]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/super.c
Update bcachefs sources to 4a4139a563 bcachefs: Fix extent_sort_fix_overlapping()
[bcachefs-tools-debian] / libbcachefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_update_interior.h"
17 #include "btree_io.h"
18 #include "chardev.h"
19 #include "checksum.h"
20 #include "clock.h"
21 #include "compress.h"
22 #include "debug.h"
23 #include "disk_groups.h"
24 #include "ec.h"
25 #include "error.h"
26 #include "fs.h"
27 #include "fs-io.h"
28 #include "fsck.h"
29 #include "inode.h"
30 #include "io.h"
31 #include "journal.h"
32 #include "journal_reclaim.h"
33 #include "journal_seq_blacklist.h"
34 #include "move.h"
35 #include "migrate.h"
36 #include "movinggc.h"
37 #include "quota.h"
38 #include "rebalance.h"
39 #include "recovery.h"
40 #include "replicas.h"
41 #include "super.h"
42 #include "super-io.h"
43 #include "sysfs.h"
44
45 #include <linux/backing-dev.h>
46 #include <linux/blkdev.h>
47 #include <linux/debugfs.h>
48 #include <linux/device.h>
49 #include <linux/genhd.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/module.h>
53 #include <linux/percpu.h>
54 #include <linux/random.h>
55 #include <linux/sysfs.h>
56 #include <crypto/hash.h>
57
58 #include <trace/events/bcachefs.h>
59
60 MODULE_LICENSE("GPL");
61 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
62
63 #define KTYPE(type)                                                     \
64 struct kobj_type type ## _ktype = {                                     \
65         .release        = type ## _release,                             \
66         .sysfs_ops      = &type ## _sysfs_ops,                          \
67         .default_attrs  = type ## _files                                \
68 }
69
70 static void bch2_fs_release(struct kobject *);
71 static void bch2_dev_release(struct kobject *);
72
73 static void bch2_fs_internal_release(struct kobject *k)
74 {
75 }
76
77 static void bch2_fs_opts_dir_release(struct kobject *k)
78 {
79 }
80
81 static void bch2_fs_time_stats_release(struct kobject *k)
82 {
83 }
84
85 static KTYPE(bch2_fs);
86 static KTYPE(bch2_fs_internal);
87 static KTYPE(bch2_fs_opts_dir);
88 static KTYPE(bch2_fs_time_stats);
89 static KTYPE(bch2_dev);
90
91 static struct kset *bcachefs_kset;
92 static LIST_HEAD(bch_fs_list);
93 static DEFINE_MUTEX(bch_fs_list_lock);
94
95 static DECLARE_WAIT_QUEUE_HEAD(bch_read_only_wait);
96
97 static void bch2_dev_free(struct bch_dev *);
98 static int bch2_dev_alloc(struct bch_fs *, unsigned);
99 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
100 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
101
102 struct bch_fs *bch2_bdev_to_fs(struct block_device *bdev)
103 {
104         struct bch_fs *c;
105         struct bch_dev *ca;
106         unsigned i;
107
108         mutex_lock(&bch_fs_list_lock);
109         rcu_read_lock();
110
111         list_for_each_entry(c, &bch_fs_list, list)
112                 for_each_member_device_rcu(ca, c, i, NULL)
113                         if (ca->disk_sb.bdev == bdev) {
114                                 closure_get(&c->cl);
115                                 goto found;
116                         }
117         c = NULL;
118 found:
119         rcu_read_unlock();
120         mutex_unlock(&bch_fs_list_lock);
121
122         return c;
123 }
124
125 static struct bch_fs *__bch2_uuid_to_fs(uuid_le uuid)
126 {
127         struct bch_fs *c;
128
129         lockdep_assert_held(&bch_fs_list_lock);
130
131         list_for_each_entry(c, &bch_fs_list, list)
132                 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid_le)))
133                         return c;
134
135         return NULL;
136 }
137
138 struct bch_fs *bch2_uuid_to_fs(uuid_le uuid)
139 {
140         struct bch_fs *c;
141
142         mutex_lock(&bch_fs_list_lock);
143         c = __bch2_uuid_to_fs(uuid);
144         if (c)
145                 closure_get(&c->cl);
146         mutex_unlock(&bch_fs_list_lock);
147
148         return c;
149 }
150
151 int bch2_congested(void *data, int bdi_bits)
152 {
153         struct bch_fs *c = data;
154         struct backing_dev_info *bdi;
155         struct bch_dev *ca;
156         unsigned i;
157         int ret = 0;
158
159         rcu_read_lock();
160         if (bdi_bits & (1 << WB_sync_congested)) {
161                 /* Reads - check all devices: */
162                 for_each_readable_member(ca, c, i) {
163                         bdi = ca->disk_sb.bdev->bd_bdi;
164
165                         if (bdi_congested(bdi, bdi_bits)) {
166                                 ret = 1;
167                                 break;
168                         }
169                 }
170         } else {
171                 unsigned target = READ_ONCE(c->opts.foreground_target);
172                 const struct bch_devs_mask *devs = target
173                         ? bch2_target_to_mask(c, target)
174                         : &c->rw_devs[BCH_DATA_USER];
175
176                 for_each_member_device_rcu(ca, c, i, devs) {
177                         bdi = ca->disk_sb.bdev->bd_bdi;
178
179                         if (bdi_congested(bdi, bdi_bits)) {
180                                 ret = 1;
181                                 break;
182                         }
183                 }
184         }
185         rcu_read_unlock();
186
187         return ret;
188 }
189
190 /* Filesystem RO/RW: */
191
192 /*
193  * For startup/shutdown of RW stuff, the dependencies are:
194  *
195  * - foreground writes depend on copygc and rebalance (to free up space)
196  *
197  * - copygc and rebalance depend on mark and sweep gc (they actually probably
198  *   don't because they either reserve ahead of time or don't block if
199  *   allocations fail, but allocations can require mark and sweep gc to run
200  *   because of generation number wraparound)
201  *
202  * - all of the above depends on the allocator threads
203  *
204  * - allocator depends on the journal (when it rewrites prios and gens)
205  */
206
207 static void __bch2_fs_read_only(struct bch_fs *c)
208 {
209         struct bch_dev *ca;
210         bool wrote;
211         unsigned i, clean_passes = 0;
212         int ret;
213
214         bch2_rebalance_stop(c);
215
216         for_each_member_device(ca, c, i)
217                 bch2_copygc_stop(ca);
218
219         bch2_gc_thread_stop(c);
220
221         /*
222          * Flush journal before stopping allocators, because flushing journal
223          * blacklist entries involves allocating new btree nodes:
224          */
225         bch2_journal_flush_all_pins(&c->journal);
226
227         if (!test_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags))
228                 goto allocator_not_running;
229
230         do {
231                 wrote = false;
232
233                 ret = bch2_stripes_write(c, BTREE_INSERT_NOCHECK_RW, &wrote) ?:
234                         bch2_alloc_write(c, BTREE_INSERT_NOCHECK_RW, &wrote);
235
236                 if (ret && !test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
237                         bch2_fs_inconsistent(c, "error writing out alloc info %i", ret);
238
239                 if (ret)
240                         break;
241
242                 for_each_member_device(ca, c, i)
243                         bch2_dev_allocator_quiesce(c, ca);
244
245                 bch2_journal_flush_all_pins(&c->journal);
246
247                 /*
248                  * We need to explicitly wait on btree interior updates to complete
249                  * before stopping the journal, flushing all journal pins isn't
250                  * sufficient, because in the BTREE_INTERIOR_UPDATING_ROOT case btree
251                  * interior updates have to drop their journal pin before they're
252                  * fully complete:
253                  */
254                 closure_wait_event(&c->btree_interior_update_wait,
255                                    !bch2_btree_interior_updates_nr_pending(c));
256
257                 clean_passes = wrote ? 0 : clean_passes + 1;
258         } while (clean_passes < 2);
259 allocator_not_running:
260         for_each_member_device(ca, c, i)
261                 bch2_dev_allocator_stop(ca);
262
263         clear_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
264
265         bch2_fs_journal_stop(&c->journal);
266
267         /* XXX: mark super that alloc info is persistent */
268
269         /*
270          * the journal kicks off btree writes via reclaim - wait for in flight
271          * writes after stopping journal:
272          */
273         if (test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
274                 bch2_btree_flush_all_writes(c);
275         else
276                 bch2_btree_verify_flushed(c);
277
278         /*
279          * After stopping journal:
280          */
281         for_each_member_device(ca, c, i)
282                 bch2_dev_allocator_remove(c, ca);
283 }
284
285 static void bch2_writes_disabled(struct percpu_ref *writes)
286 {
287         struct bch_fs *c = container_of(writes, struct bch_fs, writes);
288
289         set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
290         wake_up(&bch_read_only_wait);
291 }
292
293 void bch2_fs_read_only(struct bch_fs *c)
294 {
295         if (!test_bit(BCH_FS_RW, &c->flags)) {
296                 cancel_delayed_work_sync(&c->journal.reclaim_work);
297                 return;
298         }
299
300         BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
301
302         /*
303          * Block new foreground-end write operations from starting - any new
304          * writes will return -EROFS:
305          *
306          * (This is really blocking new _allocations_, writes to previously
307          * allocated space can still happen until stopping the allocator in
308          * bch2_dev_allocator_stop()).
