]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/super.c
Merge pull request #190 from Dikay900/fs_free_space
[bcachefs-tools-debian] / libbcachefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_update_interior.h"
19 #include "btree_io.h"
20 #include "btree_write_buffer.h"
21 #include "buckets_waiting_for_journal.h"
22 #include "chardev.h"
23 #include "checksum.h"
24 #include "clock.h"
25 #include "compress.h"
26 #include "counters.h"
27 #include "debug.h"
28 #include "disk_groups.h"
29 #include "ec.h"
30 #include "errcode.h"
31 #include "error.h"
32 #include "fs.h"
33 #include "fs-io.h"
34 #include "fs-io-buffered.h"
35 #include "fs-io-direct.h"
36 #include "fsck.h"
37 #include "inode.h"
38 #include "io_read.h"
39 #include "io_write.h"
40 #include "journal.h"
41 #include "journal_reclaim.h"
42 #include "journal_seq_blacklist.h"
43 #include "move.h"
44 #include "migrate.h"
45 #include "movinggc.h"
46 #include "nocow_locking.h"
47 #include "quota.h"
48 #include "rebalance.h"
49 #include "recovery.h"
50 #include "replicas.h"
51 #include "sb-clean.h"
52 #include "sb-errors.h"
53 #include "sb-members.h"
54 #include "snapshot.h"
55 #include "subvolume.h"
56 #include "super.h"
57 #include "super-io.h"
58 #include "sysfs.h"
59 #include "trace.h"
60
61 #include <linux/backing-dev.h>
62 #include <linux/blkdev.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65 #include <linux/idr.h>
66 #include <linux/module.h>
67 #include <linux/percpu.h>
68 #include <linux/random.h>
69 #include <linux/sysfs.h>
70 #include <crypto/hash.h>
71
72 MODULE_LICENSE("GPL");
73 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
74 MODULE_DESCRIPTION("bcachefs filesystem");
75
76 const char * const bch2_fs_flag_strs[] = {
77 #define x(n)            #n,
78         BCH_FS_FLAGS()
79 #undef x
80         NULL
81 };
82
83 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
84 {
85         va_list args;
86
87         va_start(args, fmt);
88         if (likely(!c->output)) {
89                 vprintk(fmt, args);
90         } else {
91                 unsigned long flags;
92
93                 spin_lock_irqsave(&c->output->lock, flags);
94                 prt_vprintf(&c->output->buf, fmt, args);
95                 spin_unlock_irqrestore(&c->output->lock, flags);
96
97                 wake_up(&c->output->wait);
98         }
99         va_end(args);
100 }
101
102 #define KTYPE(type)                                                     \
103 static const struct attribute_group type ## _group = {                  \
104         .attrs = type ## _files                                         \
105 };                                                                      \
106                                                                         \
107 static const struct attribute_group *type ## _groups[] = {              \
108         &type ## _group,                                                \
109         NULL                                                            \
110 };                                                                      \
111                                                                         \
112 static const struct kobj_type type ## _ktype = {                        \
113         .release        = type ## _release,                             \
114         .sysfs_ops      = &type ## _sysfs_ops,                          \
115         .default_groups = type ## _groups                               \
116 }
117
118 static void bch2_fs_release(struct kobject *);
119 static void bch2_dev_release(struct kobject *);
120 static void bch2_fs_counters_release(struct kobject *k)
121 {
122 }
123
124 static void bch2_fs_internal_release(struct kobject *k)
125 {
126 }
127
128 static void bch2_fs_opts_dir_release(struct kobject *k)
129 {
130 }
131
132 static void bch2_fs_time_stats_release(struct kobject *k)
133 {
134 }
135
136 KTYPE(bch2_fs);
137 KTYPE(bch2_fs_counters);
138 KTYPE(bch2_fs_internal);
139 KTYPE(bch2_fs_opts_dir);
140 KTYPE(bch2_fs_time_stats);
141 KTYPE(bch2_dev);
142
143 static struct kset *bcachefs_kset;
144 static LIST_HEAD(bch_fs_list);
145 static DEFINE_MUTEX(bch_fs_list_lock);
146
147 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
148
149 static void bch2_dev_free(struct bch_dev *);
150 static int bch2_dev_alloc(struct bch_fs *, unsigned);
151 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
152 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
153
154 struct bch_fs *bch2_dev_to_fs(dev_t dev)
155 {
156         struct bch_fs *c;
157         struct bch_dev *ca;
158         unsigned i;
159
160         mutex_lock(&bch_fs_list_lock);
161         rcu_read_lock();
162
163         list_for_each_entry(c, &bch_fs_list, list)
164                 for_each_member_device_rcu(ca, c, i, NULL)
165                         if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
166                                 closure_get(&c->cl);
167                                 goto found;
168                         }
169         c = NULL;
170 found:
171         rcu_read_unlock();
172         mutex_unlock(&bch_fs_list_lock);
173
174         return c;
175 }
176
177 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
178 {
179         struct bch_fs *c;
180
181         lockdep_assert_held(&bch_fs_list_lock);
182
183         list_for_each_entry(c, &bch_fs_list, list)
184                 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
185                         return c;
186
187         return NULL;
188 }
189
190 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
191 {
192         struct bch_fs *c;
193
194         mutex_lock(&bch_fs_list_lock);
195         c = __bch2_uuid_to_fs(uuid);
196         if (c)
197                 closure_get(&c->cl);
198         mutex_unlock(&bch_fs_list_lock);
199
200         return c;
201 }
202
203 static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
204 {
205         struct bch_dev *ca;
206         unsigned i, nr = 0, u64s =
207                 ((sizeof(struct jset_entry_dev_usage) +
208                   sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
209                 sizeof(u64);
210
211         rcu_read_lock();
212         for_each_member_device_rcu(ca, c, i, NULL)
213                 nr++;
214         rcu_read_unlock();
215
216         bch2_journal_entry_res_resize(&c->journal,
217                         &c->dev_usage_journal_res, u64s * nr);
218 }
219
220 /* Filesystem RO/RW: */
221
222 /*
223  * For startup/shutdown of RW stuff, the dependencies are:
224  *
225  * - foreground writes depend on copygc and rebalance (to free up space)
226  *
227  * - copygc and rebalance depend on mark and sweep gc (they actually probably
228  *   don't because they either reserve ahead of time or don't block if
229  *   allocations fail, but allocations can require mark and sweep gc to run
230  *   because of generation number wraparound)
231  *
232  * - all of the above depends on the allocator threads
233  *
234  * - allocator depends on the journal (when it rewrites prios and gens)
235  */
236
237 static void __bch2_fs_read_only(struct bch_fs *c)
238 {
239         struct bch_dev *ca;
240         unsigned i, clean_passes = 0;
241         u64 seq = 0;
242
243         bch2_fs_ec_stop(c);
244         bch2_open_buckets_stop(c, NULL, true);
245         bch2_rebalance_stop(c);
246         bch2_copygc_stop(c);
247         bch2_gc_thread_stop(c);
248         bch2_fs_ec_flush(c);
249
250         bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
251                     journal_cur_seq(&c->journal));
252
253         do {
254                 clean_passes++;
255
256                 if (bch2_btree_interior_updates_flush(c) ||
257                     bch2_journal_flush_all_pins(&c->journal) ||
258                     bch2_btree_flush_all_writes(c) ||
259                     seq != atomic64_read(&c->journal.seq)) {
260                         seq = atomic64_read(&c->journal.seq);
261                         clean_passes = 0;
262                 }
263         } while (clean_passes < 2);
264
265         bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
266                     journal_cur_seq(&c->journal));
267
268         if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) &&
