]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/super.c
Update bcachefs sources to 9a555a741e80 bcachefs: omit alignment attribute on big...
[bcachefs-tools-debian] / libbcachefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_update_interior.h"
19 #include "btree_io.h"
20 #include "btree_write_buffer.h"
21 #include "buckets_waiting_for_journal.h"
22 #include "chardev.h"
23 #include "checksum.h"
24 #include "clock.h"
25 #include "compress.h"
26 #include "debug.h"
27 #include "disk_groups.h"
28 #include "ec.h"
29 #include "errcode.h"
30 #include "error.h"
31 #include "fs.h"
32 #include "fs-io.h"
33 #include "fs-io-buffered.h"
34 #include "fs-io-direct.h"
35 #include "fsck.h"
36 #include "inode.h"
37 #include "io_read.h"
38 #include "io_write.h"
39 #include "journal.h"
40 #include "journal_reclaim.h"
41 #include "journal_seq_blacklist.h"
42 #include "move.h"
43 #include "migrate.h"
44 #include "movinggc.h"
45 #include "nocow_locking.h"
46 #include "quota.h"
47 #include "rebalance.h"
48 #include "recovery.h"
49 #include "replicas.h"
50 #include "sb-clean.h"
51 #include "sb-counters.h"
52 #include "sb-errors.h"
53 #include "sb-members.h"
54 #include "snapshot.h"
55 #include "subvolume.h"
56 #include "super.h"
57 #include "super-io.h"
58 #include "sysfs.h"
59 #include "trace.h"
60
61 #include <linux/backing-dev.h>
62 #include <linux/blkdev.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65 #include <linux/idr.h>
66 #include <linux/module.h>
67 #include <linux/percpu.h>
68 #include <linux/random.h>
69 #include <linux/sysfs.h>
70 #include <linux/thread_with_file.h>
71 #include <crypto/hash.h>
72
73 MODULE_LICENSE("GPL");
74 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
75 MODULE_DESCRIPTION("bcachefs filesystem");
76 MODULE_SOFTDEP("pre: crc32c");
77 MODULE_SOFTDEP("pre: crc64");
78 MODULE_SOFTDEP("pre: sha256");
79 MODULE_SOFTDEP("pre: chacha20");
80 MODULE_SOFTDEP("pre: poly1305");
81 MODULE_SOFTDEP("pre: xxhash");
82
83 const char * const bch2_fs_flag_strs[] = {
84 #define x(n)            #n,
85         BCH_FS_FLAGS()
86 #undef x
87         NULL
88 };
89
90 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
91 {
92         struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
93
94         va_list args;
95         va_start(args, fmt);
96         if (likely(!stdio)) {
97                 vprintk(fmt, args);
98         } else {
99                 if (fmt[0] == KERN_SOH[0])
100                         fmt += 2;
101
102                 stdio_redirect_vprintf(stdio, true, fmt, args);
103         }
104         va_end(args);
105 }
106
107 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
108 {
109         struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
110
111         va_list args;
112         va_start(args, fmt);
113         if (likely(!stdio)) {
114                 vprintk(fmt, args);
115         } else {
116                 if (fmt[0] == KERN_SOH[0])
117                         fmt += 2;
118
119                 stdio_redirect_vprintf(stdio, true, fmt, args);
120         }
121         va_end(args);
122 }
123
124 #define KTYPE(type)                                                     \
125 static const struct attribute_group type ## _group = {                  \
126         .attrs = type ## _files                                         \
127 };                                                                      \
128                                                                         \
129 static const struct attribute_group *type ## _groups[] = {              \
130         &type ## _group,                                                \
131         NULL                                                            \
132 };                                                                      \
133                                                                         \
134 static const struct kobj_type type ## _ktype = {                        \
135         .release        = type ## _release,                             \
136         .sysfs_ops      = &type ## _sysfs_ops,                          \
137         .default_groups = type ## _groups                               \
138 }
139
140 static void bch2_fs_release(struct kobject *);
141 static void bch2_dev_release(struct kobject *);
142 static void bch2_fs_counters_release(struct kobject *k)
143 {
144 }
145
146 static void bch2_fs_internal_release(struct kobject *k)
147 {
148 }
149
150 static void bch2_fs_opts_dir_release(struct kobject *k)
151 {
152 }
153
154 static void bch2_fs_time_stats_release(struct kobject *k)
155 {
156 }
157
158 KTYPE(bch2_fs);
159 KTYPE(bch2_fs_counters);
160 KTYPE(bch2_fs_internal);
161 KTYPE(bch2_fs_opts_dir);
162 KTYPE(bch2_fs_time_stats);
163 KTYPE(bch2_dev);
164
165 static struct kset *bcachefs_kset;
166 static LIST_HEAD(bch_fs_list);
167 static DEFINE_MUTEX(bch_fs_list_lock);
168
169 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
170
171 static void bch2_dev_free(struct bch_dev *);
172 static int bch2_dev_alloc(struct bch_fs *, unsigned);
173 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
174 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
175
176 struct bch_fs *bch2_dev_to_fs(dev_t dev)
177 {
178         struct bch_fs *c;
179
180         mutex_lock(&bch_fs_list_lock);
181         rcu_read_lock();
182
183         list_for_each_entry(c, &bch_fs_list, list)
184                 for_each_member_device_rcu(c, ca, NULL)
185                         if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
186                                 closure_get(&c->cl);
187                                 goto found;
188                         }
189         c = NULL;
190 found:
191         rcu_read_unlock();
192         mutex_unlock(&bch_fs_list_lock);
193
194         return c;
195 }
196
197 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
198 {
199         struct bch_fs *c;
200
201         lockdep_assert_held(&bch_fs_list_lock);
202
203         list_for_each_entry(c, &bch_fs_list, list)
204                 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
205                         return c;
206
207         return NULL;
208 }
209
210 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
211 {
212         struct bch_fs *c;
213
214         mutex_lock(&bch_fs_list_lock);
215         c = __bch2_uuid_to_fs(uuid);
216         if (c)
217                 closure_get(&c->cl);
218         mutex_unlock(&bch_fs_list_lock);
219
220         return c;
221 }
222
223 static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
224 {
225         unsigned nr = 0, u64s =
226                 ((sizeof(struct jset_entry_dev_usage) +
227                   sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
228                 sizeof(u64);
229
230         rcu_read_lock();
231         for_each_member_device_rcu(c, ca, NULL)
232                 nr++;
233         rcu_read_unlock();
234
235         bch2_journal_entry_res_resize(&c->journal,
236                         &c->dev_usage_journal_res, u64s * nr);
237 }
238
239 /* Filesystem RO/RW: */
240
241 /*
242  * For startup/shutdown of RW stuff, the dependencies are:
243  *
244  * - foreground writes depend on copygc and rebalance (to free up space)
245  *
246  * - copygc and rebalance depend on mark and sweep gc (they actually probably
247  *   don't because they either reserve ahead of time or don't block if
248  *   allocations fail, but allocations can require mark and sweep gc to run
249  *   because of generation number wraparound)
250  *
251  * - all of the above depends on the allocator threads
252  *
253  * - allocator depends on the journal (when it rewrites prios and gens)
254  */
255
256 static void __bch2_fs_read_only(struct bch_fs *c)
257 {
258         unsigned clean_passes = 0;
259         u64 seq = 0;
260
261         bch2_fs_ec_stop(c);
262         bch2_open_buckets_stop(c, NULL, true);
263         bch2_rebalance_stop(c);
264         bch2_copygc_stop(c);
265         bch2_gc_thread_stop(c);
266         bch2_fs_ec_flush(c);
267
268         bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
269                     journal_cur_seq(&c->journal));
270
271         do {
272                 clean_passes++;
273
274                 if (bch2_btree_interior_updates_flush(c) ||
275                     bch2_journal_flush_all_pins(&c->journal) ||
276                     bch2_btree_flush_all_writes(c) ||
277                     seq != atomic64_read(&c->journal.seq)) {
278                         seq = atomic64_read(&c->journal.seq);
279                         clean_passes = 0;
280                 }
281         } while (clean_passes < 2);
282
283         bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
284                     journal_cur_seq(&c->journal));
285
286         if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) &&
287             !test_bit(BCH_FS_emergency_ro, &c->flags))
288                 set_bit(BCH_FS_clean_shutdown, &c->flags);
289         bch2_fs_journal_stop(&c->journal);
290
291         /*
292          * After stopping journal:
293          */
294         for_each_member_device(c, ca)
295                 bch2_dev_allocator_remove(c, ca);
296 }
297
298 #ifndef BCH_WRITE_REF_DEBUG
299 static void bch2_writes_disabled(struct percpu_ref *writes)
300 {
301         struct bch_fs *c = container_of(writes, struct bch_fs, writes);
302
303         set_bit(BCH_FS_write_disable_complete, &c->flags);
304         wake_up(&bch2_read_only_wait);
305 }
306 #endif
307
308 void bch2_fs_read_only(struct bch_fs *c)
309 {
310         if (!test_bit(BCH_FS_rw, &c->flags)) {
311                 bch2_journal_reclaim_stop(&c->journal);