309          */
310         percpu_ref_kill(&c->writes);
311
312         cancel_work_sync(&c->ec_stripe_delete_work);
313         cancel_delayed_work(&c->pd_controllers_update);
314
315         /*
316          * If we're not doing an emergency shutdown, we want to wait on
317          * outstanding writes to complete so they don't see spurious errors due
318          * to shutting down the allocator:
319          *
320          * If we are doing an emergency shutdown outstanding writes may
321          * hang until we shutdown the allocator so we don't want to wait
322          * on outstanding writes before shutting everything down - but
323          * we do need to wait on them before returning and signalling
324          * that going RO is complete:
325          */
326         wait_event(bch_read_only_wait,
327                    test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) ||
328                    test_bit(BCH_FS_EMERGENCY_RO, &c->flags));
329
330         __bch2_fs_read_only(c);
331
332         wait_event(bch_read_only_wait,
333                    test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
334
335         clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
336
337         if (!bch2_journal_error(&c->journal) &&
338             !test_bit(BCH_FS_ERROR, &c->flags) &&
339             !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) &&
340             test_bit(BCH_FS_STARTED, &c->flags) &&
341             !c->opts.norecovery)
342                 bch2_fs_mark_clean(c);
343
344         clear_bit(BCH_FS_RW, &c->flags);
345 }
346
347 static void bch2_fs_read_only_work(struct work_struct *work)
348 {
349         struct bch_fs *c =
350                 container_of(work, struct bch_fs, read_only_work);
351
352         mutex_lock(&c->state_lock);
353         bch2_fs_read_only(c);
354         mutex_unlock(&c->state_lock);
355 }
356
357 static void bch2_fs_read_only_async(struct bch_fs *c)
358 {
359         queue_work(system_long_wq, &c->read_only_work);
360 }
361
362 bool bch2_fs_emergency_read_only(struct bch_fs *c)
363 {
364         bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags);
365
366         bch2_fs_read_only_async(c);
367         bch2_journal_halt(&c->journal);
368
369         wake_up(&bch_read_only_wait);
370         return ret;
371 }
372
373 static int bch2_fs_read_write_late(struct bch_fs *c)
374 {
375         struct bch_dev *ca;
376         unsigned i;
377         int ret;
378
379         ret = bch2_gc_thread_start(c);
380         if (ret) {
381                 bch_err(c, "error starting gc thread");
382                 return ret;
383         }
384
385         for_each_rw_member(ca, c, i) {
386                 ret = bch2_copygc_start(c, ca);
387                 if (ret) {
388                         bch_err(c, "error starting copygc threads");
389                         percpu_ref_put(&ca->io_ref);
390                         return ret;
391                 }
392         }
393
394         ret = bch2_rebalance_start(c);
395         if (ret) {
396                 bch_err(c, "error starting rebalance thread");
397                 return ret;
398         }
399
400         schedule_delayed_work(&c->pd_controllers_update, 5 * HZ);
401
402         schedule_work(&c->ec_stripe_delete_work);
403
404         return 0;
405 }
406
407 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
408 {
409         struct bch_dev *ca;
410         unsigned i;
411         int ret;
412
413         if (test_bit(BCH_FS_RW, &c->flags))
414                 return 0;
415
416         /*
417          * nochanges is used for fsck -n mode - we have to allow going rw
418          * during recovery for that to work:
419          */
420         if (c->opts.norecovery ||
421             (c->opts.nochanges &&
422              (!early || c->opts.read_only)))
423                 return -EROFS;
424
425         ret = bch2_fs_mark_dirty(c);
426         if (ret)
427                 goto err;
428
429         for_each_rw_member(ca, c, i)
430                 bch2_dev_allocator_add(c, ca);
431         bch2_recalc_capacity(c);
432
433         if (!test_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags)) {
434                 ret = bch2_fs_allocator_start(c);
435                 if (ret) {
436                         bch_err(c, "error initializing allocator");
437                         goto err;
438                 }
439
440                 set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags);
441         }
442
443         for_each_rw_member(ca, c, i) {
444                 ret = bch2_dev_allocator_start(ca);
445                 if (ret) {
446                         bch_err(c, "error starting allocator threads");
447                         percpu_ref_put(&ca->io_ref);
448                         goto err;
449                 }
450         }
451
452         set_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags);
453
454         if (!early) {
455                 ret = bch2_fs_read_write_late(c);
456                 if (ret)
457                         goto err;
458         }
459
460         percpu_ref_reinit(&c->writes);
461         set_bit(BCH_FS_RW, &c->flags);
462
463         queue_delayed_work(c->journal_reclaim_wq,
464                            &c->journal.reclaim_work, 0);
465         return 0;
466 err:
467         __bch2_fs_read_only(c);
468         return ret;
469 }
470
471 int bch2_fs_read_write(struct bch_fs *c)
472 {
473         return __bch2_fs_read_write(c, false);
474 }
475
476 int bch2_fs_read_write_early(struct bch_fs *c)
477 {
478         lockdep_assert_held(&c->state_lock);
479
480         return __bch2_fs_read_write(c, true);
481 }
482
483 /* Filesystem startup/shutdown: */
484
485 static void bch2_fs_free(struct bch_fs *c)
486 {
487         unsigned i;
488
489         for (i = 0; i < BCH_TIME_STAT_NR; i++)
490                 bch2_time_stats_exit(&c->times[i]);
491
492         bch2_fs_quota_exit(c);
493         bch2_fs_fsio_exit(c);
494         bch2_fs_ec_exit(c);
495         bch2_fs_encryption_exit(c);
496         bch2_fs_io_exit(c);
497         bch2_fs_btree_iter_exit(c);
498         bch2_fs_btree_cache_exit(c);
499         bch2_fs_journal_exit(&c->journal);
500         bch2_io_clock_exit(&c->io_clock[WRITE]);
501         bch2_io_clock_exit(&c->io_clock[READ]);
502         bch2_fs_compress_exit(c);
503         percpu_free_rwsem(&c->mark_lock);
504         kfree(c->usage_scratch);
505         free_percpu(c->usage[1]);
506         free_percpu(c->usage[0]);
507         kfree(c->usage_base);
508         free_percpu(c->pcpu);
509         mempool_exit(&c->large_bkey_pool);
510         mempool_exit(&c->btree_bounce_pool);
511         bioset_exit(&c->btree_bio);
512         mempool_exit(&c->btree_interior_update_pool);
513         mempool_exit(&c->btree_reserve_pool);
514         mempool_exit(&c->fill_iter);
515         percpu_ref_exit(&c->writes);
516         kfree(c->replicas.entries);
517         kfree(c->replicas_gc.entries);
518         kfree(rcu_dereference_protected(c->disk_groups, 1));
519         kfree(c->journal_seq_blacklist_table);
520
521         if (c->journal_reclaim_wq)
522                 destroy_workqueue(c->journal_reclaim_wq);
523         if (c->copygc_wq)
524                 destroy_workqueue(c->copygc_wq);
525         if (c->wq)
526                 destroy_workqueue(c->wq);
527
528         free_pages((unsigned long) c->disk_sb.sb,
529                    c->disk_sb.page_order);
530         kvpfree(c, sizeof(*c));
531         module_put(THIS_MODULE);
532 }
533
534 static void bch2_fs_release(struct kobject *kobj)
535 {
536         struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
537
538         bch2_fs_free(c);
539 }
540
541 void bch2_fs_stop(struct bch_fs *c)
542 {
543         struct bch_dev *ca;
544         unsigned i;
545
546         bch_verbose(c, "shutting down");
547
548         set_bit(BCH_FS_STOPPING, &c->flags);
549
550         cancel_work_sync(&c->journal_seq_blacklist_gc_work);
551
552         mutex_lock(&c->state_lock);
553         bch2_fs_read_only(c);
554         mutex_unlock(&c->state_lock);