269             !test_bit(BCH_FS_emergency_ro, &c->flags))
270                 set_bit(BCH_FS_clean_shutdown, &c->flags);
271         bch2_fs_journal_stop(&c->journal);
272
273         /*
274          * After stopping journal:
275          */
276         for_each_member_device(ca, c, i)
277                 bch2_dev_allocator_remove(c, ca);
278 }
279
280 #ifndef BCH_WRITE_REF_DEBUG
281 static void bch2_writes_disabled(struct percpu_ref *writes)
282 {
283         struct bch_fs *c = container_of(writes, struct bch_fs, writes);
284
285         set_bit(BCH_FS_write_disable_complete, &c->flags);
286         wake_up(&bch2_read_only_wait);
287 }
288 #endif
289
290 void bch2_fs_read_only(struct bch_fs *c)
291 {
292         if (!test_bit(BCH_FS_rw, &c->flags)) {
293                 bch2_journal_reclaim_stop(&c->journal);
294                 return;
295         }
296
297         BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
298
299         bch_verbose(c, "going read-only");
300
301         /*
302          * Block new foreground-end write operations from starting - any new
303          * writes will return -EROFS:
304          */
305         set_bit(BCH_FS_going_ro, &c->flags);
306 #ifndef BCH_WRITE_REF_DEBUG
307         percpu_ref_kill(&c->writes);
308 #else
309         for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
310                 bch2_write_ref_put(c, i);
311 #endif
312
313         /*
314          * If we're not doing an emergency shutdown, we want to wait on
315          * outstanding writes to complete so they don't see spurious errors due
316          * to shutting down the allocator:
317          *
318          * If we are doing an emergency shutdown outstanding writes may
319          * hang until we shutdown the allocator so we don't want to wait
320          * on outstanding writes before shutting everything down - but
321          * we do need to wait on them before returning and signalling
322          * that going RO is complete:
323          */
324         wait_event(bch2_read_only_wait,
325                    test_bit(BCH_FS_write_disable_complete, &c->flags) ||
326                    test_bit(BCH_FS_emergency_ro, &c->flags));
327
328         bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
329         if (writes_disabled)
330                 bch_verbose(c, "finished waiting for writes to stop");
331
332         __bch2_fs_read_only(c);
333
334         wait_event(bch2_read_only_wait,
335                    test_bit(BCH_FS_write_disable_complete, &c->flags));
336
337         if (!writes_disabled)
338                 bch_verbose(c, "finished waiting for writes to stop");
339
340         clear_bit(BCH_FS_write_disable_complete, &c->flags);
341         clear_bit(BCH_FS_going_ro, &c->flags);
342         clear_bit(BCH_FS_rw, &c->flags);
343
344         if (!bch2_journal_error(&c->journal) &&
345             !test_bit(BCH_FS_error, &c->flags) &&
346             !test_bit(BCH_FS_emergency_ro, &c->flags) &&
347             test_bit(BCH_FS_started, &c->flags) &&
348             test_bit(BCH_FS_clean_shutdown, &c->flags) &&
349             !c->opts.norecovery) {
350                 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
351                 BUG_ON(atomic_read(&c->btree_cache.dirty));
352                 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
353                 BUG_ON(c->btree_write_buffer.state.nr);
354
355                 bch_verbose(c, "marking filesystem clean");
356                 bch2_fs_mark_clean(c);
357         } else {
358                 bch_verbose(c, "done going read-only, filesystem not clean");
359         }
360 }
361
362 static void bch2_fs_read_only_work(struct work_struct *work)
363 {
364         struct bch_fs *c =
365                 container_of(work, struct bch_fs, read_only_work);
366
367         down_write(&c->state_lock);
368         bch2_fs_read_only(c);
369         up_write(&c->state_lock);
370 }
371
372 static void bch2_fs_read_only_async(struct bch_fs *c)
373 {
374         queue_work(system_long_wq, &c->read_only_work);
375 }
376
377 bool bch2_fs_emergency_read_only(struct bch_fs *c)
378 {
379         bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
380
381         bch2_journal_halt(&c->journal);
382         bch2_fs_read_only_async(c);
383
384         wake_up(&bch2_read_only_wait);
385         return ret;
386 }
387
388 static int bch2_fs_read_write_late(struct bch_fs *c)
389 {
390         int ret;
391
392         /*
393          * Data move operations can't run until after check_snapshots has
394          * completed, and bch2_snapshot_is_ancestor() is available.
395          *
396          * Ideally we'd start copygc/rebalance earlier instead of waiting for
397          * all of recovery/fsck to complete:
398          */
399         ret = bch2_copygc_start(c);
400         if (ret) {
401                 bch_err(c, "error starting copygc thread");
402                 return ret;
403         }
404
405         ret = bch2_rebalance_start(c);
406         if (ret) {
407                 bch_err(c, "error starting rebalance thread");
408                 return ret;
409         }
410
411         return 0;
412 }
413
414 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
415 {
416         struct bch_dev *ca;
417         unsigned i;
418         int ret;
419
420         if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
421                 bch_err(c, "cannot go rw, unfixed btree errors");
422                 return -BCH_ERR_erofs_unfixed_errors;
423         }
424
425         if (test_bit(BCH_FS_rw, &c->flags))
426                 return 0;
427
428         if (c->opts.norecovery)
429                 return -BCH_ERR_erofs_norecovery;
430
431         /*
432          * nochanges is used for fsck -n mode - we have to allow going rw
433          * during recovery for that to work:
434          */
435         if (c->opts.nochanges && (!early || c->opts.read_only))
436                 return -BCH_ERR_erofs_nochanges;
437
438         bch_info(c, "going read-write");
439
440         ret = bch2_sb_members_v2_init(c);
441         if (ret)
442                 goto err;
443
444         ret = bch2_fs_mark_dirty(c);
445         if (ret)
446                 goto err;
447
448         clear_bit(BCH_FS_clean_shutdown, &c->flags);
449
450         /*
451          * First journal write must be a flush write: after a clean shutdown we
452          * don't read the journal, so the first journal write may end up
453          * overwriting whatever was there previously, and there must always be
454          * at least one non-flush write in the journal or recovery will fail:
455          */
456         set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags);
457
458         for_each_rw_member(ca, c, i)
459                 bch2_dev_allocator_add(c, ca);
460         bch2_recalc_capacity(c);
461
462         set_bit(BCH_FS_rw, &c->flags);
463         set_bit(BCH_FS_was_rw, &c->flags);
464
465 #ifndef BCH_WRITE_REF_DEBUG
466         percpu_ref_reinit(&c->writes);
467 #else
468         for (i = 0; i < BCH_WRITE_REF_NR; i++) {
469                 BUG_ON(atomic_long_read(&c->writes[i]));
470                 atomic_long_inc(&c->writes[i]);
471         }
472 #endif
473
474         ret = bch2_gc_thread_start(c);
475         if (ret) {
476                 bch_err(c, "error starting gc thread");
477                 return ret;
478         }
479
480         ret = bch2_journal_reclaim_start(&c->journal);
481         if (ret)
482                 goto err;
483
484         if (!early) {
485                 ret = bch2_fs_read_write_late(c);
486                 if (ret)
487                         goto err;
488         }
489
490         bch2_do_discards(c);
491         bch2_do_invalidates(c);
492         bch2_do_stripe_deletes(c);
493         bch2_do_pending_node_rewrites(c);
494         return 0;
495 err:
496         if (test_bit(BCH_FS_rw, &c->flags))
497                 bch2_fs_read_only(c);
498         else
499                 __bch2_fs_read_only(c);
500         return ret;
501 }
502
503 int bch2_fs_read_write(struct bch_fs *c)
504 {
505         return __bch2_fs_read_write(c, false);
506 }
507