312                 return;
313         }
314
315         BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
316
317         bch_verbose(c, "going read-only");
318
319         /*
320          * Block new foreground-end write operations from starting - any new
321          * writes will return -EROFS:
322          */
323         set_bit(BCH_FS_going_ro, &c->flags);
324 #ifndef BCH_WRITE_REF_DEBUG
325         percpu_ref_kill(&c->writes);
326 #else
327         for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
328                 bch2_write_ref_put(c, i);
329 #endif
330
331         /*
332          * If we're not doing an emergency shutdown, we want to wait on
333          * outstanding writes to complete so they don't see spurious errors due
334          * to shutting down the allocator:
335          *
336          * If we are doing an emergency shutdown outstanding writes may
337          * hang until we shutdown the allocator so we don't want to wait
338          * on outstanding writes before shutting everything down - but
339          * we do need to wait on them before returning and signalling
340          * that going RO is complete:
341          */
342         wait_event(bch2_read_only_wait,
343                    test_bit(BCH_FS_write_disable_complete, &c->flags) ||
344                    test_bit(BCH_FS_emergency_ro, &c->flags));
345
346         bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
347         if (writes_disabled)
348                 bch_verbose(c, "finished waiting for writes to stop");
349
350         __bch2_fs_read_only(c);
351
352         wait_event(bch2_read_only_wait,
353                    test_bit(BCH_FS_write_disable_complete, &c->flags));
354
355         if (!writes_disabled)
356                 bch_verbose(c, "finished waiting for writes to stop");
357
358         clear_bit(BCH_FS_write_disable_complete, &c->flags);
359         clear_bit(BCH_FS_going_ro, &c->flags);
360         clear_bit(BCH_FS_rw, &c->flags);
361
362         if (!bch2_journal_error(&c->journal) &&
363             !test_bit(BCH_FS_error, &c->flags) &&
364             !test_bit(BCH_FS_emergency_ro, &c->flags) &&
365             test_bit(BCH_FS_started, &c->flags) &&
366             test_bit(BCH_FS_clean_shutdown, &c->flags) &&
367             !c->opts.norecovery) {
368                 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
369                 BUG_ON(atomic_read(&c->btree_cache.dirty));
370                 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
371                 BUG_ON(c->btree_write_buffer.inc.keys.nr);
372                 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
373
374                 bch_verbose(c, "marking filesystem clean");
375                 bch2_fs_mark_clean(c);
376         } else {
377                 bch_verbose(c, "done going read-only, filesystem not clean");
378         }
379 }
380
381 static void bch2_fs_read_only_work(struct work_struct *work)
382 {
383         struct bch_fs *c =
384                 container_of(work, struct bch_fs, read_only_work);
385
386         down_write(&c->state_lock);
387         bch2_fs_read_only(c);
388         up_write(&c->state_lock);
389 }
390
391 static void bch2_fs_read_only_async(struct bch_fs *c)
392 {
393         queue_work(system_long_wq, &c->read_only_work);
394 }
395
396 bool bch2_fs_emergency_read_only(struct bch_fs *c)
397 {
398         bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
399
400         bch2_journal_halt(&c->journal);
401         bch2_fs_read_only_async(c);
402
403         wake_up(&bch2_read_only_wait);
404         return ret;
405 }
406
407 static int bch2_fs_read_write_late(struct bch_fs *c)
408 {
409         int ret;
410
411         /*
412          * Data move operations can't run until after check_snapshots has
413          * completed, and bch2_snapshot_is_ancestor() is available.
414          *
415          * Ideally we'd start copygc/rebalance earlier instead of waiting for
416          * all of recovery/fsck to complete:
417          */
418         ret = bch2_copygc_start(c);
419         if (ret) {
420                 bch_err(c, "error starting copygc thread");
421                 return ret;
422         }
423
424         ret = bch2_rebalance_start(c);
425         if (ret) {
426                 bch_err(c, "error starting rebalance thread");
427                 return ret;
428         }
429
430         return 0;
431 }
432
433 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
434 {
435         int ret;
436
437         if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
438                 bch_err(c, "cannot go rw, unfixed btree errors");
439                 return -BCH_ERR_erofs_unfixed_errors;
440         }
441
442         if (test_bit(BCH_FS_rw, &c->flags))
443                 return 0;
444
445         bch_info(c, "going read-write");
446
447         ret = bch2_sb_members_v2_init(c);
448         if (ret)
449                 goto err;
450
451         ret = bch2_fs_mark_dirty(c);
452         if (ret)
453                 goto err;
454
455         clear_bit(BCH_FS_clean_shutdown, &c->flags);
456
457         /*
458          * First journal write must be a flush write: after a clean shutdown we
459          * don't read the journal, so the first journal write may end up
460          * overwriting whatever was there previously, and there must always be
461          * at least one non-flush write in the journal or recovery will fail:
462          */
463         set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags);
464
465         for_each_rw_member(c, ca)
466                 bch2_dev_allocator_add(c, ca);
467         bch2_recalc_capacity(c);
468
469         set_bit(BCH_FS_rw, &c->flags);
470         set_bit(BCH_FS_was_rw, &c->flags);
471
472 #ifndef BCH_WRITE_REF_DEBUG
473         percpu_ref_reinit(&c->writes);
474 #else
475         for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
476                 BUG_ON(atomic_long_read(&c->writes[i]));
477                 atomic_long_inc(&c->writes[i]);
478         }
479 #endif
480
481         ret = bch2_gc_thread_start(c);
482         if (ret) {
483                 bch_err(c, "error starting gc thread");
484                 return ret;
485         }
486
487         ret = bch2_journal_reclaim_start(&c->journal);
488         if (ret)
489                 goto err;
490
491         if (!early) {
492                 ret = bch2_fs_read_write_late(c);
493                 if (ret)
494                         goto err;
495         }
496
497         bch2_do_discards(c);
498         bch2_do_invalidates(c);
499         bch2_do_stripe_deletes(c);
500         bch2_do_pending_node_rewrites(c);
501         return 0;
502 err:
503         if (test_bit(BCH_FS_rw, &c->flags))
504                 bch2_fs_read_only(c);
505         else
506                 __bch2_fs_read_only(c);
507         return ret;
508 }
509
510 int bch2_fs_read_write(struct bch_fs *c)
511 {
512         if (c->opts.norecovery)
513                 return -BCH_ERR_erofs_norecovery;
514
515         if (c->opts.nochanges)
516                 return -BCH_ERR_erofs_nochanges;
517
518         return __bch2_fs_read_write(c, false);
519 }
520
521 int bch2_fs_read_write_early(struct bch_fs *c)
522 {
523         lockdep_assert_held(&c->state_lock);
524
525         return __bch2_fs_read_write(c, true);
526 }
527
528 /* Filesystem startup/shutdown: */
529
530 static void __bch2_fs_free(struct bch_fs *c)
531 {
532         unsigned i;
533
534         for (i = 0; i < BCH_TIME_STAT_NR; i++)
535                 time_stats_exit(&c->times[i]);
536
537         bch2_free_pending_node_rewrites(c);
538         bch2_fs_sb_errors_exit(c);
539         bch2_fs_counters_exit(c);
540         bch2_fs_snapshots_exit(c);
541         bch2_fs_quota_exit(c);
542         bch2_fs_fs_io_direct_exit(c);
543         bch2_fs_fs_io_buffered_exit(c);
544         bch2_fs_fsio_exit(c);
545         bch2_fs_ec_exit(c);
546         bch2_fs_encryption_exit(c);
547         bch2_fs_nocow_locking_exit(c);
548         bch2_fs_io_write_exit(c);
549         bch2_fs_io_read_exit(c);
550         bch2_fs_buckets_waiting_for_journal_exit(c);
551         bch2_fs_btree_interior_update_exit(c);
552         bch2_fs_btree_iter_exit(c);
553         bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
554         bch2_fs_btree_cache_exit(c);
555         bch2_fs_replicas_exit(c);
556         bch2_fs_journal_exit(&c->journal);
557         bch2_io_clock_exit(&c->io_clock[WRITE]);
558         bch2_io_clock_exit(&c->io_clock[READ]);
559         bch2_fs_compress_exit(c);
560         bch2_journal_keys_put_initial(c);
561         BUG_ON(atomic_read(&c->journal_keys.ref));
562         bch2_fs_btree_write_buffer_exit(c);
563         percpu_free_rwsem(&c->mark_lock);
564         free_percpu(c->online_reserved);
565
566         darray_exit(&c->btree_roots_extra);
567         free_percpu(c->pcpu);
568         mempool_exit(&c->large_bkey_pool);
569         mempool_exit(&c->btree_bounce_pool);
570         bioset_exit(&c->btree_bio);
571         mempool_exit(&c->fill_iter);
572 #ifndef BCH_WRITE_REF_DEBUG
573         percpu_ref_exit(&c->writes);
574 #endif
575         kfree(rcu_dereference_protected(c->disk_groups, 1));
576         kfree(c->journal_seq_blacklist_table);
577         kfree(c->unused_inode_hints);
578
579         if (c->write_ref_wq)
580                 destroy_workqueue(c->write_ref_wq);
581         if (c->io_complete_wq)
582                 destroy_workqueue(c->io_complete_wq);
583         if (c->copygc_wq)
584                 destroy_workqueue(c->copygc_wq);
585         if (c->btree_io_complete_wq)