555
556         for_each_member_device(ca, c, i)
557                 if (ca->kobj.state_in_sysfs &&
558                     ca->disk_sb.bdev)
559                         sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj,
560                                           "bcachefs");
561
562         if (c->kobj.state_in_sysfs)
563                 kobject_del(&c->kobj);
564
565         bch2_fs_debug_exit(c);
566         bch2_fs_chardev_exit(c);
567
568         kobject_put(&c->time_stats);
569         kobject_put(&c->opts_dir);
570         kobject_put(&c->internal);
571
572         mutex_lock(&bch_fs_list_lock);
573         list_del(&c->list);
574         mutex_unlock(&bch_fs_list_lock);
575
576         closure_sync(&c->cl);
577         closure_debug_destroy(&c->cl);
578
579         /* btree prefetch might have kicked off reads in the background: */
580         bch2_btree_flush_all_reads(c);
581
582         for_each_member_device(ca, c, i)
583                 cancel_work_sync(&ca->io_error_work);
584
585         cancel_work_sync(&c->btree_write_error_work);
586         cancel_delayed_work_sync(&c->pd_controllers_update);
587         cancel_work_sync(&c->read_only_work);
588
589         for (i = 0; i < c->sb.nr_devices; i++)
590                 if (c->devs[i])
591                         bch2_dev_free(rcu_dereference_protected(c->devs[i], 1));
592
593         bch_verbose(c, "shutdown complete");
594
595         kobject_put(&c->kobj);
596 }
597
598 static const char *bch2_fs_online(struct bch_fs *c)
599 {
600         struct bch_dev *ca;
601         const char *err = NULL;
602         unsigned i;
603         int ret;
604
605         lockdep_assert_held(&bch_fs_list_lock);
606
607         if (!list_empty(&c->list))
608                 return NULL;
609
610         if (__bch2_uuid_to_fs(c->sb.uuid))
611                 return "filesystem UUID already open";
612
613         ret = bch2_fs_chardev_init(c);
614         if (ret)
615                 return "error creating character device";
616
617         bch2_fs_debug_init(c);
618
619         if (kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ||
620             kobject_add(&c->internal, &c->kobj, "internal") ||
621             kobject_add(&c->opts_dir, &c->kobj, "options") ||
622             kobject_add(&c->time_stats, &c->kobj, "time_stats") ||
623             bch2_opts_create_sysfs_files(&c->opts_dir))
624                 return "error creating sysfs objects";
625
626         mutex_lock(&c->state_lock);
627
628         err = "error creating sysfs objects";
629         __for_each_member_device(ca, c, i, NULL)
630                 if (bch2_dev_sysfs_online(c, ca))
631                         goto err;
632
633         list_add(&c->list, &bch_fs_list);
634         err = NULL;
635 err:
636         mutex_unlock(&c->state_lock);
637         return err;
638 }
639
640 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
641 {
642         struct bch_sb_field_members *mi;
643         struct bch_fs *c;
644         unsigned i, iter_size;
645         const char *err;
646
647         pr_verbose_init(opts, "");
648
649         c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
650         if (!c)
651                 goto out;
652
653         __module_get(THIS_MODULE);
654
655         c->minor                = -1;
656         c->disk_sb.fs_sb        = true;
657
658         mutex_init(&c->state_lock);
659         mutex_init(&c->sb_lock);
660         mutex_init(&c->replicas_gc_lock);
661         mutex_init(&c->btree_root_lock);
662         INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
663
664         init_rwsem(&c->gc_lock);
665
666         for (i = 0; i < BCH_TIME_STAT_NR; i++)
667                 bch2_time_stats_init(&c->times[i]);
668
669         bch2_fs_allocator_background_init(c);
670         bch2_fs_allocator_foreground_init(c);
671         bch2_fs_rebalance_init(c);
672         bch2_fs_quota_init(c);
673
674         INIT_LIST_HEAD(&c->list);
675
676         INIT_LIST_HEAD(&c->btree_interior_update_list);
677         INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
678         mutex_init(&c->btree_reserve_cache_lock);
679         mutex_init(&c->btree_interior_update_lock);
680
681         mutex_init(&c->usage_scratch_lock);
682
683         mutex_init(&c->bio_bounce_pages_lock);
684
685         bio_list_init(&c->btree_write_error_list);
686         spin_lock_init(&c->btree_write_error_lock);
687         INIT_WORK(&c->btree_write_error_work, bch2_btree_write_error_work);
688
689         INIT_WORK(&c->journal_seq_blacklist_gc_work,
690                   bch2_blacklist_entries_gc);
691
692         INIT_LIST_HEAD(&c->fsck_errors);
693         mutex_init(&c->fsck_error_lock);
694
695         INIT_LIST_HEAD(&c->ec_new_stripe_list);
696         mutex_init(&c->ec_new_stripe_lock);
697         mutex_init(&c->ec_stripe_create_lock);
698         spin_lock_init(&c->ec_stripes_heap_lock);
699
700         seqcount_init(&c->gc_pos_lock);
701
702         seqcount_init(&c->usage_lock);
703
704         c->copy_gc_enabled              = 1;
705         c->rebalance.enabled            = 1;
706         c->promote_whole_extents        = true;
707
708         c->journal.write_time   = &c->times[BCH_TIME_journal_write];
709         c->journal.delay_time   = &c->times[BCH_TIME_journal_delay];
710         c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal];
711         c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
712
713         bch2_fs_btree_cache_init_early(&c->btree_cache);
714
715         if (percpu_init_rwsem(&c->mark_lock))
716                 goto err;
717
718         mutex_lock(&c->sb_lock);
719
720         if (bch2_sb_to_fs(c, sb)) {
721                 mutex_unlock(&c->sb_lock);
722                 goto err;
723         }
724
725         mutex_unlock(&c->sb_lock);
726
727         scnprintf(c->name, sizeof(c->name), "%pU", &c->sb.user_uuid);
728
729         c->opts = bch2_opts_default;
730         bch2_opts_apply(&c->opts, bch2_opts_from_sb(sb));
731         bch2_opts_apply(&c->opts, opts);
732
733         c->block_bits           = ilog2(c->opts.block_size);
734         c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
735
736         if (bch2_fs_init_fault("fs_alloc"))
737                 goto err;
738
739         iter_size = sizeof(struct sort_iter) +
740                 (btree_blocks(c) + 1) * 2 *
741                 sizeof(struct sort_iter_set);
742
743         if (!(c->wq = alloc_workqueue("bcachefs",
744                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
745             !(c->copygc_wq = alloc_workqueue("bcache_copygc",
746                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
747             !(c->journal_reclaim_wq = alloc_workqueue("bcache_journal",
748                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) ||
749             percpu_ref_init(&c->writes, bch2_writes_disabled,
750                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
751             mempool_init_kmalloc_pool(&c->btree_reserve_pool, 1,
752                                       sizeof(struct btree_reserve)) ||
753             mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
754                                       sizeof(struct btree_update)) ||
755             mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
756             bioset_init(&c->btree_bio, 1,
757                         max(offsetof(struct btree_read_bio, bio),
758                             offsetof(struct btree_write_bio, wbio.bio)),
759                         BIOSET_NEED_BVECS) ||
760             !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
761             mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1,
762                                         btree_bytes(c)) ||
763             mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
764             bch2_io_clock_init(&c->io_clock[READ]) ||
765             bch2_io_clock_init(&c->io_clock[WRITE]) ||
766             bch2_fs_journal_init(&c->journal) ||
767             bch2_fs_replicas_init(c) ||
768             bch2_fs_btree_cache_init(c) ||