508 int bch2_fs_read_write_early(struct bch_fs *c)
509 {
510         lockdep_assert_held(&c->state_lock);
511
512         return __bch2_fs_read_write(c, true);
513 }
514
515 /* Filesystem startup/shutdown: */
516
517 static void __bch2_fs_free(struct bch_fs *c)
518 {
519         unsigned i;
520
521         for (i = 0; i < BCH_TIME_STAT_NR; i++)
522                 bch2_time_stats_exit(&c->times[i]);
523
524         bch2_free_pending_node_rewrites(c);
525         bch2_fs_sb_errors_exit(c);
526         bch2_fs_counters_exit(c);
527         bch2_fs_snapshots_exit(c);
528         bch2_fs_quota_exit(c);
529         bch2_fs_fs_io_direct_exit(c);
530         bch2_fs_fs_io_buffered_exit(c);
531         bch2_fs_fsio_exit(c);
532         bch2_fs_ec_exit(c);
533         bch2_fs_encryption_exit(c);
534         bch2_fs_nocow_locking_exit(c);
535         bch2_fs_io_write_exit(c);
536         bch2_fs_io_read_exit(c);
537         bch2_fs_buckets_waiting_for_journal_exit(c);
538         bch2_fs_btree_interior_update_exit(c);
539         bch2_fs_btree_iter_exit(c);
540         bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
541         bch2_fs_btree_cache_exit(c);
542         bch2_fs_replicas_exit(c);
543         bch2_fs_journal_exit(&c->journal);
544         bch2_io_clock_exit(&c->io_clock[WRITE]);
545         bch2_io_clock_exit(&c->io_clock[READ]);
546         bch2_fs_compress_exit(c);
547         bch2_journal_keys_put_initial(c);
548         BUG_ON(atomic_read(&c->journal_keys.ref));
549         bch2_fs_btree_write_buffer_exit(c);
550         percpu_free_rwsem(&c->mark_lock);
551         free_percpu(c->online_reserved);
552
553         darray_exit(&c->btree_roots_extra);
554         free_percpu(c->pcpu);
555         mempool_exit(&c->large_bkey_pool);
556         mempool_exit(&c->btree_bounce_pool);
557         bioset_exit(&c->btree_bio);
558         mempool_exit(&c->fill_iter);
559 #ifndef BCH_WRITE_REF_DEBUG
560         percpu_ref_exit(&c->writes);
561 #endif
562         kfree(rcu_dereference_protected(c->disk_groups, 1));
563         kfree(c->journal_seq_blacklist_table);
564         kfree(c->unused_inode_hints);
565
566         if (c->write_ref_wq)
567                 destroy_workqueue(c->write_ref_wq);
568         if (c->io_complete_wq)
569                 destroy_workqueue(c->io_complete_wq);
570         if (c->copygc_wq)
571                 destroy_workqueue(c->copygc_wq);
572         if (c->btree_io_complete_wq)
573                 destroy_workqueue(c->btree_io_complete_wq);
574         if (c->btree_update_wq)
575                 destroy_workqueue(c->btree_update_wq);
576
577         bch2_free_super(&c->disk_sb);
578         kvpfree(c, sizeof(*c));
579         module_put(THIS_MODULE);
580 }
581
582 static void bch2_fs_release(struct kobject *kobj)
583 {
584         struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
585
586         __bch2_fs_free(c);
587 }
588
589 void __bch2_fs_stop(struct bch_fs *c)
590 {
591         struct bch_dev *ca;
592         unsigned i;
593
594         bch_verbose(c, "shutting down");
595
596         set_bit(BCH_FS_stopping, &c->flags);
597
598         cancel_work_sync(&c->journal_seq_blacklist_gc_work);
599
600         down_write(&c->state_lock);
601         bch2_fs_read_only(c);
602         up_write(&c->state_lock);
603
604         for_each_member_device(ca, c, i)
605                 if (ca->kobj.state_in_sysfs &&
606                     ca->disk_sb.bdev)
607                         sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
608
609         if (c->kobj.state_in_sysfs)
610                 kobject_del(&c->kobj);
611
612         bch2_fs_debug_exit(c);
613         bch2_fs_chardev_exit(c);
614
615         kobject_put(&c->counters_kobj);
616         kobject_put(&c->time_stats);
617         kobject_put(&c->opts_dir);
618         kobject_put(&c->internal);
619
620         /* btree prefetch might have kicked off reads in the background: */
621         bch2_btree_flush_all_reads(c);
622
623         for_each_member_device(ca, c, i)
624                 cancel_work_sync(&ca->io_error_work);
625
626         cancel_work_sync(&c->read_only_work);
627 }
628
629 void bch2_fs_free(struct bch_fs *c)
630 {
631         unsigned i;
632
633         mutex_lock(&bch_fs_list_lock);
634         list_del(&c->list);
635         mutex_unlock(&bch_fs_list_lock);
636
637         closure_sync(&c->cl);
638         closure_debug_destroy(&c->cl);
639
640         for (i = 0; i < c->sb.nr_devices; i++) {
641                 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
642
643                 if (ca) {
644                         bch2_free_super(&ca->disk_sb);
645                         bch2_dev_free(ca);
646                 }
647         }
648
649         bch_verbose(c, "shutdown complete");
650
651         kobject_put(&c->kobj);
652 }
653
654 void bch2_fs_stop(struct bch_fs *c)
655 {
656         __bch2_fs_stop(c);
657         bch2_fs_free(c);
658 }
659
660 static int bch2_fs_online(struct bch_fs *c)
661 {
662         struct bch_dev *ca;
663         unsigned i;
664         int ret = 0;
665
666         lockdep_assert_held(&bch_fs_list_lock);
667
668         if (__bch2_uuid_to_fs(c->sb.uuid)) {
669                 bch_err(c, "filesystem UUID already open");
670                 return -EINVAL;
671         }
672
673         ret = bch2_fs_chardev_init(c);
674         if (ret) {
675                 bch_err(c, "error creating character device");
676                 return ret;
677         }
678
679         bch2_fs_debug_init(c);
680
681         ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
682             kobject_add(&c->internal, &c->kobj, "internal") ?:
683             kobject_add(&c->opts_dir, &c->kobj, "options") ?:
684 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
685             kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
686 #endif
687             kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
688             bch2_opts_create_sysfs_files(&c->opts_dir);
689         if (ret) {
690                 bch_err(c, "error creating sysfs objects");
691                 return ret;
692         }
693
694         down_write(&c->state_lock);
695
696         for_each_member_device(ca, c, i) {
697                 ret = bch2_dev_sysfs_online(c, ca);
698                 if (ret) {
699                         bch_err(c, "error creating sysfs objects");
700                         percpu_ref_put(&ca->ref);
701                         goto err;
702                 }
703         }
704
705         BUG_ON(!list_empty(&c->list));
706         list_add(&c->list, &bch_fs_list);
707 err:
708         up_write(&c->state_lock);
709         return ret;
710 }
711
712 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
713 {
714         struct bch_fs *c;
715         struct printbuf name = PRINTBUF;
716         unsigned i, iter_size;
717         int ret = 0;
718
719         c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
720         if (!c) {
721                 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
722                 goto out;
723         }
724
725         c->output = (void *)(unsigned long) opts.log_output;
726
727         __module_get(THIS_MODULE);
728
729         closure_init(&c->cl, NULL);
730
731         c->kobj.kset = bcachefs_kset;
732         kobject_init(&c->kobj, &bch2_fs_ktype);
733         kobject_init(&c->internal, &bch2_fs_internal_ktype);
734         kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
735         kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
736         kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
737
738         c->minor                = -1;
739         c->disk_sb.fs_sb        = true;
740
741         init_rwsem(&c->state_lock);
742         mutex_init(&c->sb_lock);
743         mutex_init(&c->replicas_gc_lock);
744         mutex_init(&c->btree_root_lock);
745         INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
746
747         init_rwsem(&c->gc_lock);
748         mutex_init(&c->gc_gens_lock);
749         atomic_set(&c->journal_keys.ref, 1);
750         c->journal_keys.initial_ref_held = true;
751
752         for (i = 0; i < BCH_TIME_STAT_NR; i++)
753                 bch2_time_stats_init(&c->times[i]);