586                 destroy_workqueue(c->btree_io_complete_wq);
587         if (c->btree_update_wq)
588                 destroy_workqueue(c->btree_update_wq);
589
590         bch2_free_super(&c->disk_sb);
591         kvfree(c);
592         module_put(THIS_MODULE);
593 }
594
595 static void bch2_fs_release(struct kobject *kobj)
596 {
597         struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
598
599         __bch2_fs_free(c);
600 }
601
602 void __bch2_fs_stop(struct bch_fs *c)
603 {
604         bch_verbose(c, "shutting down");
605
606         set_bit(BCH_FS_stopping, &c->flags);
607
608         cancel_work_sync(&c->journal_seq_blacklist_gc_work);
609
610         down_write(&c->state_lock);
611         bch2_fs_read_only(c);
612         up_write(&c->state_lock);
613
614         for_each_member_device(c, ca)
615                 if (ca->kobj.state_in_sysfs &&
616                     ca->disk_sb.bdev)
617                         sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
618
619         if (c->kobj.state_in_sysfs)
620                 kobject_del(&c->kobj);
621
622         bch2_fs_debug_exit(c);
623         bch2_fs_chardev_exit(c);
624
625         bch2_ro_ref_put(c);
626         wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
627
628         kobject_put(&c->counters_kobj);
629         kobject_put(&c->time_stats);
630         kobject_put(&c->opts_dir);
631         kobject_put(&c->internal);
632
633         /* btree prefetch might have kicked off reads in the background: */
634         bch2_btree_flush_all_reads(c);
635
636         for_each_member_device(c, ca)
637                 cancel_work_sync(&ca->io_error_work);
638
639         cancel_work_sync(&c->read_only_work);
640 }
641
642 void bch2_fs_free(struct bch_fs *c)
643 {
644         unsigned i;
645
646         mutex_lock(&bch_fs_list_lock);
647         list_del(&c->list);
648         mutex_unlock(&bch_fs_list_lock);
649
650         closure_sync(&c->cl);
651         closure_debug_destroy(&c->cl);
652
653         for (i = 0; i < c->sb.nr_devices; i++) {
654                 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
655
656                 if (ca) {
657                         bch2_free_super(&ca->disk_sb);
658                         bch2_dev_free(ca);
659                 }
660         }
661
662         bch_verbose(c, "shutdown complete");
663
664         kobject_put(&c->kobj);
665 }
666
667 void bch2_fs_stop(struct bch_fs *c)
668 {
669         __bch2_fs_stop(c);
670         bch2_fs_free(c);
671 }
672
673 static int bch2_fs_online(struct bch_fs *c)
674 {
675         int ret = 0;
676
677         lockdep_assert_held(&bch_fs_list_lock);
678
679         if (__bch2_uuid_to_fs(c->sb.uuid)) {
680                 bch_err(c, "filesystem UUID already open");
681                 return -EINVAL;
682         }
683
684         ret = bch2_fs_chardev_init(c);
685         if (ret) {
686                 bch_err(c, "error creating character device");
687                 return ret;
688         }
689
690         bch2_fs_debug_init(c);
691
692         ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
693             kobject_add(&c->internal, &c->kobj, "internal") ?:
694             kobject_add(&c->opts_dir, &c->kobj, "options") ?:
695 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
696             kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
697 #endif
698             kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
699             bch2_opts_create_sysfs_files(&c->opts_dir);
700         if (ret) {
701                 bch_err(c, "error creating sysfs objects");
702                 return ret;
703         }
704
705         down_write(&c->state_lock);
706
707         for_each_member_device(c, ca) {
708                 ret = bch2_dev_sysfs_online(c, ca);
709                 if (ret) {
710                         bch_err(c, "error creating sysfs objects");
711                         percpu_ref_put(&ca->ref);
712                         goto err;
713                 }
714         }
715
716         BUG_ON(!list_empty(&c->list));
717         list_add(&c->list, &bch_fs_list);
718 err:
719         up_write(&c->state_lock);
720         return ret;
721 }
722
723 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
724 {
725         struct bch_fs *c;
726         struct printbuf name = PRINTBUF;
727         unsigned i, iter_size;
728         int ret = 0;
729
730         c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
731         if (!c) {
732                 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
733                 goto out;
734         }
735
736         c->stdio = (void *)(unsigned long) opts.stdio;
737
738         __module_get(THIS_MODULE);
739
740         closure_init(&c->cl, NULL);
741
742         c->kobj.kset = bcachefs_kset;
743         kobject_init(&c->kobj, &bch2_fs_ktype);
744         kobject_init(&c->internal, &bch2_fs_internal_ktype);
745         kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
746         kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
747         kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
748
749         c->minor                = -1;
750         c->disk_sb.fs_sb        = true;
751
752         init_rwsem(&c->state_lock);
753         mutex_init(&c->sb_lock);
754         mutex_init(&c->replicas_gc_lock);
755         mutex_init(&c->btree_root_lock);
756         INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
757
758         refcount_set(&c->ro_ref, 1);
759         init_waitqueue_head(&c->ro_ref_wait);
760         sema_init(&c->online_fsck_mutex, 1);
761
762         init_rwsem(&c->gc_lock);
763         mutex_init(&c->gc_gens_lock);
764         atomic_set(&c->journal_keys.ref, 1);
765         c->journal_keys.initial_ref_held = true;
766
767         for (i = 0; i < BCH_TIME_STAT_NR; i++)
768                 time_stats_init(&c->times[i]);
769
770         bch2_fs_copygc_init(c);
771         bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
772         bch2_fs_btree_iter_init_early(c);
773         bch2_fs_btree_interior_update_init_early(c);
774         bch2_fs_allocator_background_init(c);
775         bch2_fs_allocator_foreground_init(c);
776         bch2_fs_rebalance_init(c);
777         bch2_fs_quota_init(c);
778         bch2_fs_ec_init_early(c);
779         bch2_fs_move_init(c);
780         bch2_fs_sb_errors_init_early(c);
781
782         INIT_LIST_HEAD(&c->list);
783
784         mutex_init(&c->usage_scratch_lock);
785
786         mutex_init(&c->bio_bounce_pages_lock);
787         mutex_init(&c->snapshot_table_lock);
788         init_rwsem(&c->snapshot_create_lock);
789
790         spin_lock_init(&c->btree_write_error_lock);
791
792         INIT_WORK(&c->journal_seq_blacklist_gc_work,
793                   bch2_blacklist_entries_gc);
794
795         INIT_LIST_HEAD(&c->journal_iters);
796
797         INIT_LIST_HEAD(&c->fsck_error_msgs);
798         mutex_init(&c->fsck_error_msgs_lock);
799
800         seqcount_init(&c->gc_pos_lock);
801
802         seqcount_init(&c->usage_lock);
803
804         sema_init(&c->io_in_flight, 128);
805
806         INIT_LIST_HEAD(&c->vfs_inodes_list);
807         mutex_init(&c->vfs_inodes_lock);
808
809         c->copy_gc_enabled              = 1;
810         c->rebalance.enabled            = 1;
811         c->promote_whole_extents        = true;
812
813         c->journal.flush_write_time     = &c->times[BCH_TIME_journal_flush_write];
814         c->journal.noflush_write_time   = &c->times[BCH_TIME_journal_noflush_write];
815         c->journal.flush_seq_time       = &c->times[BCH_TIME_journal_flush_seq];
816
817         bch2_fs_btree_cache_init_early(&c->btree_cache);
818
819         mutex_init(&c->sectors_available_lock);
820
821         ret = percpu_init_rwsem(&c->mark_lock);
822         if (ret)
823                 goto err;
824
825         mutex_lock(&c->sb_lock);
826         ret = bch2_sb_to_fs(c, sb);
827         mutex_unlock(&c->sb_lock);
828
829         if (ret)
830                 goto err;
831
832         pr_uuid(&name, c->sb.user_uuid.b);
833         strscpy(c->name, name.buf, sizeof(c->name));
834         printbuf_exit(&name);
835
836         ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
837         if (ret)
838                 goto err;
839
840         /* Compat: */
841         if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
842             !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
843                 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
844
845         if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
846             !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
847                 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
848
849         c->opts = bch2_opts_default;
850         ret = bch2_opts_from_sb(&c->opts, sb);
851         if (ret)
852                 goto err;
853
854         bch2_opts_apply(&c->opts, opts);
855
856         c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
857         if (c->opts.inodes_use_key_cache)
858                 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
859         c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
860
861         c->block_bits           = ilog2(block_sectors(c));
862         c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
863
864         if (bch2_fs_init_fault("fs_alloc")) {
865                 bch_err(c, "fs_alloc fault injected");
866                 ret = -EFAULT;
867                 goto err;
868         }
869
870         iter_size = sizeof(struct sort_iter) +
871                 (btree_blocks(c) + 1) * 2 *
872                 sizeof(struct sort_iter_set);