769             bch2_fs_btree_iter_init(c) ||
770             bch2_fs_io_init(c) ||
771             bch2_fs_encryption_init(c) ||
772             bch2_fs_compress_init(c) ||
773             bch2_fs_ec_init(c) ||
774             bch2_fs_fsio_init(c))
775                 goto err;
776
777         mi = bch2_sb_get_members(c->disk_sb.sb);
778         for (i = 0; i < c->sb.nr_devices; i++)
779                 if (bch2_dev_exists(c->disk_sb.sb, mi, i) &&
780                     bch2_dev_alloc(c, i))
781                         goto err;
782
783         /*
784          * Now that all allocations have succeeded, init various refcounty
785          * things that let us shutdown:
786          */
787         closure_init(&c->cl, NULL);
788
789         c->kobj.kset = bcachefs_kset;
790         kobject_init(&c->kobj, &bch2_fs_ktype);
791         kobject_init(&c->internal, &bch2_fs_internal_ktype);
792         kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
793         kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
794
795         mutex_lock(&bch_fs_list_lock);
796         err = bch2_fs_online(c);
797         mutex_unlock(&bch_fs_list_lock);
798         if (err) {
799                 bch_err(c, "bch2_fs_online() error: %s", err);
800                 goto err;
801         }
802 out:
803         pr_verbose_init(opts, "ret %i", c ? 0 : -ENOMEM);
804         return c;
805 err:
806         bch2_fs_free(c);
807         c = NULL;
808         goto out;
809 }
810
811 noinline_for_stack
812 static void print_mount_opts(struct bch_fs *c)
813 {
814         enum bch_opt_id i;
815         char buf[512];
816         struct printbuf p = PBUF(buf);
817         bool first = true;
818
819         strcpy(buf, "(null)");
820
821         if (c->opts.read_only) {
822                 pr_buf(&p, "ro");
823                 first = false;
824         }
825
826         for (i = 0; i < bch2_opts_nr; i++) {
827                 const struct bch_option *opt = &bch2_opt_table[i];
828                 u64 v = bch2_opt_get_by_id(&c->opts, i);
829
830                 if (!(opt->mode & OPT_MOUNT))
831                         continue;
832
833                 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
834                         continue;
835
836                 if (!first)
837                         pr_buf(&p, ",");
838                 first = false;
839                 bch2_opt_to_text(&p, c, opt, v, OPT_SHOW_MOUNT_STYLE);
840         }
841
842         bch_info(c, "mounted with opts: %s", buf);
843 }
844
845 int bch2_fs_start(struct bch_fs *c)
846 {
847         const char *err = "cannot allocate memory";
848         struct bch_sb_field_members *mi;
849         struct bch_dev *ca;
850         time64_t now = ktime_get_real_seconds();
851         unsigned i;
852         int ret = -EINVAL;
853
854         mutex_lock(&c->state_lock);
855
856         BUG_ON(test_bit(BCH_FS_STARTED, &c->flags));
857
858         mutex_lock(&c->sb_lock);
859
860         for_each_online_member(ca, c, i)
861                 bch2_sb_from_fs(c, ca);
862
863         mi = bch2_sb_get_members(c->disk_sb.sb);
864         for_each_online_member(ca, c, i)
865                 mi->members[ca->dev_idx].last_mount = cpu_to_le64(now);
866
867         mutex_unlock(&c->sb_lock);
868
869         for_each_rw_member(ca, c, i)
870                 bch2_dev_allocator_add(c, ca);
871         bch2_recalc_capacity(c);
872
873         ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
874                 ? bch2_fs_recovery(c)
875                 : bch2_fs_initialize(c);
876         if (ret)
877                 goto err;
878
879         ret = bch2_opts_check_may_set(c);
880         if (ret)
881                 goto err;
882
883         err = "dynamic fault";
884         ret = -EINVAL;
885         if (bch2_fs_init_fault("fs_start"))
886                 goto err;
887
888         if (c->opts.read_only || c->opts.nochanges) {
889                 bch2_fs_read_only(c);
890         } else {
891                 err = "error going read write";
892                 ret = !test_bit(BCH_FS_RW, &c->flags)
893                         ? bch2_fs_read_write(c)
894                         : bch2_fs_read_write_late(c);
895                 if (ret)
896                         goto err;
897         }
898
899         set_bit(BCH_FS_STARTED, &c->flags);
900         print_mount_opts(c);
901         ret = 0;
902 out:
903         mutex_unlock(&c->state_lock);
904         return ret;
905 err:
906         switch (ret) {
907         case BCH_FSCK_ERRORS_NOT_FIXED:
908                 bch_err(c, "filesystem contains errors: please report this to the developers");
909                 pr_cont("mount with -o fix_errors to repair\n");
910                 err = "fsck error";
911                 break;
912         case BCH_FSCK_REPAIR_UNIMPLEMENTED:
913                 bch_err(c, "filesystem contains errors: please report this to the developers");
914                 pr_cont("repair unimplemented: inform the developers so that it can be added\n");
915                 err = "fsck error";
916                 break;
917         case BCH_FSCK_REPAIR_IMPOSSIBLE:
918                 bch_err(c, "filesystem contains errors, but repair impossible");
919                 err = "fsck error";
920                 break;
921         case BCH_FSCK_UNKNOWN_VERSION:
922                 err = "unknown metadata version";;
923                 break;
924         case -ENOMEM:
925                 err = "cannot allocate memory";
926                 break;
927         case -EIO:
928                 err = "IO error";
929                 break;
930         }
931
932         if (ret >= 0)
933                 ret = -EIO;
934         goto out;
935 }
936
937 static const char *bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
938 {
939         struct bch_sb_field_members *sb_mi;
940
941         sb_mi = bch2_sb_get_members(sb);
942         if (!sb_mi)
943                 return "Invalid superblock: member info area missing";
944
945         if (le16_to_cpu(sb->block_size) != c->opts.block_size)
946                 return "mismatched block size";
947
948         if (le16_to_cpu(sb_mi->members[sb->dev_idx].bucket_size) <
949             BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
950                 return "new cache bucket size is too small";
951
952         return NULL;
953 }
954
955 static const char *bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb)
956 {
957         struct bch_sb *newest =
958                 le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb;
959         struct bch_sb_field_members *mi = bch2_sb_get_members(newest);
960
961         if (uuid_le_cmp(fs->uuid, sb->uuid))
962                 return "device not a member of filesystem";
963
964         if (!bch2_dev_exists(newest, mi, sb->dev_idx))
965                 return "device has been removed";
966
967         if (fs->block_size != sb->block_size)
968                 return "mismatched block size";
969
970         return NULL;
971 }
972
973 /* Device startup/shutdown: */
974
975 static void bch2_dev_release(struct kobject *kobj)
976 {
977         struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
978
979         kfree(ca);
980 }
981
982 static void bch2_dev_free(struct bch_dev *ca)
983 {
984         cancel_work_sync(&ca->io_error_work);
985
986         if (ca->kobj.state_in_sysfs &&
987             ca->disk_sb.bdev)
988                 sysfs_remove_link(&part_to_dev(ca->disk_sb.bdev->bd_part)->kobj,
989                                   "bcachefs");
990
991         if (ca->kobj.state_in_sysfs)
992                 kobject_del(&ca->kobj);
993
994         bch2_free_super(&ca->disk_sb);
995         bch2_dev_journal_exit(ca);
996
997         free_percpu(ca->io_done);
998         bioset_exit(&ca->replica_set);
999         bch2_dev_buckets_free(ca);
1000         free_page((unsigned long) ca->sb_read_scratch);
1001
1002         bch2_time_stats_exit(&ca->io_latency[WRITE]);
1003         bch2_time_stats_exit(&ca->io_latency[READ]);
1004
1005         percpu_ref_exit(&ca->io_ref);
1006         percpu_ref_exit(&ca->ref);