754
755         bch2_fs_copygc_init(c);
756         bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
757         bch2_fs_btree_interior_update_init_early(c);
758         bch2_fs_allocator_background_init(c);
759         bch2_fs_allocator_foreground_init(c);
760         bch2_fs_rebalance_init(c);
761         bch2_fs_quota_init(c);
762         bch2_fs_ec_init_early(c);
763         bch2_fs_move_init(c);
764         bch2_fs_sb_errors_init_early(c);
765
766         INIT_LIST_HEAD(&c->list);
767
768         mutex_init(&c->usage_scratch_lock);
769
770         mutex_init(&c->bio_bounce_pages_lock);
771         mutex_init(&c->snapshot_table_lock);
772         init_rwsem(&c->snapshot_create_lock);
773
774         spin_lock_init(&c->btree_write_error_lock);
775
776         INIT_WORK(&c->journal_seq_blacklist_gc_work,
777                   bch2_blacklist_entries_gc);
778
779         INIT_LIST_HEAD(&c->journal_iters);
780
781         INIT_LIST_HEAD(&c->fsck_error_msgs);
782         mutex_init(&c->fsck_error_msgs_lock);
783
784         seqcount_init(&c->gc_pos_lock);
785
786         seqcount_init(&c->usage_lock);
787
788         sema_init(&c->io_in_flight, 128);
789
790         INIT_LIST_HEAD(&c->vfs_inodes_list);
791         mutex_init(&c->vfs_inodes_lock);
792
793         c->copy_gc_enabled              = 1;
794         c->rebalance.enabled            = 1;
795         c->promote_whole_extents        = true;
796
797         c->journal.flush_write_time     = &c->times[BCH_TIME_journal_flush_write];
798         c->journal.noflush_write_time   = &c->times[BCH_TIME_journal_noflush_write];
799         c->journal.flush_seq_time       = &c->times[BCH_TIME_journal_flush_seq];
800
801         bch2_fs_btree_cache_init_early(&c->btree_cache);
802
803         mutex_init(&c->sectors_available_lock);
804
805         ret = percpu_init_rwsem(&c->mark_lock);
806         if (ret)
807                 goto err;
808
809         mutex_lock(&c->sb_lock);
810         ret = bch2_sb_to_fs(c, sb);
811         mutex_unlock(&c->sb_lock);
812
813         if (ret)
814                 goto err;
815
816         pr_uuid(&name, c->sb.user_uuid.b);
817         strscpy(c->name, name.buf, sizeof(c->name));
818         printbuf_exit(&name);
819
820         ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
821         if (ret)
822                 goto err;
823
824         /* Compat: */
825         if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
826             !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
827                 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
828
829         if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
830             !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
831                 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
832
833         c->opts = bch2_opts_default;
834         ret = bch2_opts_from_sb(&c->opts, sb);
835         if (ret)
836                 goto err;
837
838         bch2_opts_apply(&c->opts, opts);
839
840         c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
841         if (c->opts.inodes_use_key_cache)
842                 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
843         c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
844
845         c->block_bits           = ilog2(block_sectors(c));
846         c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
847
848         if (bch2_fs_init_fault("fs_alloc")) {
849                 bch_err(c, "fs_alloc fault injected");
850                 ret = -EFAULT;
851                 goto err;
852         }
853
854         iter_size = sizeof(struct sort_iter) +
855                 (btree_blocks(c) + 1) * 2 *
856                 sizeof(struct sort_iter_set);
857
858         c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
859
860         if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
861                                 WQ_FREEZABLE|WQ_UNBOUND|WQ_MEM_RECLAIM, 512)) ||
862             !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
863                                 WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
864             !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
865                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
866             !(c->io_complete_wq = alloc_workqueue("bcachefs_io",
867                                 WQ_FREEZABLE|WQ_HIGHPRI|WQ_MEM_RECLAIM, 1)) ||
868             !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
869                                 WQ_FREEZABLE, 0)) ||
870 #ifndef BCH_WRITE_REF_DEBUG
871             percpu_ref_init(&c->writes, bch2_writes_disabled,
872                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
873 #endif
874             mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
875             bioset_init(&c->btree_bio, 1,
876                         max(offsetof(struct btree_read_bio, bio),
877                             offsetof(struct btree_write_bio, wbio.bio)),
878                         BIOSET_NEED_BVECS) ||
879             !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
880             !(c->online_reserved = alloc_percpu(u64)) ||
881             mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1,
882                                         btree_bytes(c)) ||
883             mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
884             !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
885                                               sizeof(u64), GFP_KERNEL))) {
886                 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
887                 goto err;
888         }
889
890         ret = bch2_fs_counters_init(c) ?:
891             bch2_fs_sb_errors_init(c) ?:
892             bch2_io_clock_init(&c->io_clock[READ]) ?:
893             bch2_io_clock_init(&c->io_clock[WRITE]) ?:
894             bch2_fs_journal_init(&c->journal) ?:
895             bch2_fs_replicas_init(c) ?:
896             bch2_fs_btree_cache_init(c) ?:
897             bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
898             bch2_fs_btree_iter_init(c) ?:
899             bch2_fs_btree_interior_update_init(c) ?:
900             bch2_fs_buckets_waiting_for_journal_init(c) ?:
901             bch2_fs_btree_write_buffer_init(c) ?:
902             bch2_fs_subvolumes_init(c) ?:
903             bch2_fs_io_read_init(c) ?:
904             bch2_fs_io_write_init(c) ?:
905             bch2_fs_nocow_locking_init(c) ?:
906             bch2_fs_encryption_init(c) ?:
907             bch2_fs_compress_init(c) ?:
908             bch2_fs_ec_init(c) ?:
909             bch2_fs_fsio_init(c) ?:
910             bch2_fs_fs_io_buffered_init(c) ?:
911             bch2_fs_fs_io_direct_init(c);
912         if (ret)
913                 goto err;
914
915         for (i = 0; i < c->sb.nr_devices; i++)
916                 if (bch2_dev_exists(c->disk_sb.sb, i) &&
917                     bch2_dev_alloc(c, i)) {
918                         ret = -EEXIST;
919                         goto err;
920                 }
921
922         bch2_journal_entry_res_resize(&c->journal,
923                         &c->btree_root_journal_res,
924                         BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
925         bch2_dev_usage_journal_reserve(c);
926         bch2_journal_entry_res_resize(&c->journal,
927                         &c->clock_journal_res,
928                         (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
929
930         mutex_lock(&bch_fs_list_lock);
931         ret = bch2_fs_online(c);
932         mutex_unlock(&bch_fs_list_lock);
933
934         if (ret)
935                 goto err;
936 out:
937         return c;
938 err:
939         bch2_fs_free(c);
940         c = ERR_PTR(ret);
941         goto out;
942 }
943
944 noinline_for_stack
945 static void print_mount_opts(struct bch_fs *c)
946 {
947         enum bch_opt_id i;
948         struct printbuf p = PRINTBUF;
949         bool first = true;
950
951         prt_str(&p, "mounting version ");
952         bch2_version_to_text(&p, c->sb.version);
953
954         if (c->opts.read_only) {
955                 prt_str(&p, " opts=");
956                 first = false;