873
874         c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
875
876         if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
877                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
878             !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
879                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
880             !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
881                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
882             !(c->io_complete_wq = alloc_workqueue("bcachefs_io",
883                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
884             !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
885                                 WQ_FREEZABLE, 0)) ||
886 #ifndef BCH_WRITE_REF_DEBUG
887             percpu_ref_init(&c->writes, bch2_writes_disabled,
888                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
889 #endif
890             mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
891             bioset_init(&c->btree_bio, 1,
892                         max(offsetof(struct btree_read_bio, bio),
893                             offsetof(struct btree_write_bio, wbio.bio)),
894                         BIOSET_NEED_BVECS) ||
895             !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
896             !(c->online_reserved = alloc_percpu(u64)) ||
897             mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
898                                        c->opts.btree_node_size) ||
899             mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
900             !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
901                                               sizeof(u64), GFP_KERNEL))) {
902                 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
903                 goto err;
904         }
905
906         ret = bch2_fs_counters_init(c) ?:
907             bch2_fs_sb_errors_init(c) ?:
908             bch2_io_clock_init(&c->io_clock[READ]) ?:
909             bch2_io_clock_init(&c->io_clock[WRITE]) ?:
910             bch2_fs_journal_init(&c->journal) ?:
911             bch2_fs_replicas_init(c) ?:
912             bch2_fs_btree_cache_init(c) ?:
913             bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
914             bch2_fs_btree_iter_init(c) ?:
915             bch2_fs_btree_interior_update_init(c) ?:
916             bch2_fs_buckets_waiting_for_journal_init(c) ?:
917             bch2_fs_btree_write_buffer_init(c) ?:
918             bch2_fs_subvolumes_init(c) ?:
919             bch2_fs_io_read_init(c) ?:
920             bch2_fs_io_write_init(c) ?:
921             bch2_fs_nocow_locking_init(c) ?:
922             bch2_fs_encryption_init(c) ?:
923             bch2_fs_compress_init(c) ?:
924             bch2_fs_ec_init(c) ?:
925             bch2_fs_fsio_init(c) ?:
926             bch2_fs_fs_io_buffered_init(c) ?:
927             bch2_fs_fs_io_direct_init(c);
928         if (ret)
929                 goto err;
930
931         for (i = 0; i < c->sb.nr_devices; i++)
932                 if (bch2_dev_exists(c->disk_sb.sb, i) &&
933                     bch2_dev_alloc(c, i)) {
934                         ret = -EEXIST;
935                         goto err;
936                 }
937
938         bch2_journal_entry_res_resize(&c->journal,
939                         &c->btree_root_journal_res,
940                         BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
941         bch2_dev_usage_journal_reserve(c);
942         bch2_journal_entry_res_resize(&c->journal,
943                         &c->clock_journal_res,
944                         (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
945
946         mutex_lock(&bch_fs_list_lock);
947         ret = bch2_fs_online(c);
948         mutex_unlock(&bch_fs_list_lock);
949
950         if (ret)
951                 goto err;
952 out:
953         return c;
954 err:
955         bch2_fs_free(c);
956         c = ERR_PTR(ret);
957         goto out;
958 }
959
960 noinline_for_stack
961 static void print_mount_opts(struct bch_fs *c)
962 {
963         enum bch_opt_id i;
964         struct printbuf p = PRINTBUF;
965         bool first = true;
966
967         prt_str(&p, "mounting version ");
968         bch2_version_to_text(&p, c->sb.version);
969
970         if (c->opts.read_only) {
971                 prt_str(&p, " opts=");
972                 first = false;
973                 prt_printf(&p, "ro");
974         }
975
976         for (i = 0; i < bch2_opts_nr; i++) {
977                 const struct bch_option *opt = &bch2_opt_table[i];
978                 u64 v = bch2_opt_get_by_id(&c->opts, i);
979
980                 if (!(opt->flags & OPT_MOUNT))
981                         continue;
982
983                 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
984                         continue;
985
986                 prt_str(&p, first ? " opts=" : ",");
987                 first = false;
988                 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
989         }
990
991         bch_info(c, "%s", p.buf);
992         printbuf_exit(&p);
993 }
994
995 int bch2_fs_start(struct bch_fs *c)
996 {
997         time64_t now = ktime_get_real_seconds();
998         int ret;
999
1000         print_mount_opts(c);
1001
1002         down_write(&c->state_lock);
1003
1004         BUG_ON(test_bit(BCH_FS_started, &c->flags));
1005
1006         mutex_lock(&c->sb_lock);
1007
1008         ret = bch2_sb_members_v2_init(c);
1009         if (ret) {
1010                 mutex_unlock(&c->sb_lock);
1011                 goto err;
1012         }
1013
1014         for_each_online_member(c, ca)
1015                 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1016
1017         mutex_unlock(&c->sb_lock);
1018
1019         for_each_rw_member(c, ca)
1020                 bch2_dev_allocator_add(c, ca);
1021         bch2_recalc_capacity(c);
1022
1023         ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1024                 ? bch2_fs_recovery(c)
1025                 : bch2_fs_initialize(c);
1026         if (ret)
1027                 goto err;
1028
1029         ret = bch2_opts_check_may_set(c);
1030         if (ret)
1031                 goto err;
1032
1033         if (bch2_fs_init_fault("fs_start")) {
1034                 bch_err(c, "fs_start fault injected");
1035                 ret = -EINVAL;
1036                 goto err;
1037         }
1038
1039         set_bit(BCH_FS_started, &c->flags);
1040
1041         if (c->opts.read_only) {
1042                 bch2_fs_read_only(c);
1043         } else {
1044                 ret = !test_bit(BCH_FS_rw, &c->flags)
1045                         ? bch2_fs_read_write(c)
1046                         : bch2_fs_read_write_late(c);
1047                 if (ret)
1048                         goto err;
1049         }
1050
1051         ret = 0;
1052 err:
1053         if (ret)
1054                 bch_err_msg(c, ret, "starting filesystem");
1055         else
1056                 bch_verbose(c, "done starting filesystem");
1057         up_write(&c->state_lock);
1058         return ret;
1059 }
1060
1061 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1062 {
1063         struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1064
1065         if (le16_to_cpu(sb->block_size) != block_sectors(c))
1066                 return -BCH_ERR_mismatched_block_size;
1067
1068         if (le16_to_cpu(m.bucket_size) <
1069             BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1070                 return -BCH_ERR_bucket_size_too_small;
1071
1072         return 0;
1073 }
1074
1075 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1076                           struct bch_sb_handle *sb)
1077 {
1078         if (fs == sb)
1079                 return 0;
1080
1081         if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1082                 return -BCH_ERR_device_not_a_member_of_filesystem;
1083
1084         if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx))
1085                 return -BCH_ERR_device_has_been_removed;
1086
1087         if (fs->sb->block_size != sb->sb->block_size)
1088                 return -BCH_ERR_mismatched_block_size;
1089
1090         if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1091             le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1092                 return 0;
1093
1094         if (fs->sb->seq == sb->sb->seq &&
1095             fs->sb->write_time != sb->sb->write_time) {
1096                 struct printbuf buf = PRINTBUF;
1097
1098                 prt_str(&buf, "Split brain detected between ");
1099                 prt_bdevname(&buf, sb->bdev);
1100                 prt_str(&buf, " and ");
1101                 prt_bdevname(&buf, fs->bdev);
1102                 prt_char(&buf, ':');
1103                 prt_newline(&buf);
1104                 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1105                 prt_newline(&buf);
1106
1107                 prt_bdevname(&buf, fs->bdev);
1108                 prt_char(&buf, ' ');
1109                 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
1110                 prt_newline(&buf);
1111
1112                 prt_bdevname(&buf, sb->bdev);
1113                 prt_char(&buf, ' ');
1114                 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
1115                 prt_newline(&buf);
1116
1117                 prt_printf(&buf, "Not using older sb");
1118
1119                 pr_err("%s", buf.buf);
1120                 printbuf_exit(&buf);
1121                 return -BCH_ERR_device_splitbrain;
1122         }
1123