1007         kobject_put(&ca->kobj);
1008 }
1009
1010 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1011 {
1012
1013         lockdep_assert_held(&c->state_lock);
1014
1015         if (percpu_ref_is_zero(&ca->io_ref))
1016                 return;
1017
1018         __bch2_dev_read_only(c, ca);
1019
1020         reinit_completion(&ca->io_ref_completion);
1021         percpu_ref_kill(&ca->io_ref);
1022         wait_for_completion(&ca->io_ref_completion);
1023
1024         if (ca->kobj.state_in_sysfs) {
1025                 struct kobject *block =
1026                         &part_to_dev(ca->disk_sb.bdev->bd_part)->kobj;
1027
1028                 sysfs_remove_link(block, "bcachefs");
1029                 sysfs_remove_link(&ca->kobj, "block");
1030         }
1031
1032         bch2_free_super(&ca->disk_sb);
1033         bch2_dev_journal_exit(ca);
1034 }
1035
1036 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1037 {
1038         struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1039
1040         complete(&ca->ref_completion);
1041 }
1042
1043 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1044 {
1045         struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1046
1047         complete(&ca->io_ref_completion);
1048 }
1049
1050 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1051 {
1052         int ret;
1053
1054         if (!c->kobj.state_in_sysfs)
1055                 return 0;
1056
1057         if (!ca->kobj.state_in_sysfs) {
1058                 ret = kobject_add(&ca->kobj, &c->kobj,
1059                                   "dev-%u", ca->dev_idx);
1060                 if (ret)
1061                         return ret;
1062         }
1063
1064         if (ca->disk_sb.bdev) {
1065                 struct kobject *block =
1066                         &part_to_dev(ca->disk_sb.bdev->bd_part)->kobj;
1067
1068                 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1069                 if (ret)
1070                         return ret;
1071                 ret = sysfs_create_link(&ca->kobj, block, "block");
1072                 if (ret)
1073                         return ret;
1074         }
1075
1076         return 0;
1077 }
1078
1079 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1080                                         struct bch_member *member)
1081 {
1082         struct bch_dev *ca;
1083
1084         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1085         if (!ca)
1086                 return NULL;
1087
1088         kobject_init(&ca->kobj, &bch2_dev_ktype);
1089         init_completion(&ca->ref_completion);
1090         init_completion(&ca->io_ref_completion);
1091
1092         init_rwsem(&ca->bucket_lock);
1093
1094         writepoint_init(&ca->copygc_write_point, BCH_DATA_USER);
1095
1096         bch2_dev_copygc_init(ca);
1097
1098         INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1099
1100         bch2_time_stats_init(&ca->io_latency[READ]);
1101         bch2_time_stats_init(&ca->io_latency[WRITE]);
1102
1103         ca->mi = bch2_mi_to_cpu(member);
1104         ca->uuid = member->uuid;
1105
1106         if (opt_defined(c->opts, discard))
1107                 ca->mi.discard = opt_get(c->opts, discard);
1108
1109         if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
1110                             0, GFP_KERNEL) ||
1111             percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1112                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1113             !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1114             bch2_dev_buckets_alloc(c, ca) ||
1115             bioset_init(&ca->replica_set, 4,
1116                         offsetof(struct bch_write_bio, bio), 0) ||
1117             !(ca->io_done       = alloc_percpu(*ca->io_done)))
1118                 goto err;
1119
1120         return ca;
1121 err:
1122         bch2_dev_free(ca);
1123         return NULL;
1124 }
1125
1126 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1127                             unsigned dev_idx)
1128 {
1129         ca->dev_idx = dev_idx;
1130         __set_bit(ca->dev_idx, ca->self.d);
1131         scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1132
1133         ca->fs = c;
1134         rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1135
1136         if (bch2_dev_sysfs_online(c, ca))
1137                 pr_warn("error creating sysfs objects");
1138 }
1139
1140 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1141 {
1142         struct bch_member *member =
1143                 bch2_sb_get_members(c->disk_sb.sb)->members + dev_idx;
1144         struct bch_dev *ca = NULL;
1145         int ret = 0;
1146
1147         pr_verbose_init(c->opts, "");
1148
1149         if (bch2_fs_init_fault("dev_alloc"))
1150                 goto err;
1151
1152         ca = __bch2_dev_alloc(c, member);
1153         if (!ca)
1154                 goto err;
1155
1156         bch2_dev_attach(c, ca, dev_idx);
1157 out:
1158         pr_verbose_init(c->opts, "ret %i", ret);
1159         return ret;
1160 err:
1161         if (ca)
1162                 bch2_dev_free(ca);
1163         ret = -ENOMEM;
1164         goto out;
1165 }
1166
1167 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1168 {
1169         unsigned ret;
1170
1171         if (bch2_dev_is_online(ca)) {
1172                 bch_err(ca, "already have device online in slot %u",
1173                         sb->sb->dev_idx);
1174                 return -EINVAL;
1175         }
1176
1177         if (get_capacity(sb->bdev->bd_disk) <
1178             ca->mi.bucket_size * ca->mi.nbuckets) {
1179                 bch_err(ca, "cannot online: device too small");
1180                 return -EINVAL;
1181         }
1182
1183         BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1184
1185         if (get_capacity(sb->bdev->bd_disk) <
1186             ca->mi.bucket_size * ca->mi.nbuckets) {
1187                 bch_err(ca, "device too small");
1188                 return -EINVAL;
1189         }
1190
1191         ret = bch2_dev_journal_init(ca, sb->sb);
1192         if (ret)
1193                 return ret;
1194
1195         /* Commit: */
1196         ca->disk_sb = *sb;
1197         if (sb->mode & FMODE_EXCL)
1198                 ca->disk_sb.bdev->bd_holder = ca;
1199         memset(sb, 0, sizeof(*sb));
1200
1201         percpu_ref_reinit(&ca->io_ref);
1202
1203         return 0;
1204 }
1205
1206 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1207 {
1208         struct bch_dev *ca;
1209         int ret;
1210
1211         lockdep_assert_held(&c->state_lock);
1212
1213         if (le64_to_cpu(sb->sb->seq) >
1214             le64_to_cpu(c->disk_sb.sb->seq))
1215                 bch2_sb_to_fs(c, sb->sb);
1216
1217         BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1218                !c->devs[sb->sb->dev_idx]);
1219
1220         ca = bch_dev_locked(c, sb->sb->dev_idx);
1221
1222         ret = __bch2_dev_attach_bdev(ca, sb);
1223         if (ret)
1224                 return ret;
1225
1226         if (test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags) &&
1227             !percpu_u64_get(&ca->usage[0]->buckets[BCH_DATA_SB])) {
1228                 mutex_lock(&c->sb_lock);
1229                 bch2_mark_dev_superblock(ca->fs, ca, 0);
1230                 mutex_unlock(&c->sb_lock);
1231         }
1232
1233         bch2_dev_sysfs_online(c, ca);
1234
1235         if (c->sb.nr_devices == 1)
1236                 bdevname(ca->disk_sb.bdev, c->name);
1237         bdevname(ca->disk_sb.bdev, ca->name);
1238
1239         rebalance_wakeup(c);
1240         return 0;
1241 }
1242
1243 /* Device management: */
1244
1245 /*
1246  * Note: this function is also used by the error paths - when a particular
1247  * device sees an error, we call it to determine whether we can just set the
1248  * device RO, or - if this function returns false - we'll set the whole
1249  * filesystem RO:
1250  *
1251  * XXX: maybe we should be more explicit about whether we're changing state
1252  * because we got an error or what have you?