957                 prt_printf(&p, "ro");
958         }
959
960         for (i = 0; i < bch2_opts_nr; i++) {
961                 const struct bch_option *opt = &bch2_opt_table[i];
962                 u64 v = bch2_opt_get_by_id(&c->opts, i);
963
964                 if (!(opt->flags & OPT_MOUNT))
965                         continue;
966
967                 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
968                         continue;
969
970                 prt_str(&p, first ? " opts=" : ",");
971                 first = false;
972                 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
973         }
974
975         bch_info(c, "%s", p.buf);
976         printbuf_exit(&p);
977 }
978
979 int bch2_fs_start(struct bch_fs *c)
980 {
981         struct bch_dev *ca;
982         time64_t now = ktime_get_real_seconds();
983         unsigned i;
984         int ret;
985
986         print_mount_opts(c);
987
988         down_write(&c->state_lock);
989
990         BUG_ON(test_bit(BCH_FS_started, &c->flags));
991
992         mutex_lock(&c->sb_lock);
993
994         ret = bch2_sb_members_v2_init(c);
995         if (ret) {
996                 mutex_unlock(&c->sb_lock);
997                 goto err;
998         }
999
1000         for_each_online_member(ca, c, i)
1001                 bch2_members_v2_get_mut(c->disk_sb.sb, i)->last_mount = cpu_to_le64(now);
1002
1003         mutex_unlock(&c->sb_lock);
1004
1005         for_each_rw_member(ca, c, i)
1006                 bch2_dev_allocator_add(c, ca);
1007         bch2_recalc_capacity(c);
1008
1009         ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1010                 ? bch2_fs_recovery(c)
1011                 : bch2_fs_initialize(c);
1012         if (ret)
1013                 goto err;
1014
1015         ret = bch2_opts_check_may_set(c);
1016         if (ret)
1017                 goto err;
1018
1019         if (bch2_fs_init_fault("fs_start")) {
1020                 bch_err(c, "fs_start fault injected");
1021                 ret = -EINVAL;
1022                 goto err;
1023         }
1024
1025         set_bit(BCH_FS_started, &c->flags);
1026
1027         if (c->opts.read_only || c->opts.nochanges) {
1028                 bch2_fs_read_only(c);
1029         } else {
1030                 ret = !test_bit(BCH_FS_rw, &c->flags)
1031                         ? bch2_fs_read_write(c)
1032                         : bch2_fs_read_write_late(c);
1033                 if (ret)
1034                         goto err;
1035         }
1036
1037         ret = 0;
1038 out:
1039         up_write(&c->state_lock);
1040         return ret;
1041 err:
1042         bch_err_msg(c, ret, "starting filesystem");
1043         goto out;
1044 }
1045
1046 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1047 {
1048         struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1049
1050         if (le16_to_cpu(sb->block_size) != block_sectors(c))
1051                 return -BCH_ERR_mismatched_block_size;
1052
1053         if (le16_to_cpu(m.bucket_size) <
1054             BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1055                 return -BCH_ERR_bucket_size_too_small;
1056
1057         return 0;
1058 }
1059
1060 static int bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb)
1061 {
1062         struct bch_sb *newest =
1063                 le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb;
1064
1065         if (!uuid_equal(&fs->uuid, &sb->uuid))
1066                 return -BCH_ERR_device_not_a_member_of_filesystem;
1067
1068         if (!bch2_dev_exists(newest, sb->dev_idx))
1069                 return -BCH_ERR_device_has_been_removed;
1070
1071         if (fs->block_size != sb->block_size)
1072                 return -BCH_ERR_mismatched_block_size;
1073
1074         return 0;
1075 }
1076
1077 /* Device startup/shutdown: */
1078
1079 static void bch2_dev_release(struct kobject *kobj)
1080 {
1081         struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1082
1083         kfree(ca);
1084 }
1085
1086 static void bch2_dev_free(struct bch_dev *ca)
1087 {
1088         cancel_work_sync(&ca->io_error_work);
1089
1090         if (ca->kobj.state_in_sysfs &&
1091             ca->disk_sb.bdev)
1092                 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1093
1094         if (ca->kobj.state_in_sysfs)
1095                 kobject_del(&ca->kobj);
1096
1097         bch2_free_super(&ca->disk_sb);
1098         bch2_dev_journal_exit(ca);
1099
1100         free_percpu(ca->io_done);
1101         bioset_exit(&ca->replica_set);
1102         bch2_dev_buckets_free(ca);
1103         free_page((unsigned long) ca->sb_read_scratch);
1104
1105         bch2_time_stats_exit(&ca->io_latency[WRITE]);
1106         bch2_time_stats_exit(&ca->io_latency[READ]);
1107
1108         percpu_ref_exit(&ca->io_ref);
1109         percpu_ref_exit(&ca->ref);
1110         kobject_put(&ca->kobj);
1111 }
1112
1113 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1114 {
1115
1116         lockdep_assert_held(&c->state_lock);
1117
1118         if (percpu_ref_is_zero(&ca->io_ref))
1119                 return;
1120
1121         __bch2_dev_read_only(c, ca);
1122
1123         reinit_completion(&ca->io_ref_completion);
1124         percpu_ref_kill(&ca->io_ref);
1125         wait_for_completion(&ca->io_ref_completion);
1126
1127         if (ca->kobj.state_in_sysfs) {
1128                 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1129                 sysfs_remove_link(&ca->kobj, "block");
1130         }
1131
1132         bch2_free_super(&ca->disk_sb);
1133         bch2_dev_journal_exit(ca);
1134 }
1135
1136 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1137 {
1138         struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1139
1140         complete(&ca->ref_completion);
1141 }
1142
1143 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1144 {
1145         struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1146
1147         complete(&ca->io_ref_completion);
1148 }
1149
1150 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1151 {
1152         int ret;
1153
1154         if (!c->kobj.state_in_sysfs)
1155                 return 0;
1156
1157         if (!ca->kobj.state_in_sysfs) {
1158                 ret = kobject_add(&ca->kobj, &c->kobj,
1159                                   "dev-%u", ca->dev_idx);
1160                 if (ret)
1161                         return ret;
1162         }
1163
1164         if (ca->disk_sb.bdev) {
1165                 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1166
1167                 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1168                 if (ret)
1169                         return ret;
1170
1171                 ret = sysfs_create_link(&ca->kobj, block, "block");
1172                 if (ret)
1173                         return ret;
1174         }
1175
1176         return 0;
1177 }
1178
1179 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1180                                         struct bch_member *member)
1181 {
1182         struct bch_dev *ca;
1183         unsigned i;
1184
1185         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1186         if (!ca)
1187                 return NULL;
1188
1189         kobject_init(&ca->kobj, &bch2_dev_ktype);
1190         init_completion(&ca->ref_completion);
1191         init_completion(&ca->io_ref_completion);
1192
1193         init_rwsem(&ca->bucket_lock);
1194
1195         INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1196
1197         bch2_time_stats_init(&ca->io_latency[READ]);
1198         bch2_time_stats_init(&ca->io_latency[WRITE]);
1199
1200         ca->mi = bch2_mi_to_cpu(member);
1201
1202         for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1203                 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1204
1205         ca->uuid = member->uuid;
1206
1207         ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1208                              ca->mi.bucket_size / btree_sectors(c));
1209
1210         if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
1211                             0, GFP_KERNEL) ||