1124         struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1125         u64 seq_from_fs         = le64_to_cpu(m.seq);
1126         u64 seq_from_member     = le64_to_cpu(sb->sb->seq);
1127
1128         if (seq_from_fs && seq_from_fs < seq_from_member) {
1129                 struct printbuf buf = PRINTBUF;
1130
1131                 prt_str(&buf, "Split brain detected between ");
1132                 prt_bdevname(&buf, sb->bdev);
1133                 prt_str(&buf, " and ");
1134                 prt_bdevname(&buf, fs->bdev);
1135                 prt_char(&buf, ':');
1136                 prt_newline(&buf);
1137
1138                 prt_bdevname(&buf, fs->bdev);
1139                 prt_str(&buf, " believes seq of ");
1140                 prt_bdevname(&buf, sb->bdev);
1141                 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1142                 prt_bdevname(&buf, sb->bdev);
1143                 prt_printf(&buf, " has %llu\n", seq_from_member);
1144                 prt_str(&buf, "Not using ");
1145                 prt_bdevname(&buf, sb->bdev);
1146
1147                 pr_err("%s", buf.buf);
1148                 printbuf_exit(&buf);
1149                 return -BCH_ERR_device_splitbrain;
1150         }
1151
1152         return 0;
1153 }
1154
1155 /* Device startup/shutdown: */
1156
1157 static void bch2_dev_release(struct kobject *kobj)
1158 {
1159         struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1160
1161         kfree(ca);
1162 }
1163
1164 static void bch2_dev_free(struct bch_dev *ca)
1165 {
1166         cancel_work_sync(&ca->io_error_work);
1167
1168         if (ca->kobj.state_in_sysfs &&
1169             ca->disk_sb.bdev)
1170                 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1171
1172         if (ca->kobj.state_in_sysfs)
1173                 kobject_del(&ca->kobj);
1174
1175         bch2_free_super(&ca->disk_sb);
1176         bch2_dev_journal_exit(ca);
1177
1178         free_percpu(ca->io_done);
1179         bioset_exit(&ca->replica_set);
1180         bch2_dev_buckets_free(ca);
1181         free_page((unsigned long) ca->sb_read_scratch);
1182
1183         time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1184         time_stats_quantiles_exit(&ca->io_latency[READ]);
1185
1186         percpu_ref_exit(&ca->io_ref);
1187         percpu_ref_exit(&ca->ref);
1188         kobject_put(&ca->kobj);
1189 }
1190
1191 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1192 {
1193
1194         lockdep_assert_held(&c->state_lock);
1195
1196         if (percpu_ref_is_zero(&ca->io_ref))
1197                 return;
1198
1199         __bch2_dev_read_only(c, ca);
1200
1201         reinit_completion(&ca->io_ref_completion);
1202         percpu_ref_kill(&ca->io_ref);
1203         wait_for_completion(&ca->io_ref_completion);
1204
1205         if (ca->kobj.state_in_sysfs) {
1206                 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1207                 sysfs_remove_link(&ca->kobj, "block");
1208         }
1209
1210         bch2_free_super(&ca->disk_sb);
1211         bch2_dev_journal_exit(ca);
1212 }
1213
1214 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1215 {
1216         struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1217
1218         complete(&ca->ref_completion);
1219 }
1220
1221 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1222 {
1223         struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1224
1225         complete(&ca->io_ref_completion);
1226 }
1227
1228 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1229 {
1230         int ret;
1231
1232         if (!c->kobj.state_in_sysfs)
1233                 return 0;
1234
1235         if (!ca->kobj.state_in_sysfs) {
1236                 ret = kobject_add(&ca->kobj, &c->kobj,
1237                                   "dev-%u", ca->dev_idx);
1238                 if (ret)
1239                         return ret;
1240         }
1241
1242         if (ca->disk_sb.bdev) {
1243                 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1244
1245                 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1246                 if (ret)
1247                         return ret;
1248
1249                 ret = sysfs_create_link(&ca->kobj, block, "block");
1250                 if (ret)
1251                         return ret;
1252         }
1253
1254         return 0;
1255 }
1256
1257 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1258                                         struct bch_member *member)
1259 {
1260         struct bch_dev *ca;
1261         unsigned i;
1262
1263         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1264         if (!ca)
1265                 return NULL;
1266
1267         kobject_init(&ca->kobj, &bch2_dev_ktype);
1268         init_completion(&ca->ref_completion);
1269         init_completion(&ca->io_ref_completion);
1270
1271         init_rwsem(&ca->bucket_lock);
1272
1273         INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1274
1275         time_stats_quantiles_init(&ca->io_latency[READ]);
1276         time_stats_quantiles_init(&ca->io_latency[WRITE]);
1277
1278         ca->mi = bch2_mi_to_cpu(member);
1279
1280         for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1281                 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1282
1283         ca->uuid = member->uuid;
1284
1285         ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1286                              ca->mi.bucket_size / btree_sectors(c));
1287
1288         if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
1289                             0, GFP_KERNEL) ||
1290             percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1291                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1292             !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1293             bch2_dev_buckets_alloc(c, ca) ||
1294             bioset_init(&ca->replica_set, 4,
1295                         offsetof(struct bch_write_bio, bio), 0) ||
1296             !(ca->io_done       = alloc_percpu(*ca->io_done)))
1297                 goto err;
1298
1299         return ca;
1300 err:
1301         bch2_dev_free(ca);
1302         return NULL;
1303 }
1304
1305 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1306                             unsigned dev_idx)
1307 {
1308         ca->dev_idx = dev_idx;
1309         __set_bit(ca->dev_idx, ca->self.d);
1310         scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1311
1312         ca->fs = c;
1313         rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1314
1315         if (bch2_dev_sysfs_online(c, ca))
1316                 pr_warn("error creating sysfs objects");
1317 }
1318
1319 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1320 {
1321         struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1322         struct bch_dev *ca = NULL;
1323         int ret = 0;
1324
1325         if (bch2_fs_init_fault("dev_alloc"))
1326                 goto err;
1327
1328         ca = __bch2_dev_alloc(c, &member);
1329         if (!ca)
1330                 goto err;
1331
1332         ca->fs = c;
1333
1334         bch2_dev_attach(c, ca, dev_idx);
1335         return ret;
1336 err:
1337         if (ca)
1338                 bch2_dev_free(ca);
1339         return -BCH_ERR_ENOMEM_dev_alloc;
1340 }
1341
1342 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1343 {
1344         unsigned ret;
1345
1346         if (bch2_dev_is_online(ca)) {
1347                 bch_err(ca, "already have device online in slot %u",
1348                         sb->sb->dev_idx);
1349                 return -BCH_ERR_device_already_online;
1350         }
1351
1352         if (get_capacity(sb->bdev->bd_disk) <
1353             ca->mi.bucket_size * ca->mi.nbuckets) {
1354                 bch_err(ca, "cannot online: device too small");
1355                 return -BCH_ERR_device_size_too_small;
1356         }
1357
1358         BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1359
1360         ret = bch2_dev_journal_init(ca, sb->sb);
1361         if (ret)
1362                 return ret;
1363
1364         /* Commit: */
1365         ca->disk_sb = *sb;
1366         memset(sb, 0, sizeof(*sb));
1367
1368         ca->dev = ca->disk_sb.bdev->bd_dev;
1369
1370         percpu_ref_reinit(&ca->io_ref);
1371
1372         return 0;
1373 }
1374
1375 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1376 {
1377         struct bch_dev *ca;
1378         int ret;
1379
1380         lockdep_assert_held(&c->state_lock);
1381
1382         if (le64_to_cpu(sb->sb->seq) >
1383             le64_to_cpu(c->disk_sb.sb->seq))
1384                 bch2_sb_to_fs(c, sb->sb);
1385
1386         BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1387                !c->devs[sb->sb->dev_idx]);
1388
1389         ca = bch_dev_locked(c, sb->sb->dev_idx);
1390
1391         ret = __bch2_dev_attach_bdev(ca, sb);
1392         if (ret)
1393                 return ret;
1394
1395         bch2_dev_sysfs_online(c, ca);
1396
1397         struct printbuf name = PRINTBUF;
1398         prt_bdevname(&name, ca->disk_sb.bdev);
1399
1400         if (c->sb.nr_devices == 1)
1401                 strscpy(c->name, name.buf, sizeof(c->name));
1402         strscpy(ca->name, name.buf, sizeof(ca->name));
1403
1404         printbuf_exit(&name);
1405
1406         rebalance_wakeup(c);
1407         return 0;
1408 }
1409
1410 /* Device management: */
1411
1412 /*
1413  * Note: this function is also used by the error paths - when a particular
1414  * device sees an error, we call it to determine whether we can just set the
