try_module_get(THIS_MODULE)) {
1814                 c = ERR_PTR(-ENODEV);
1815                 goto out2;
1816         }
1817
1818         sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL);
1819         if (!sb)
1820                 goto err;
1821
1822         for (i = 0; i < nr_devices; i++) {
1823                 ret = bch2_read_super(devices[i], &opts, &sb[i]);
1824                 if (ret)
1825                         goto err;
1826
1827                 err = bch2_sb_validate(&sb[i]);
1828                 if (err)
1829                         goto err_print;
1830         }
1831
1832         for (i = 1; i < nr_devices; i++)
1833                 if (le64_to_cpu(sb[i].sb->seq) >
1834                     le64_to_cpu(sb[best_sb].sb->seq))
1835                         best_sb = i;
1836
1837         for (i = 0; i < nr_devices; i++) {
1838                 err = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb);
1839                 if (err)
1840                         goto err_print;
1841         }
1842
1843         ret = -ENOMEM;
1844         c = bch2_fs_alloc(sb[best_sb].sb, opts);
1845         if (!c)
1846                 goto err;
1847
1848         err = "bch2_dev_online() error";
1849         mutex_lock(&c->state_lock);
1850         for (i = 0; i < nr_devices; i++)
1851                 if (bch2_dev_attach_bdev(c, &sb[i])) {
1852                         mutex_unlock(&c->state_lock);
1853                         goto err_print;
1854                 }
1855         mutex_unlock(&c->state_lock);
1856
1857         err = "insufficient devices";
1858         if (!bch2_fs_may_start(c))
1859                 goto err_print;
1860
1861         if (!c->opts.nostart) {
1862                 ret = bch2_fs_start(c);
1863                 if (ret)
1864                         goto err;
1865         }
1866 out:
1867         kfree(sb);
1868         module_put(THIS_MODULE);
1869 out2:
1870         pr_verbose_init(opts, "ret %i", PTR_ERR_OR_ZERO(c));
1871         return c;
1872 err_print:
1873         pr_err("bch_fs_open err opening %s: %s",
1874                devices[0], err);
1875         ret = -EINVAL;
1876 err:
1877         if (c)
1878                 bch2_fs_stop(c);
1879         for (i = 0; i < nr_devices; i++)
1880                 bch2_free_super(&sb[i]);
1881         c = ERR_PTR(ret);
1882         goto out;
1883 }
1884
1885 static const char *__bch2_fs_open_incremental(struct bch_sb_handle *sb,
1886                                               struct bch_opts opts)
1887 {
1888         const char *err;
1889         struct bch_fs *c;
1890         bool allocated_fs = false;
1891         int ret;
1892
1893         err = bch2_sb_validate(sb);
1894         if (err)
1895                 return err;
1896
1897         mutex_lock(&bch_fs_list_lock);
1898         c = __bch2_uuid_to_fs(sb->sb->uuid);
1899         if (c) {
1900                 closure_get(&c->cl);
1901
1902                 err = bch2_dev_in_fs(c->disk_sb.sb, sb->sb);
1903                 if (err)
1904                         goto err;
1905         } else {
1906                 c = bch2_fs_alloc(sb->sb, opts);
1907                 err = "cannot allocate memory";
1908                 if (!c)
1909                         goto err;
1910
1911                 allocated_fs = true;
1912         }
1913
1914         err = "bch2_dev_online() error";
1915
1916         mutex_lock(&c->sb_lock);
1917         if (bch2_dev_attach_bdev(c, sb)) {
1918                 mutex_unlock(&c->sb_lock);
1919                 goto err;
1920         }
1921         mutex_unlock(&c->sb_lock);
1922
1923         if (!c->opts.nostart && bch2_fs_may_start(c)) {
1924                 err = "error starting filesystem";
1925                 ret = bch2_fs_start(c);
1926                 if (ret)
1927                         goto err;
1928         }
1929
1930         closure_put(&c->cl);
1931         mutex_unlock(&bch_fs_list_lock);
1932
1933         return NULL;
1934 err:
1935         mutex_unlock(&bch_fs_list_lock);
1936
1937         if (allocated_fs)
1938                 bch2_fs_stop(c);
1939         else if (c)
1940                 closure_put(&c->cl);
1941
1942         return err;
1943 }
1944
1945 const char *bch2_fs_open_incremental(const char *path)
1946 {
1947         struct bch_sb_handle sb;
1948         struct bch_opts opts = bch2_opts_empty();
1949         const char *err;
1950
1951         if (bch2_read_super(path, &opts, &sb))
1952                 return "error reading superblock";
1953
1954         err = __bch2_fs_open_incremental(&sb, opts);
1955         bch2_free_super(&sb);
1956
1957         return err;
1958 }
1959
1960 /* Global interfaces/init */
1961
1962 static void bcachefs_exit(void)
1963 {
1964         bch2_debug_exit();
1965         bch2_vfs_exit();
1966         bch2_chardev_exit();
1967         if (bcachefs_kset)
1968                 kset_unregister(bcachefs_kset);
1969 }
1970
1971 static int __init bcachefs_init(void)
1972 {
1973         bch2_bkey_pack_test();
1974         bch2_inode_pack_test();
1975
1976         if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
1977             bch2_chardev_init() ||
1978             bch2_vfs_init() ||
1979             bch2_debug_init())
1980                 goto err;
1981
1982         return 0;
1983 err:
1984         bcachefs_exit();
1985         return -ENOMEM;
1986 }
1987
1988 #define BCH_DEBUG_PARAM(name, description)                      \
1989         bool bch2_##name;                                       \
1990         module_param_named(name, bch2_##name, bool, 0644);      \
1991         MODULE_PARM_DESC(name, description);
1992 BCH_DEBUG_PARAMS()
1993 #undef BCH_DEBUG_PARAM
1994
1995 module_exit(bcachefs_exit);
1996 module_init(bcachefs_init);