1212             percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1213                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1214             !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1215             bch2_dev_buckets_alloc(c, ca) ||
1216             bioset_init(&ca->replica_set, 4,
1217                         offsetof(struct bch_write_bio, bio), 0) ||
1218             !(ca->io_done       = alloc_percpu(*ca->io_done)))
1219                 goto err;
1220
1221         return ca;
1222 err:
1223         bch2_dev_free(ca);
1224         return NULL;
1225 }
1226
1227 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1228                             unsigned dev_idx)
1229 {
1230         ca->dev_idx = dev_idx;
1231         __set_bit(ca->dev_idx, ca->self.d);
1232         scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1233
1234         ca->fs = c;
1235         rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1236
1237         if (bch2_dev_sysfs_online(c, ca))
1238                 pr_warn("error creating sysfs objects");
1239 }
1240
1241 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1242 {
1243         struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1244         struct bch_dev *ca = NULL;
1245         int ret = 0;
1246
1247         if (bch2_fs_init_fault("dev_alloc"))
1248                 goto err;
1249
1250         ca = __bch2_dev_alloc(c, &member);
1251         if (!ca)
1252                 goto err;
1253
1254         ca->fs = c;
1255
1256         bch2_dev_attach(c, ca, dev_idx);
1257         return ret;
1258 err:
1259         if (ca)
1260                 bch2_dev_free(ca);
1261         return -BCH_ERR_ENOMEM_dev_alloc;
1262 }
1263
1264 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1265 {
1266         unsigned ret;
1267
1268         if (bch2_dev_is_online(ca)) {
1269                 bch_err(ca, "already have device online in slot %u",
1270                         sb->sb->dev_idx);
1271                 return -BCH_ERR_device_already_online;
1272         }
1273
1274         if (get_capacity(sb->bdev->bd_disk) <
1275             ca->mi.bucket_size * ca->mi.nbuckets) {
1276                 bch_err(ca, "cannot online: device too small");
1277                 return -BCH_ERR_device_size_too_small;
1278         }
1279
1280         BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1281
1282         ret = bch2_dev_journal_init(ca, sb->sb);
1283         if (ret)
1284                 return ret;
1285
1286         /* Commit: */
1287         ca->disk_sb = *sb;
1288         memset(sb, 0, sizeof(*sb));
1289
1290         ca->dev = ca->disk_sb.bdev->bd_dev;
1291
1292         percpu_ref_reinit(&ca->io_ref);
1293
1294         return 0;
1295 }
1296
1297 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1298 {
1299         struct bch_dev *ca;
1300         int ret;
1301
1302         lockdep_assert_held(&c->state_lock);
1303
1304         if (le64_to_cpu(sb->sb->seq) >
1305             le64_to_cpu(c->disk_sb.sb->seq))
1306                 bch2_sb_to_fs(c, sb->sb);
1307
1308         BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1309                !c->devs[sb->sb->dev_idx]);
1310
1311         ca = bch_dev_locked(c, sb->sb->dev_idx);
1312
1313         ret = __bch2_dev_attach_bdev(ca, sb);
1314         if (ret)
1315                 return ret;
1316
1317         bch2_dev_sysfs_online(c, ca);
1318
1319         if (c->sb.nr_devices == 1)
1320                 snprintf(c->name, sizeof(c->name), "%pg", ca->disk_sb.bdev);
1321         snprintf(ca->name, sizeof(ca->name), "%pg", ca->disk_sb.bdev);
1322
1323         rebalance_wakeup(c);
1324         return 0;
1325 }
1326
1327 /* Device management: */
1328
1329 /*
1330  * Note: this function is also used by the error paths - when a particular
1331  * device sees an error, we call it to determine whether we can just set the
1332  * device RO, or - if this function returns false - we'll set the whole
1333  * filesystem RO:
1334  *
1335  * XXX: maybe we should be more explicit about whether we're changing state
1336  * because we got an error or what have you?
1337  */
1338 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1339                             enum bch_member_state new_state, int flags)
1340 {
1341         struct bch_devs_mask new_online_devs;
1342         struct bch_dev *ca2;
1343         int i, nr_rw = 0, required;
1344
1345         lockdep_assert_held(&c->state_lock);
1346
1347         switch (new_state) {
1348         case BCH_MEMBER_STATE_rw:
1349                 return true;
1350         case BCH_MEMBER_STATE_ro:
1351                 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1352                         return true;
1353
1354                 /* do we have enough devices to write to?  */
1355                 for_each_member_device(ca2, c, i)
1356                         if (ca2 != ca)
1357                                 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1358
1359                 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1360                                ? c->opts.metadata_replicas
1361                                : c->opts.metadata_replicas_required,
1362                                !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1363                                ? c->opts.data_replicas
1364                                : c->opts.data_replicas_required);
1365
1366                 return nr_rw >= required;
1367         case BCH_MEMBER_STATE_failed:
1368         case BCH_MEMBER_STATE_spare:
1369                 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1370                     ca->mi.state != BCH_MEMBER_STATE_ro)
1371                         return true;
1372
1373                 /* do we have enough devices to read from?  */
1374                 new_online_devs = bch2_online_devs(c);
1375                 __clear_bit(ca->dev_idx, new_online_devs.d);
1376
1377                 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1378         default:
1379                 BUG();
1380         }
1381 }
1382
1383 static bool bch2_fs_may_start(struct bch_fs *c)
1384 {
1385         struct bch_dev *ca;
1386         unsigned i, flags = 0;
1387
1388         if (c->opts.very_degraded)
1389                 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1390
1391         if (c->opts.degraded)
1392                 flags |= BCH_FORCE_IF_DEGRADED;
1393
1394         if (!c->opts.degraded &&
1395             !c->opts.very_degraded) {
1396                 mutex_lock(&c->sb_lock);
1397
1398                 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1399                         if (!bch2_dev_exists(c->disk_sb.sb, i))
1400                                 continue;
1401
1402                         ca = bch_dev_locked(c, i);
1403
1404                         if (!bch2_dev_is_online(ca) &&
1405                             (ca->mi.state == BCH_MEMBER_STATE_rw ||
1406                              ca->mi.state == BCH_MEMBER_STATE_ro)) {
1407                                 mutex_unlock(&c->sb_lock);
1408                                 return false;
1409                         }
1410                 }
1411                 mutex_unlock(&c->sb_lock);
1412         }
1413
1414         return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1415 }
1416
1417 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1418 {
1419         /*
1420          * The allocator thread itself allocates btree nodes, so stop it first:
1421          */
1422         bch2_dev_allocator_remove(c, ca);
1423         bch2_dev_journal_stop(&c->journal, ca);
1424 }
1425
1426 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1427 {
1428         lockdep_assert_held(&c->state_lock);
1429
1430         BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1431
1432         bch2_dev_allocator_add(c, ca);
1433         bch2_recalc_capacity(c);
1434 }
1435
1436 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1437                          enum bch_member_state new_state, int flags)
1438 {
1439         struct bch_member *m;
1440         int ret = 0;
1441
1442         if (ca->mi.state == new_state)
1443                 return 0;
1444
1445         if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1446                 return -BCH_ERR_device_state_not_allowed;