1415  * device RO, or - if this function returns false - we'll set the whole
1416  * filesystem RO:
1417  *
1418  * XXX: maybe we should be more explicit about whether we're changing state
1419  * because we got an error or what have you?
1420  */
1421 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1422                             enum bch_member_state new_state, int flags)
1423 {
1424         struct bch_devs_mask new_online_devs;
1425         int nr_rw = 0, required;
1426
1427         lockdep_assert_held(&c->state_lock);
1428
1429         switch (new_state) {
1430         case BCH_MEMBER_STATE_rw:
1431                 return true;
1432         case BCH_MEMBER_STATE_ro:
1433                 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1434                         return true;
1435
1436                 /* do we have enough devices to write to?  */
1437                 for_each_member_device(c, ca2)
1438                         if (ca2 != ca)
1439                                 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1440
1441                 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1442                                ? c->opts.metadata_replicas
1443                                : metadata_replicas_required(c),
1444                                !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1445                                ? c->opts.data_replicas
1446                                : data_replicas_required(c));
1447
1448                 return nr_rw >= required;
1449         case BCH_MEMBER_STATE_failed:
1450         case BCH_MEMBER_STATE_spare:
1451                 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1452                     ca->mi.state != BCH_MEMBER_STATE_ro)
1453                         return true;
1454
1455                 /* do we have enough devices to read from?  */
1456                 new_online_devs = bch2_online_devs(c);
1457                 __clear_bit(ca->dev_idx, new_online_devs.d);
1458
1459                 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1460         default:
1461                 BUG();
1462         }
1463 }
1464
1465 static bool bch2_fs_may_start(struct bch_fs *c)
1466 {
1467         struct bch_dev *ca;
1468         unsigned i, flags = 0;
1469
1470         if (c->opts.very_degraded)
1471                 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1472
1473         if (c->opts.degraded)
1474                 flags |= BCH_FORCE_IF_DEGRADED;
1475
1476         if (!c->opts.degraded &&
1477             !c->opts.very_degraded) {
1478                 mutex_lock(&c->sb_lock);
1479
1480                 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1481                         if (!bch2_dev_exists(c->disk_sb.sb, i))
1482                                 continue;
1483
1484                         ca = bch_dev_locked(c, i);
1485
1486                         if (!bch2_dev_is_online(ca) &&
1487                             (ca->mi.state == BCH_MEMBER_STATE_rw ||
1488                              ca->mi.state == BCH_MEMBER_STATE_ro)) {
1489                                 mutex_unlock(&c->sb_lock);
1490                                 return false;
1491                         }
1492                 }
1493                 mutex_unlock(&c->sb_lock);
1494         }
1495
1496         return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1497 }
1498
1499 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1500 {
1501         /*
1502          * The allocator thread itself allocates btree nodes, so stop it first:
1503          */
1504         bch2_dev_allocator_remove(c, ca);
1505         bch2_dev_journal_stop(&c->journal, ca);
1506 }
1507
1508 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1509 {
1510         lockdep_assert_held(&c->state_lock);
1511
1512         BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1513
1514         bch2_dev_allocator_add(c, ca);
1515         bch2_recalc_capacity(c);
1516 }
1517
1518 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1519                          enum bch_member_state new_state, int flags)
1520 {
1521         struct bch_member *m;
1522         int ret = 0;
1523
1524         if (ca->mi.state == new_state)
1525                 return 0;
1526
1527         if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1528                 return -BCH_ERR_device_state_not_allowed;
1529
1530         if (new_state != BCH_MEMBER_STATE_rw)
1531                 __bch2_dev_read_only(c, ca);
1532
1533         bch_notice(ca, "%s", bch2_member_states[new_state]);
1534
1535         mutex_lock(&c->sb_lock);
1536         m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1537         SET_BCH_MEMBER_STATE(m, new_state);
1538         bch2_write_super(c);
1539         mutex_unlock(&c->sb_lock);
1540
1541         if (new_state == BCH_MEMBER_STATE_rw)
1542                 __bch2_dev_read_write(c, ca);
1543
1544         rebalance_wakeup(c);
1545
1546         return ret;
1547 }
1548
1549 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1550                        enum bch_member_state new_state, int flags)
1551 {
1552         int ret;
1553
1554         down_write(&c->state_lock);
1555         ret = __bch2_dev_set_state(c, ca, new_state, flags);
1556         up_write(&c->state_lock);
1557
1558         return ret;
1559 }
1560
1561 /* Device add/removal: */
1562
1563 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
1564 {
1565         struct bpos start       = POS(ca->dev_idx, 0);
1566         struct bpos end         = POS(ca->dev_idx, U64_MAX);
1567         int ret;
1568
1569         /*
1570          * We clear the LRU and need_discard btrees first so that we don't race
1571          * with bch2_do_invalidates() and bch2_do_discards()
1572          */
1573         ret =   bch2_btree_delete_range(c, BTREE_ID_lru, start, end,
1574                                         BTREE_TRIGGER_NORUN, NULL) ?:
1575                 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
1576                                         BTREE_TRIGGER_NORUN, NULL) ?:
1577                 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
1578                                         BTREE_TRIGGER_NORUN, NULL) ?:
1579                 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
1580                                         BTREE_TRIGGER_NORUN, NULL) ?:
1581                 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
1582                                         BTREE_TRIGGER_NORUN, NULL) ?:
1583                 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
1584                                         BTREE_TRIGGER_NORUN, NULL);
1585         bch_err_msg(c, ret, "removing dev alloc info");
1586         return ret;
1587 }
1588
1589 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1590 {
1591         struct bch_member *m;
1592         unsigned dev_idx = ca->dev_idx, data;
1593         int ret;
1594
1595         down_write(&c->state_lock);
1596
1597         /*
1598          * We consume a reference to ca->ref, regardless of whether we succeed
1599          * or fail:
1600          */
1601         percpu_ref_put(&ca->ref);
1602
1603         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1604                 bch_err(ca, "Cannot remove without losing data");
1605                 ret = -BCH_ERR_device_state_not_allowed;
1606                 goto err;
1607         }
1608
1609         __bch2_dev_read_only(c, ca);
1610
1611         ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1612         bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1613         if (ret)
1614                 goto err;
1615
1616         ret = bch2_dev_remove_alloc(c, ca);
1617         bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1618         if (ret)
1619                 goto err;
1620
1621         ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1622         bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1623         if (ret)
1624                 goto err;
1625
1626         ret = bch2_journal_flush(&c->journal);
1627         bch_err_msg(ca, ret, "bch2_journal_flush()");
1628         if (ret)
1629                 goto err;
1630
1631         ret = bch2_replicas_gc2(c);
1632         bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1633         if (ret)
1634                 goto err;
1635
1636         data = bch2_dev_has_data(c, ca);
1637         if (data) {
1638                 struct printbuf data_has = PRINTBUF;
1639
1640                 prt_bitflags(&data_has, __bch2_data_types, data);
1641                 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1642                 printbuf_exit(&data_has);
1643                 ret = -EBUSY;
1644                 goto err;
1645         }
1646
1647         __bch2_dev_offline(c, ca);
1648
1649         mutex_lock(&c->sb_lock);
1650         rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1651         mutex_unlock(&c->sb_lock);
1652
1653         percpu_ref_kill(&ca->ref);
1654         wait_for_completion(&ca->ref_completion);
1655
1656         bch2_dev_free(ca);
1657
1658         /*
1659          * At this point the device object has been removed in-core, but the
1660          * on-disk journal might still refer to the device index via sb device
1661          * usage entries. Recovery fails if it sees usage information for an
1662          * invalid device. Flush journal pins to push the back of the journal
1663          * past now invalid device index references before we update the
1664          * superblock, but after the device object has been removed so any
1665          * further journal writes elide usage info for the device.