1253  */
1254 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1255                             enum bch_member_state new_state, int flags)
1256 {
1257         struct bch_devs_mask new_online_devs;
1258         struct replicas_status s;
1259         struct bch_dev *ca2;
1260         int i, nr_rw = 0, required;
1261
1262         lockdep_assert_held(&c->state_lock);
1263
1264         switch (new_state) {
1265         case BCH_MEMBER_STATE_RW:
1266                 return true;
1267         case BCH_MEMBER_STATE_RO:
1268                 if (ca->mi.state != BCH_MEMBER_STATE_RW)
1269                         return true;
1270
1271                 /* do we have enough devices to write to?  */
1272                 for_each_member_device(ca2, c, i)
1273                         if (ca2 != ca)
1274                                 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_RW;
1275
1276                 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1277                                ? c->opts.metadata_replicas
1278                                : c->opts.metadata_replicas_required,
1279                                !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1280                                ? c->opts.data_replicas
1281                                : c->opts.data_replicas_required);
1282
1283                 return nr_rw >= required;
1284         case BCH_MEMBER_STATE_FAILED:
1285         case BCH_MEMBER_STATE_SPARE:
1286                 if (ca->mi.state != BCH_MEMBER_STATE_RW &&
1287                     ca->mi.state != BCH_MEMBER_STATE_RO)
1288                         return true;
1289
1290                 /* do we have enough devices to read from?  */
1291                 new_online_devs = bch2_online_devs(c);
1292                 __clear_bit(ca->dev_idx, new_online_devs.d);
1293
1294                 s = __bch2_replicas_status(c, new_online_devs);
1295
1296                 return bch2_have_enough_devs(s, flags);
1297         default:
1298                 BUG();
1299         }
1300 }
1301
1302 static bool bch2_fs_may_start(struct bch_fs *c)
1303 {
1304         struct replicas_status s;
1305         struct bch_sb_field_members *mi;
1306         struct bch_dev *ca;
1307         unsigned i, flags = c->opts.degraded
1308                 ? BCH_FORCE_IF_DEGRADED
1309                 : 0;
1310
1311         if (!c->opts.degraded) {
1312                 mutex_lock(&c->sb_lock);
1313                 mi = bch2_sb_get_members(c->disk_sb.sb);
1314
1315                 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1316                         if (!bch2_dev_exists(c->disk_sb.sb, mi, i))
1317                                 continue;
1318
1319                         ca = bch_dev_locked(c, i);
1320
1321                         if (!bch2_dev_is_online(ca) &&
1322                             (ca->mi.state == BCH_MEMBER_STATE_RW ||
1323                              ca->mi.state == BCH_MEMBER_STATE_RO)) {
1324                                 mutex_unlock(&c->sb_lock);
1325                                 return false;
1326                         }
1327                 }
1328                 mutex_unlock(&c->sb_lock);
1329         }
1330
1331         s = bch2_replicas_status(c);
1332
1333         return bch2_have_enough_devs(s, flags);
1334 }
1335
1336 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1337 {
1338         bch2_copygc_stop(ca);
1339
1340         /*
1341          * The allocator thread itself allocates btree nodes, so stop it first:
1342          */
1343         bch2_dev_allocator_stop(ca);
1344         bch2_dev_allocator_remove(c, ca);
1345         bch2_dev_journal_stop(&c->journal, ca);
1346 }
1347
1348 static const char *__bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1349 {
1350         lockdep_assert_held(&c->state_lock);
1351
1352         BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW);
1353
1354         bch2_dev_allocator_add(c, ca);
1355         bch2_recalc_capacity(c);
1356
1357         if (bch2_dev_allocator_start(ca))
1358                 return "error starting allocator thread";
1359
1360         if (bch2_copygc_start(c, ca))
1361                 return "error starting copygc thread";
1362
1363         return NULL;
1364 }
1365
1366 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1367                          enum bch_member_state new_state, int flags)
1368 {
1369         struct bch_sb_field_members *mi;
1370         int ret = 0;
1371
1372         if (ca->mi.state == new_state)
1373                 return 0;
1374
1375         if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1376                 return -EINVAL;
1377
1378         if (new_state != BCH_MEMBER_STATE_RW)
1379                 __bch2_dev_read_only(c, ca);
1380
1381         bch_notice(ca, "%s", bch2_dev_state[new_state]);
1382
1383         mutex_lock(&c->sb_lock);
1384         mi = bch2_sb_get_members(c->disk_sb.sb);
1385         SET_BCH_MEMBER_STATE(&mi->members[ca->dev_idx], new_state);
1386         bch2_write_super(c);
1387         mutex_unlock(&c->sb_lock);
1388
1389         if (new_state == BCH_MEMBER_STATE_RW &&
1390             __bch2_dev_read_write(c, ca))
1391                 ret = -ENOMEM;
1392
1393         rebalance_wakeup(c);
1394
1395         return ret;
1396 }
1397
1398 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1399                        enum bch_member_state new_state, int flags)
1400 {
1401         int ret;
1402
1403         mutex_lock(&c->state_lock);
1404         ret = __bch2_dev_set_state(c, ca, new_state, flags);
1405         mutex_unlock(&c->state_lock);
1406
1407         return ret;
1408 }
1409
1410 /* Device add/removal: */
1411
1412 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1413 {
1414         struct bch_sb_field_members *mi;
1415         unsigned dev_idx = ca->dev_idx, data;
1416         int ret = -EINVAL;
1417
1418         mutex_lock(&c->state_lock);
1419
1420         /*
1421          * We consume a reference to ca->ref, regardless of whether we succeed
1422          * or fail:
1423          */
1424         percpu_ref_put(&ca->ref);
1425
1426         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
1427                 bch_err(ca, "Cannot remove without losing data");
1428                 goto err;
1429         }
1430
1431         __bch2_dev_read_only(c, ca);
1432
1433         ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1434         if (ret) {
1435                 bch_err(ca, "Remove failed: error %i dropping data", ret);
1436                 goto err;
1437         }
1438
1439         ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1440         if (ret) {
1441                 bch_err(ca, "Remove failed: error %i flushing journal", ret);
1442                 goto err;
1443         }
1444
1445         ret = bch2_btree_delete_range(c, BTREE_ID_ALLOC,
1446                                       POS(ca->dev_idx, 0),
1447                                       POS(ca->dev_idx + 1, 0),
1448                                       NULL);
1449         if (ret) {
1450                 bch_err(ca, "Remove failed, error deleting alloc info");
1451                 goto err;
1452         }
1453
1454         /*
1455          * must flush all existing journal entries, they might have
1456          * (overwritten) keys that point to the device we're removing:
1457          */
1458         bch2_journal_flush_all_pins(&c->journal);
1459         /*
1460          * hack to ensure bch2_replicas_gc2() clears out entries to this device
1461          */
1462         bch2_journal_meta(&c->journal);
1463         ret = bch2_journal_error(&c->journal);
1464         if (ret) {
1465                 bch_err(ca, "Remove failed, journal error");
1466                 goto err;
1467         }
1468
1469         ret = bch2_replicas_gc2(c);
1470         if (ret) {
1471                 bch_err(ca, "Remove failed: error %i from replicas gc", ret);
1472                 goto err;
1473         }
1474
1475         data = bch2_dev_has_data(c, ca);
1476         if (data) {
1477                 char data_has_str[100];
1478
1479                 bch2_flags_to_text(&PBUF(data_has_str),
1480                                    bch2_data_types, data);
1481                 bch_err(ca, "Remove failed, still has data (%s)", data_has_str);
1482                 ret = -EBUSY;
1483                 goto err;