1447
1448         if (new_state != BCH_MEMBER_STATE_rw)
1449                 __bch2_dev_read_only(c, ca);
1450
1451         bch_notice(ca, "%s", bch2_member_states[new_state]);
1452
1453         mutex_lock(&c->sb_lock);
1454         m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1455         SET_BCH_MEMBER_STATE(m, new_state);
1456         bch2_write_super(c);
1457         mutex_unlock(&c->sb_lock);
1458
1459         if (new_state == BCH_MEMBER_STATE_rw)
1460                 __bch2_dev_read_write(c, ca);
1461
1462         rebalance_wakeup(c);
1463
1464         return ret;
1465 }
1466
1467 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1468                        enum bch_member_state new_state, int flags)
1469 {
1470         int ret;
1471
1472         down_write(&c->state_lock);
1473         ret = __bch2_dev_set_state(c, ca, new_state, flags);
1474         up_write(&c->state_lock);
1475
1476         return ret;
1477 }
1478
1479 /* Device add/removal: */
1480
1481 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
1482 {
1483         struct bpos start       = POS(ca->dev_idx, 0);
1484         struct bpos end         = POS(ca->dev_idx, U64_MAX);
1485         int ret;
1486
1487         /*
1488          * We clear the LRU and need_discard btrees first so that we don't race
1489          * with bch2_do_invalidates() and bch2_do_discards()
1490          */
1491         ret =   bch2_btree_delete_range(c, BTREE_ID_lru, start, end,
1492                                         BTREE_TRIGGER_NORUN, NULL) ?:
1493                 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
1494                                         BTREE_TRIGGER_NORUN, NULL) ?:
1495                 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
1496                                         BTREE_TRIGGER_NORUN, NULL) ?:
1497                 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
1498                                         BTREE_TRIGGER_NORUN, NULL) ?:
1499                 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
1500                                         BTREE_TRIGGER_NORUN, NULL) ?:
1501                 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
1502                                         BTREE_TRIGGER_NORUN, NULL);
1503         if (ret)
1504                 bch_err_msg(c, ret, "removing dev alloc info");
1505
1506         return ret;
1507 }
1508
1509 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1510 {
1511         struct bch_member *m;
1512         unsigned dev_idx = ca->dev_idx, data;
1513         int ret;
1514
1515         down_write(&c->state_lock);
1516
1517         /*
1518          * We consume a reference to ca->ref, regardless of whether we succeed
1519          * or fail:
1520          */
1521         percpu_ref_put(&ca->ref);
1522
1523         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1524                 bch_err(ca, "Cannot remove without losing data");
1525                 ret = -BCH_ERR_device_state_not_allowed;
1526                 goto err;
1527         }
1528
1529         __bch2_dev_read_only(c, ca);
1530
1531         ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1532         if (ret) {
1533                 bch_err_msg(ca, ret, "dropping data");
1534                 goto err;
1535         }
1536
1537         ret = bch2_dev_remove_alloc(c, ca);
1538         if (ret) {
1539                 bch_err_msg(ca, ret, "deleting alloc info");
1540                 goto err;
1541         }
1542
1543         ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1544         if (ret) {
1545                 bch_err_msg(ca, ret, "flushing journal");
1546                 goto err;
1547         }
1548
1549         ret = bch2_journal_flush(&c->journal);
1550         if (ret) {
1551                 bch_err(ca, "journal error");
1552                 goto err;
1553         }
1554
1555         ret = bch2_replicas_gc2(c);
1556         if (ret) {
1557                 bch_err_msg(ca, ret, "in replicas_gc2()");
1558                 goto err;
1559         }
1560
1561         data = bch2_dev_has_data(c, ca);
1562         if (data) {
1563                 struct printbuf data_has = PRINTBUF;
1564
1565                 prt_bitflags(&data_has, bch2_data_types, data);
1566                 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1567                 printbuf_exit(&data_has);
1568                 ret = -EBUSY;
1569                 goto err;
1570         }
1571
1572         __bch2_dev_offline(c, ca);
1573
1574         mutex_lock(&c->sb_lock);
1575         rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1576         mutex_unlock(&c->sb_lock);
1577
1578         percpu_ref_kill(&ca->ref);
1579         wait_for_completion(&ca->ref_completion);
1580
1581         bch2_dev_free(ca);
1582
1583         /*
1584          * At this point the device object has been removed in-core, but the
1585          * on-disk journal might still refer to the device index via sb device
1586          * usage entries. Recovery fails if it sees usage information for an
1587          * invalid device. Flush journal pins to push the back of the journal
1588          * past now invalid device index references before we update the
1589          * superblock, but after the device object has been removed so any
1590          * further journal writes elide usage info for the device.
1591          */
1592         bch2_journal_flush_all_pins(&c->journal);
1593
1594         /*
1595          * Free this device's slot in the bch_member array - all pointers to
1596          * this device must be gone:
1597          */
1598         mutex_lock(&c->sb_lock);
1599         m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1600         memset(&m->uuid, 0, sizeof(m->uuid));
1601
1602         bch2_write_super(c);
1603
1604         mutex_unlock(&c->sb_lock);
1605         up_write(&c->state_lock);
1606
1607         bch2_dev_usage_journal_reserve(c);
1608         return 0;
1609 err:
1610         if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1611             !percpu_ref_is_zero(&ca->io_ref))
1612                 __bch2_dev_read_write(c, ca);
1613         up_write(&c->state_lock);
1614         return ret;
1615 }
1616
1617 /* Add new device to running filesystem: */
1618 int bch2_dev_add(struct bch_fs *c, const char *path)
1619 {
1620         struct bch_opts opts = bch2_opts_empty();
1621         struct bch_sb_handle sb;
1622         struct bch_dev *ca = NULL;
1623         struct bch_sb_field_members_v2 *mi;
1624         struct bch_member dev_mi;
1625         unsigned dev_idx, nr_devices, u64s;
1626         struct printbuf errbuf = PRINTBUF;
1627         struct printbuf label = PRINTBUF;
1628         int ret;
1629
1630         ret = bch2_read_super(path, &opts, &sb);
1631         if (ret) {
1632                 bch_err_msg(c, ret, "reading super");
1633                 goto err;
1634         }
1635
1636         dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1637
1638         if (BCH_MEMBER_GROUP(&dev_mi)) {
1639                 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1640                 if (label.allocation_failure) {
1641                         ret = -ENOMEM;
1642                         goto err;
1643                 }
1644         }
1645
1646         ret = bch2_dev_may_add(sb.sb, c);
1647         if (ret) {
1648                 bch_err_fn(c, ret);
1649                 goto err;
1650         }
1651
1652         ca = __bch2_dev_alloc(c, &dev_mi);
1653         if (!ca) {
1654                 ret = -ENOMEM;
1655                 goto err;
1656         }
1657
1658         bch2_dev_usage_init(ca);
1659
1660         ret = __bch2_dev_attach_bdev(ca, &sb);
1661         if (ret)
1662                 goto err;
1663
1664         ret = bch2_dev_journal_alloc(ca);
1665         if (ret) {
1666                 bch_err_msg(c, ret, "allocating journal");
1667                 goto err;
1668         }
1669
1670         down_write(&c->state_lock);
1671         mutex_lock(&c->sb_lock);
1672
1673         ret = bch2_sb_from_fs(c, ca);
1674         if (ret) {
1675                 bch_err_msg(c, ret, "setting up new superblock");
1676                 goto err_unlock;