1666          */
1667         bch2_journal_flush_all_pins(&c->journal);
1668
1669         /*
1670          * Free this device's slot in the bch_member array - all pointers to
1671          * this device must be gone:
1672          */
1673         mutex_lock(&c->sb_lock);
1674         m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1675         memset(&m->uuid, 0, sizeof(m->uuid));
1676
1677         bch2_write_super(c);
1678
1679         mutex_unlock(&c->sb_lock);
1680         up_write(&c->state_lock);
1681
1682         bch2_dev_usage_journal_reserve(c);
1683         return 0;
1684 err:
1685         if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1686             !percpu_ref_is_zero(&ca->io_ref))
1687                 __bch2_dev_read_write(c, ca);
1688         up_write(&c->state_lock);
1689         return ret;
1690 }
1691
1692 /* Add new device to running filesystem: */
1693 int bch2_dev_add(struct bch_fs *c, const char *path)
1694 {
1695         struct bch_opts opts = bch2_opts_empty();
1696         struct bch_sb_handle sb;
1697         struct bch_dev *ca = NULL;
1698         struct bch_sb_field_members_v2 *mi;
1699         struct bch_member dev_mi;
1700         unsigned dev_idx, nr_devices, u64s;
1701         struct printbuf errbuf = PRINTBUF;
1702         struct printbuf label = PRINTBUF;
1703         int ret;
1704
1705         ret = bch2_read_super(path, &opts, &sb);
1706         bch_err_msg(c, ret, "reading super");
1707         if (ret)
1708                 goto err;
1709
1710         dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1711
1712         if (BCH_MEMBER_GROUP(&dev_mi)) {
1713                 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1714                 if (label.allocation_failure) {
1715                         ret = -ENOMEM;
1716                         goto err;
1717                 }
1718         }
1719
1720         ret = bch2_dev_may_add(sb.sb, c);
1721         if (ret)
1722                 goto err;
1723
1724         ca = __bch2_dev_alloc(c, &dev_mi);
1725         if (!ca) {
1726                 ret = -ENOMEM;
1727                 goto err;
1728         }
1729
1730         bch2_dev_usage_init(ca);
1731
1732         ret = __bch2_dev_attach_bdev(ca, &sb);
1733         if (ret)
1734                 goto err;
1735
1736         ret = bch2_dev_journal_alloc(ca);
1737         bch_err_msg(c, ret, "allocating journal");
1738         if (ret)
1739                 goto err;
1740
1741         down_write(&c->state_lock);
1742         mutex_lock(&c->sb_lock);
1743
1744         ret = bch2_sb_from_fs(c, ca);
1745         bch_err_msg(c, ret, "setting up new superblock");
1746         if (ret)
1747                 goto err_unlock;
1748
1749         if (dynamic_fault("bcachefs:add:no_slot"))
1750                 goto no_slot;
1751
1752         for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1753                 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx))
1754                         goto have_slot;
1755 no_slot:
1756         ret = -BCH_ERR_ENOSPC_sb_members;
1757         bch_err_msg(c, ret, "setting up new superblock");
1758         goto err_unlock;
1759
1760 have_slot:
1761         nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1762
1763         mi = bch2_sb_field_get(c->disk_sb.sb, members_v2);
1764         u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) +
1765                             le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64));
1766
1767         mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s);
1768         if (!mi) {
1769                 ret = -BCH_ERR_ENOSPC_sb_members;
1770                 bch_err_msg(c, ret, "setting up new superblock");
1771                 goto err_unlock;
1772         }
1773         struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1774
1775         /* success: */
1776
1777         *m = dev_mi;
1778         m->last_mount = cpu_to_le64(ktime_get_real_seconds());
1779         c->disk_sb.sb->nr_devices       = nr_devices;
1780
1781         ca->disk_sb.sb->dev_idx = dev_idx;
1782         bch2_dev_attach(c, ca, dev_idx);
1783
1784         if (BCH_MEMBER_GROUP(&dev_mi)) {
1785                 ret = __bch2_dev_group_set(c, ca, label.buf);
1786                 bch_err_msg(c, ret, "creating new label");
1787                 if (ret)
1788                         goto err_unlock;
1789         }
1790
1791         bch2_write_super(c);
1792         mutex_unlock(&c->sb_lock);
1793
1794         bch2_dev_usage_journal_reserve(c);
1795
1796         ret = bch2_trans_mark_dev_sb(c, ca);
1797         bch_err_msg(ca, ret, "marking new superblock");
1798         if (ret)
1799                 goto err_late;
1800
1801         ret = bch2_fs_freespace_init(c);
1802         bch_err_msg(ca, ret, "initializing free space");
1803         if (ret)
1804                 goto err_late;
1805
1806         ca->new_fs_bucket_idx = 0;
1807
1808         if (ca->mi.state == BCH_MEMBER_STATE_rw)
1809                 __bch2_dev_read_write(c, ca);
1810
1811         up_write(&c->state_lock);
1812         return 0;
1813
1814 err_unlock:
1815         mutex_unlock(&c->sb_lock);
1816         up_write(&c->state_lock);
1817 err:
1818         if (ca)
1819                 bch2_dev_free(ca);
1820         bch2_free_super(&sb);
1821         printbuf_exit(&label);
1822         printbuf_exit(&errbuf);
1823         bch_err_fn(c, ret);
1824         return ret;
1825 err_late:
1826         up_write(&c->state_lock);
1827         ca = NULL;
1828         goto err;
1829 }
1830
1831 /* Hot add existing device to running filesystem: */
1832 int bch2_dev_online(struct bch_fs *c, const char *path)
1833 {
1834         struct bch_opts opts = bch2_opts_empty();
1835         struct bch_sb_handle sb = { NULL };
1836         struct bch_dev *ca;
1837         unsigned dev_idx;
1838         int ret;
1839
1840         down_write(&c->state_lock);
1841
1842         ret = bch2_read_super(path, &opts, &sb);
1843         if (ret) {
1844                 up_write(&c->state_lock);
1845                 return ret;
1846         }
1847
1848         dev_idx = sb.sb->dev_idx;
1849
1850         ret = bch2_dev_in_fs(&c->disk_sb, &sb);
1851         bch_err_msg(c, ret, "bringing %s online", path);
1852         if (ret)
1853                 goto err;
1854
1855         ret = bch2_dev_attach_bdev(c, &sb);
1856         if (ret)
1857                 goto err;
1858
1859         ca = bch_dev_locked(c, dev_idx);
1860
1861         ret = bch2_trans_mark_dev_sb(c, ca);
1862         bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1863         if (ret)
1864                 goto err;
1865
1866         if (ca->mi.state == BCH_MEMBER_STATE_rw)
1867                 __bch2_dev_read_write(c, ca);
1868
1869         if (!ca->mi.freespace_initialized) {
1870                 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1871                 bch_err_msg(ca, ret, "initializing free space");
1872                 if (ret)
1873                         goto err;
1874         }
1875
1876         if (!ca->journal.nr) {
1877                 ret = bch2_dev_journal_alloc(ca);
1878                 bch_err_msg(ca, ret, "allocating journal");
1879                 if (ret)
1880                         goto err;
1881         }
1882
1883         mutex_lock(&c->sb_lock);
1884         bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1885                 cpu_to_le64(ktime_get_real_seconds());
1886         bch2_write_super(c);
1887         mutex_unlock(&c->sb_lock);
1888
1889         up_write(&c->state_lock);
1890         return 0;
1891 err:
1892         up_write(&c->state_lock);
1893         bch2_free_super(&sb);
1894         return ret;
1895 }
1896
1897 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1898 {
1899         down_write(&c->state_lock);