1484         }
1485
1486         __bch2_dev_offline(c, ca);
1487
1488         mutex_lock(&c->sb_lock);
1489         rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1490         mutex_unlock(&c->sb_lock);
1491
1492         percpu_ref_kill(&ca->ref);
1493         wait_for_completion(&ca->ref_completion);
1494
1495         bch2_dev_free(ca);
1496
1497         /*
1498          * Free this device's slot in the bch_member array - all pointers to
1499          * this device must be gone:
1500          */
1501         mutex_lock(&c->sb_lock);
1502         mi = bch2_sb_get_members(c->disk_sb.sb);
1503         memset(&mi->members[dev_idx].uuid, 0, sizeof(mi->members[dev_idx].uuid));
1504
1505         bch2_write_super(c);
1506
1507         mutex_unlock(&c->sb_lock);
1508         mutex_unlock(&c->state_lock);
1509         return 0;
1510 err:
1511         if (ca->mi.state == BCH_MEMBER_STATE_RW &&
1512             !percpu_ref_is_zero(&ca->io_ref))
1513                 __bch2_dev_read_write(c, ca);
1514         mutex_unlock(&c->state_lock);
1515         return ret;
1516 }
1517
1518 static void dev_usage_clear(struct bch_dev *ca)
1519 {
1520         struct bucket_array *buckets;
1521
1522         percpu_memset(ca->usage[0], 0, sizeof(*ca->usage[0]));
1523
1524         down_read(&ca->bucket_lock);
1525         buckets = bucket_array(ca);
1526
1527         memset(buckets->b, 0, sizeof(buckets->b[0]) * buckets->nbuckets);
1528         up_read(&ca->bucket_lock);
1529 }
1530
1531 /* Add new device to running filesystem: */
1532 int bch2_dev_add(struct bch_fs *c, const char *path)
1533 {
1534         struct bch_opts opts = bch2_opts_empty();
1535         struct bch_sb_handle sb;
1536         const char *err;
1537         struct bch_dev *ca = NULL;
1538         struct bch_sb_field_members *mi;
1539         struct bch_member dev_mi;
1540         unsigned dev_idx, nr_devices, u64s;
1541         int ret;
1542
1543         ret = bch2_read_super(path, &opts, &sb);
1544         if (ret)
1545                 return ret;
1546
1547         err = bch2_sb_validate(&sb);
1548         if (err)
1549                 return -EINVAL;
1550
1551         dev_mi = bch2_sb_get_members(sb.sb)->members[sb.sb->dev_idx];
1552
1553         err = bch2_dev_may_add(sb.sb, c);
1554         if (err)
1555                 return -EINVAL;
1556
1557         ca = __bch2_dev_alloc(c, &dev_mi);
1558         if (!ca) {
1559                 bch2_free_super(&sb);
1560                 return -ENOMEM;
1561         }
1562
1563         ret = __bch2_dev_attach_bdev(ca, &sb);
1564         if (ret) {
1565                 bch2_dev_free(ca);
1566                 return ret;
1567         }
1568
1569         /*
1570          * We want to allocate journal on the new device before adding the new
1571          * device to the filesystem because allocating after we attach requires
1572          * spinning up the allocator thread, and the allocator thread requires
1573          * doing btree writes, which if the existing devices are RO isn't going
1574          * to work
1575          *
1576          * So we have to mark where the superblocks are, but marking allocated
1577          * data normally updates the filesystem usage too, so we have to mark,
1578          * allocate the journal, reset all the marks, then remark after we
1579          * attach...
1580          */
1581         bch2_mark_dev_superblock(ca->fs, ca, 0);
1582
1583         err = "journal alloc failed";
1584         ret = bch2_dev_journal_alloc(ca);
1585         if (ret)
1586                 goto err;
1587
1588         dev_usage_clear(ca);
1589
1590         mutex_lock(&c->state_lock);
1591         mutex_lock(&c->sb_lock);
1592
1593         err = "insufficient space in new superblock";
1594         ret = bch2_sb_from_fs(c, ca);
1595         if (ret)
1596                 goto err_unlock;
1597
1598         mi = bch2_sb_get_members(ca->disk_sb.sb);
1599
1600         if (!bch2_sb_resize_members(&ca->disk_sb,
1601                                 le32_to_cpu(mi->field.u64s) +
1602                                 sizeof(dev_mi) / sizeof(u64))) {
1603                 ret = -ENOSPC;
1604                 goto err_unlock;
1605         }
1606
1607         if (dynamic_fault("bcachefs:add:no_slot"))
1608                 goto no_slot;
1609
1610         mi = bch2_sb_get_members(c->disk_sb.sb);
1611         for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1612                 if (!bch2_dev_exists(c->disk_sb.sb, mi, dev_idx))
1613                         goto have_slot;
1614 no_slot:
1615         err = "no slots available in superblock";
1616         ret = -ENOSPC;
1617         goto err_unlock;
1618
1619 have_slot:
1620         nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1621         u64s = (sizeof(struct bch_sb_field_members) +
1622                 sizeof(struct bch_member) * nr_devices) / sizeof(u64);
1623
1624         err = "no space in superblock for member info";
1625         ret = -ENOSPC;
1626
1627         mi = bch2_sb_resize_members(&c->disk_sb, u64s);
1628         if (!mi)
1629                 goto err_unlock;
1630
1631         /* success: */
1632
1633         mi->members[dev_idx] = dev_mi;
1634         mi->members[dev_idx].last_mount = cpu_to_le64(ktime_get_real_seconds());
1635         c->disk_sb.sb->nr_devices       = nr_devices;
1636
1637         ca->disk_sb.sb->dev_idx = dev_idx;
1638         bch2_dev_attach(c, ca, dev_idx);
1639
1640         bch2_mark_dev_superblock(c, ca, 0);
1641
1642         bch2_write_super(c);
1643         mutex_unlock(&c->sb_lock);
1644
1645         if (ca->mi.state == BCH_MEMBER_STATE_RW) {
1646                 err = __bch2_dev_read_write(c, ca);
1647                 if (err)
1648                         goto err_late;
1649         }
1650
1651         mutex_unlock(&c->state_lock);
1652         return 0;
1653
1654 err_unlock:
1655         mutex_unlock(&c->sb_lock);
1656         mutex_unlock(&c->state_lock);
1657 err:
1658         if (ca)
1659                 bch2_dev_free(ca);
1660         bch2_free_super(&sb);
1661         bch_err(c, "Unable to add device: %s", err);
1662         return ret;
1663 err_late:
1664         bch_err(c, "Error going rw after adding device: %s", err);
1665         return -EINVAL;
1666 }
1667
1668 /* Hot add existing device to running filesystem: */
1669 int bch2_dev_online(struct bch_fs *c, const char *path)
1670 {
1671         struct bch_opts opts = bch2_opts_empty();
1672         struct bch_sb_handle sb = { NULL };
1673         struct bch_sb_field_members *mi;
1674         struct bch_dev *ca;
1675         unsigned dev_idx;
1676         const char *err;
1677         int ret;
1678
1679         mutex_lock(&c->state_lock);
1680
1681         ret = bch2_read_super(path, &opts, &sb);
1682         if (ret) {
1683                 mutex_unlock(&c->state_lock);
1684                 return ret;
1685         }
1686
1687         dev_idx = sb.sb->dev_idx;
1688
1689         err = bch2_dev_in_fs(c->disk_sb.sb, sb.sb);
1690         if (err)
1691                 goto err;
1692
1693         if (bch2_dev_attach_bdev(c, &sb)) {
1694                 err = "bch2_dev_attach_bdev() error";
1695                 goto err;
1696         }
1697
1698         ca = bch_dev_locked(c, dev_idx);
1699         if (ca->mi.state == BCH_MEMBER_STATE_RW) {
1700                 err = __bch2_dev_read_write(c, ca);
1701                 if (err)
1702                         goto err;
1703         }
1704
1705         mutex_lock(&c->sb_lock);
1706         mi = bch2_sb_get_members(c->disk_sb.sb);
1707
1708         mi->members[ca->dev_idx].last_mount =
1709                 cpu_to_le64(ktime_get_real_seconds());
1710
1711         bch2_write_super(c);
1712         mutex_unlock(&c->sb_lock);
1713
1714         mutex_unlock(&c->state_lock);
1715         return 0;
1716 err:
1717         mutex_unlock(&c->state_lock);
1718         bch2_free_super(&sb);
1719         bch_err(c, "error bringing %s online: %s", path, err);
1720         return -EINVAL;
1721 }
1722
1723 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1724 {
1725         mutex_lock(&c->state_lock);
1726
1727         if (!bch2_dev_is_online(ca)) {
1728                 bch_err(ca, "Already offline");
1729                 mutex_unlock(&c->state_lock);
1730                 return 0;
1731         }
1732
1733         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
1734                 bch_err(ca, "Cannot offline required disk");
1735                 mutex_unlock(&c->state_lock);
1736                 return -EINVAL;
1737         }
1738
1739         __bch2_dev_offline(c, ca);
1740
1741         mutex_unlock(&c->state_lock);
1742         return 0;
1743 }
1744
1745 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1746 {
1747         struct bch_member *mi;
1748         int ret = 0;
1749
1750         mutex_lock(&c->state_lock);
1751
1752         if (nbuckets < ca->mi.nbuckets) {
1753                 bch_err(ca, "Cannot shrink yet");
1754                 ret = -EINVAL;
1755                 goto err;
1756         }
1757
1758         if (bch2_dev_is_online(ca) &&
1759             get_capacity(ca->disk_sb.bdev->bd_disk) <
1760             ca->mi.bucket_size * nbuckets) {
1761                 bch_err(ca, "New size larger than device");
1762                 ret = -EINVAL;
1763                 goto err;
1764         }
1765
1766         ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1767         if (ret) {
1768                 bch_err(ca, "Resize error: %i", ret);
1769                 goto err;
1770         }
1771
1772         mutex_lock(&c->sb_lock);
1773         mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx];
1774         mi->nbuckets = cpu_to_le64(nbuckets);
1775
1776         bch2_write_super(c);
1777         mutex_unlock(&c->sb_lock);
1778
1779         bch2_recalc_capacity(c);
1780 err:
1781         mutex_unlock(&c->state_lock);
1782         return ret;
1783 }
1784
1785 /* return with ref on ca->ref: */
1786 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *path)
1787 {
1788
1789         struct block_device *bdev = lookup_bdev(path);
1790         struct bch_dev *ca;
1791         unsigned i;
1792
1793         if (IS_ERR(bdev))
1794                 return ERR_CAST(bdev);
1795
1796         for_each_member_device(ca, c, i)
1797                 if (ca->disk_sb.bdev == bdev)
1798                         goto found;
1799
1800         ca = ERR_PTR(-ENOENT);
1801 found:
1802         bdput(bdev);
1803         return ca;
1804 }
1805
1806 /* Filesystem open: */
1807
1808 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
1809                             struct bch_opts opts)
1810 {
1811         struct bch_sb_handle *sb = NULL;
1812         struct bch_fs *c = NULL;
1813         unsigned i, best_sb = 0;
1814         const char *err;
1815         int ret = -ENOMEM;
1816
1817         pr_verbose_init(opts, "");
1818
1819         if (!nr_devices) {
1820                 c = ERR_PTR(-EINVAL);
1821                 goto out2;
1822         }
1823
1824         if (!try_module_get(THIS_MODULE)) {
1825                 c = ERR_PTR(-ENODEV);
1826                 goto out2;
1827         }
1828
1829         sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL);
1830         if (!sb)
1831                 goto err;
1832
1833         for (i = 0; i < nr_devices; i++) {
1834                 ret = bch2_read_super(devices[i], &opts, &sb[i]);
1835                 if (ret)
1836                         goto err;
1837
1838                 err = bch2_sb_validate(&sb[i]);
1839                 if (err)
1840                         goto err_print;
1841         }
1842
1843         for (i = 1; i < nr_devices; i++)
1844                 if (le64_to_cpu(sb[i].sb->seq) >
1845                     le64_to_cpu(sb[best_sb].sb->seq))
1846                         best_sb = i;
1847
1848         for (i = 0; i < nr_devices; i++) {
1849                 err = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb);
1850                 if (err)
1851                         goto err_print;
1852         }
1853
1854         ret = -ENOMEM;
1855         c = bch2_fs_alloc(sb[best_sb].sb, opts);
1856         if (!c)
1857                 goto err;
1858
1859         err = "bch2_dev_online() error";
1860         mutex_lock(&c->state_lock);
1861         for (i = 0; i < nr_devices; i++)
1862                 if (bch2_dev_attach_bdev(c, &sb[i])) {
1863                         mutex_unlock(&c->state_lock);
1864                         goto err_print;
1865                 }
1866         mutex_unlock(&c->state_lock);
1867
1868         err = "insufficient devices";
1869         if (!bch2_fs_may_start(c))
1870                 goto err_print;
1871
1872         if (!c->opts.nostart) {
1873                 ret = bch2_fs_start(c);
1874                 if (ret)
1875                         goto err;
1876         }
1877 out:
1878         kfree(sb);
1879         module_put(THIS_MODULE);
1880 out2:
1881         pr_verbose_init(opts, "ret %i", PTR_ERR_OR_ZERO(c));
1882         return c;
1883 err_print:
1884         pr_err("bch_fs_open err opening %s: %s",
1885                devices[0], err);
1886         ret = -EINVAL;
1887 err:
1888         if (c)
1889                 bch2_fs_stop(c);
1890         for (i = 0; i < nr_devices; i++)
1891                 bch2_free_super(&sb[i]);
1892         c = ERR_PTR(ret);
1893         goto out;
1894 }
1895
1896 static const char *__bch2_fs_open_incremental(struct bch_sb_handle *sb,
1897                                               struct bch_opts opts)
1898 {
1899         const char *err;
1900         struct bch_fs *c;
1901         bool allocated_fs = false;
1902         int ret;
1903
1904         err = bch2_sb_validate(sb);
1905         if (err)
1906                 return err;
1907
1908         mutex_lock(&bch_fs_list_lock);
1909         c = __bch2_uuid_to_fs(sb->sb->uuid);
1910         if (c) {
1911                 closure_get(&c->cl);
1912
1913                 err = bch2_dev_in_fs(c->disk_sb.sb, sb->sb);
1914                 if (err)
1915                         goto err;
1916         } else {
1917                 c = bch2_fs_alloc(sb->sb, opts);
1918                 err = "cannot allocate memory";
1919                 if (!c)
1920                         goto err;
1921
1922                 allocated_fs = true;
1923         }
1924
1925         err = "bch2_dev_online() error";
1926
1927         mutex_lock(&c->sb_lock);
1928         if (bch2_dev_attach_bdev(c, sb)) {
1929                 mutex_unlock(&c->sb_lock);
1930                 goto err;
1931         }
1932         mutex_unlock(&c->sb_lock);
1933
1934         if (!c->opts.nostart && bch2_fs_may_start(c)) {
1935                 err = "error starting filesystem";
1936                 ret = bch2_fs_start(c);
1937                 if (ret)
1938                         goto err;
1939         }
1940
1941         closure_put(&c->cl);
1942         mutex_unlock(&bch_fs_list_lock);
1943
1944         return NULL;
1945 err:
1946         mutex_unlock(&bch_fs_list_lock);
1947
1948         if (allocated_fs)
1949                 bch2_fs_stop(c);
1950         else if (c)
1951                 closure_put(&c->cl);
1952
1953         return err;
1954 }
1955
1956 const char *bch2_fs_open_incremental(const char *path)
1957 {
1958         struct bch_sb_handle sb;
1959         struct bch_opts opts = bch2_opts_empty();
1960         const char *err;
1961
1962         if (bch2_read_super(path, &opts, &sb))
1963                 return "error reading superblock";
1964
1965         err = __bch2_fs_open_incremental(&sb, opts);
1966         bch2_free_super(&sb);
1967
1968         return err;
1969 }
1970
1971 /* Global interfaces/init */
1972
1973 static void bcachefs_exit(void)
1974 {
1975         bch2_debug_exit();
1976         bch2_vfs_exit();
1977         bch2_chardev_exit();
1978         if (bcachefs_kset)
1979                 kset_unregister(bcachefs_kset);
1980 }
1981
1982 static int __init bcachefs_init(void)
1983 {
1984         bch2_bkey_pack_test();
1985         bch2_inode_pack_test();
1986
1987         if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
1988             bch2_chardev_init() ||
1989             bch2_vfs_init() ||
1990             bch2_debug_init())
1991                 goto err;
1992
1993         return 0;
1994 err:
1995         bcachefs_exit();
1996         return -ENOMEM;
1997 }
1998
1999 #define BCH_DEBUG_PARAM(name, description)                      \
2000         bool bch2_##name;                                       \
2001         module_param_named(name, bch2_##name, bool, 0644);      \
2002         MODULE_PARM_DESC(name, description);
2003 BCH_DEBUG_PARAMS()
2004 #undef BCH_DEBUG_PARAM
2005
2006 module_exit(bcachefs_exit);
2007 module_init(bcachefs_init);