1900
1901         if (!bch2_dev_is_online(ca)) {
1902                 bch_err(ca, "Already offline");
1903                 up_write(&c->state_lock);
1904                 return 0;
1905         }
1906
1907         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1908                 bch_err(ca, "Cannot offline required disk");
1909                 up_write(&c->state_lock);
1910                 return -BCH_ERR_device_state_not_allowed;
1911         }
1912
1913         __bch2_dev_offline(c, ca);
1914
1915         up_write(&c->state_lock);
1916         return 0;
1917 }
1918
1919 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1920 {
1921         struct bch_member *m;
1922         u64 old_nbuckets;
1923         int ret = 0;
1924
1925         down_write(&c->state_lock);
1926         old_nbuckets = ca->mi.nbuckets;
1927
1928         if (nbuckets < ca->mi.nbuckets) {
1929                 bch_err(ca, "Cannot shrink yet");
1930                 ret = -EINVAL;
1931                 goto err;
1932         }
1933
1934         if (bch2_dev_is_online(ca) &&
1935             get_capacity(ca->disk_sb.bdev->bd_disk) <
1936             ca->mi.bucket_size * nbuckets) {
1937                 bch_err(ca, "New size larger than device");
1938                 ret = -BCH_ERR_device_size_too_small;
1939                 goto err;
1940         }
1941
1942         ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1943         bch_err_msg(ca, ret, "resizing buckets");
1944         if (ret)
1945                 goto err;
1946
1947         ret = bch2_trans_mark_dev_sb(c, ca);
1948         if (ret)
1949                 goto err;
1950
1951         mutex_lock(&c->sb_lock);
1952         m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1953         m->nbuckets = cpu_to_le64(nbuckets);
1954
1955         bch2_write_super(c);
1956         mutex_unlock(&c->sb_lock);
1957
1958         if (ca->mi.freespace_initialized) {
1959                 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1960                 if (ret)
1961                         goto err;
1962
1963                 /*
1964                  * XXX: this is all wrong transactionally - we'll be able to do
1965                  * this correctly after the disk space accounting rewrite
1966                  */
1967                 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets;
1968         }
1969
1970         bch2_recalc_capacity(c);
1971 err:
1972         up_write(&c->state_lock);
1973         return ret;
1974 }
1975
1976 /* return with ref on ca->ref: */
1977 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1978 {
1979         rcu_read_lock();
1980         for_each_member_device_rcu(c, ca, NULL)
1981                 if (!strcmp(name, ca->name)) {
1982                         rcu_read_unlock();
1983                         return ca;
1984                 }
1985         rcu_read_unlock();
1986         return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1987 }
1988
1989 /* Filesystem open: */
1990
1991 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
1992 {
1993         return  cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
1994                 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
1995 }
1996
1997 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
1998                             struct bch_opts opts)
1999 {
2000         DARRAY(struct bch_sb_handle) sbs = { 0 };
2001         struct bch_fs *c = NULL;
2002         struct bch_sb_handle *best = NULL;
2003         struct printbuf errbuf = PRINTBUF;
2004         int ret = 0;
2005
2006         if (!try_module_get(THIS_MODULE))
2007                 return ERR_PTR(-ENODEV);
2008
2009         if (!nr_devices) {
2010                 ret = -EINVAL;
2011                 goto err;
2012         }
2013
2014         ret = darray_make_room(&sbs, nr_devices);
2015         if (ret)
2016                 goto err;
2017
2018         for (unsigned i = 0; i < nr_devices; i++) {
2019                 struct bch_sb_handle sb = { NULL };
2020
2021                 ret = bch2_read_super(devices[i], &opts, &sb);
2022                 if (ret)
2023                         goto err;
2024
2025                 BUG_ON(darray_push(&sbs, sb));
2026         }
2027
2028         if (opts.nochanges && !opts.read_only) {
2029                 ret = -BCH_ERR_erofs_nochanges;
2030                 goto err_print;
2031         }
2032
2033         darray_for_each(sbs, sb)
2034                 if (!best || sb_cmp(sb->sb, best->sb) > 0)
2035                         best = sb;
2036
2037         darray_for_each_reverse(sbs, sb) {
2038                 ret = bch2_dev_in_fs(best, sb);
2039
2040                 if (ret == -BCH_ERR_device_has_been_removed ||
2041                     ret == -BCH_ERR_device_splitbrain) {
2042                         bch2_free_super(sb);
2043                         darray_remove_item(&sbs, sb);
2044                         best -= best > sb;
2045                         ret = 0;
2046                         continue;
2047                 }
2048
2049                 if (ret)
2050                         goto err_print;
2051         }
2052
2053         c = bch2_fs_alloc(best->sb, opts);
2054         ret = PTR_ERR_OR_ZERO(c);
2055         if (ret)
2056                 goto err;
2057
2058         down_write(&c->state_lock);
2059         darray_for_each(sbs, sb) {
2060                 ret = bch2_dev_attach_bdev(c, sb);
2061                 if (ret) {
2062                         up_write(&c->state_lock);
2063                         goto err;
2064                 }
2065         }
2066         up_write(&c->state_lock);
2067
2068         if (!bch2_fs_may_start(c)) {
2069                 ret = -BCH_ERR_insufficient_devices_to_start;
2070                 goto err_print;
2071         }
2072
2073         if (!c->opts.nostart) {
2074                 ret = bch2_fs_start(c);
2075                 if (ret)
2076                         goto err;
2077         }
2078 out:
2079         darray_for_each(sbs, sb)
2080                 bch2_free_super(sb);
2081         darray_exit(&sbs);
2082         printbuf_exit(&errbuf);
2083         module_put(THIS_MODULE);
2084         return c;
2085 err_print:
2086         pr_err("bch_fs_open err opening %s: %s",
2087                devices[0], bch2_err_str(ret));
2088 err:
2089         if (!IS_ERR_OR_NULL(c))
2090                 bch2_fs_stop(c);
2091         c = ERR_PTR(ret);
2092         goto out;
2093 }
2094
2095 /* Global interfaces/init */
2096
2097 static void bcachefs_exit(void)
2098 {
2099         bch2_debug_exit();
2100         bch2_vfs_exit();
2101         bch2_chardev_exit();
2102         bch2_btree_key_cache_exit();
2103         if (bcachefs_kset)
2104                 kset_unregister(bcachefs_kset);
2105 }
2106
2107 static int __init bcachefs_init(void)
2108 {
2109         bch2_bkey_pack_test();
2110
2111         if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2112             bch2_btree_key_cache_init() ||
2113             bch2_chardev_init() ||
2114             bch2_vfs_init() ||
2115             bch2_debug_init())
2116                 goto err;
2117
2118         return 0;
2119 err:
2120         bcachefs_exit();
2121         return -ENOMEM;
2122 }
2123
2124 #define BCH_DEBUG_PARAM(name, description)                      \
2125         bool bch2_##name;                                       \
2126         module_param_named(name, bch2_##name, bool, 0644);      \
2127         MODULE_PARM_DESC(name, description);
2128 BCH_DEBUG_PARAMS()
2129 #undef BCH_DEBUG_PARAM
2130
2131 __maybe_unused
2132 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2133 module_param_named(version, bch2_metadata_version, uint, 0400);
2134
2135 module_exit(bcachefs_exit);
2136 module_init(bcachefs_init);