1677         }
1678
1679         if (dynamic_fault("bcachefs:add:no_slot"))
1680                 goto no_slot;
1681
1682         for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1683                 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx))
1684                         goto have_slot;
1685 no_slot:
1686         ret = -BCH_ERR_ENOSPC_sb_members;
1687         bch_err_msg(c, ret, "setting up new superblock");
1688         goto err_unlock;
1689
1690 have_slot:
1691         nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1692
1693         mi = bch2_sb_field_get(c->disk_sb.sb, members_v2);
1694         u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) +
1695                             le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64));
1696
1697         mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s);
1698         if (!mi) {
1699                 ret = -BCH_ERR_ENOSPC_sb_members;
1700                 bch_err_msg(c, ret, "setting up new superblock");
1701                 goto err_unlock;
1702         }
1703         struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1704
1705         /* success: */
1706
1707         *m = dev_mi;
1708         m->last_mount = cpu_to_le64(ktime_get_real_seconds());
1709         c->disk_sb.sb->nr_devices       = nr_devices;
1710
1711         ca->disk_sb.sb->dev_idx = dev_idx;
1712         bch2_dev_attach(c, ca, dev_idx);
1713
1714         if (BCH_MEMBER_GROUP(&dev_mi)) {
1715                 ret = __bch2_dev_group_set(c, ca, label.buf);
1716                 if (ret) {
1717                         bch_err_msg(c, ret, "creating new label");
1718                         goto err_unlock;
1719                 }
1720         }
1721
1722         bch2_write_super(c);
1723         mutex_unlock(&c->sb_lock);
1724
1725         bch2_dev_usage_journal_reserve(c);
1726
1727         ret = bch2_trans_mark_dev_sb(c, ca);
1728         if (ret) {
1729                 bch_err_msg(ca, ret, "marking new superblock");
1730                 goto err_late;
1731         }
1732
1733         ret = bch2_fs_freespace_init(c);
1734         if (ret) {
1735                 bch_err_msg(ca, ret, "initializing free space");
1736                 goto err_late;
1737         }
1738
1739         ca->new_fs_bucket_idx = 0;
1740
1741         if (ca->mi.state == BCH_MEMBER_STATE_rw)
1742                 __bch2_dev_read_write(c, ca);
1743
1744         up_write(&c->state_lock);
1745         return 0;
1746
1747 err_unlock:
1748         mutex_unlock(&c->sb_lock);
1749         up_write(&c->state_lock);
1750 err:
1751         if (ca)
1752                 bch2_dev_free(ca);
1753         bch2_free_super(&sb);
1754         printbuf_exit(&label);
1755         printbuf_exit(&errbuf);
1756         return ret;
1757 err_late:
1758         up_write(&c->state_lock);
1759         ca = NULL;
1760         goto err;
1761 }
1762
1763 /* Hot add existing device to running filesystem: */
1764 int bch2_dev_online(struct bch_fs *c, const char *path)
1765 {
1766         struct bch_opts opts = bch2_opts_empty();
1767         struct bch_sb_handle sb = { NULL };
1768         struct bch_dev *ca;
1769         unsigned dev_idx;
1770         int ret;
1771
1772         down_write(&c->state_lock);
1773
1774         ret = bch2_read_super(path, &opts, &sb);
1775         if (ret) {
1776                 up_write(&c->state_lock);
1777                 return ret;
1778         }
1779
1780         dev_idx = sb.sb->dev_idx;
1781
1782         ret = bch2_dev_in_fs(c->disk_sb.sb, sb.sb);
1783         if (ret) {
1784                 bch_err_msg(c, ret, "bringing %s online", path);
1785                 goto err;
1786         }
1787
1788         ret = bch2_dev_attach_bdev(c, &sb);
1789         if (ret)
1790                 goto err;
1791
1792         ca = bch_dev_locked(c, dev_idx);
1793
1794         ret = bch2_trans_mark_dev_sb(c, ca);
1795         if (ret) {
1796                 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1797                 goto err;
1798         }
1799
1800         if (ca->mi.state == BCH_MEMBER_STATE_rw)
1801                 __bch2_dev_read_write(c, ca);
1802
1803         if (!ca->mi.freespace_initialized) {
1804                 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1805                 bch_err_msg(ca, ret, "initializing free space");
1806                 if (ret)
1807                         goto err;
1808         }
1809
1810         if (!ca->journal.nr) {
1811                 ret = bch2_dev_journal_alloc(ca);
1812                 bch_err_msg(ca, ret, "allocating journal");
1813                 if (ret)
1814                         goto err;
1815         }
1816
1817         mutex_lock(&c->sb_lock);
1818         bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1819                 cpu_to_le64(ktime_get_real_seconds());
1820         bch2_write_super(c);
1821         mutex_unlock(&c->sb_lock);
1822
1823         up_write(&c->state_lock);
1824         return 0;
1825 err:
1826         up_write(&c->state_lock);
1827         bch2_free_super(&sb);
1828         return ret;
1829 }
1830
1831 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1832 {
1833         down_write(&c->state_lock);
1834
1835         if (!bch2_dev_is_online(ca)) {
1836                 bch_err(ca, "Already offline");
1837                 up_write(&c->state_lock);
1838                 return 0;
1839         }
1840
1841         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1842                 bch_err(ca, "Cannot offline required disk");
1843                 up_write(&c->state_lock);
1844                 return -BCH_ERR_device_state_not_allowed;
1845         }
1846
1847         __bch2_dev_offline(c, ca);
1848
1849         up_write(&c->state_lock);
1850         return 0;
1851 }
1852
1853 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1854 {
1855         struct bch_member *m;
1856         u64 old_nbuckets;
1857         int ret = 0;
1858
1859         down_write(&c->state_lock);
1860         old_nbuckets = ca->mi.nbuckets;
1861
1862         if (nbuckets < ca->mi.nbuckets) {
1863                 bch_err(ca, "Cannot shrink yet");
1864                 ret = -EINVAL;
1865                 goto err;
1866         }
1867
1868         if (bch2_dev_is_online(ca) &&
1869             get_capacity(ca->disk_sb.bdev->bd_disk) <
1870             ca->mi.bucket_size * nbuckets) {
1871                 bch_err(ca, "New size larger than device");
1872                 ret = -BCH_ERR_device_size_too_small;
1873                 goto err;
1874         }
1875
1876         ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1877         if (ret) {
1878                 bch_err_msg(ca, ret, "resizing buckets");
1879                 goto err;
1880         }
1881
1882         ret = bch2_trans_mark_dev_sb(c, ca);
1883         if (ret)
1884                 goto err;
1885
1886         mutex_lock(&c->sb_lock);
1887         m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1888         m->nbuckets = cpu_to_le64(nbuckets);
1889
1890         bch2_write_super(c);
1891         mutex_unlock(&c->sb_lock);
1892
1893         if (ca->mi.freespace_initialized) {
1894                 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1895                 if (ret)
1896                         goto err;
1897
1898                 /*
1899                  * XXX: this is all wrong transactionally - we'll be able to do
1900                  * this correctly after the disk space accounting rewrite
1901                  */
1902                 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets;
1903         }
1904
1905         bch2_recalc_capacity(c);
1906 err:
1907         up_write(&c->state_lock);
1908         return ret;
1909 }
1910
1911 /* return with ref on ca->ref: */
1912 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1913 {
1914         struct bch_dev *ca;
1915         unsigned i;
1916
1917         rcu_read_lock();
1918         for_each_member_device_rcu(ca, c, i, NULL)
1919                 if (!strcmp(name, ca->name))
1920                         goto found;
1921         ca = ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1922 found:
1923         rcu_read_unlock();
1924
1925         return ca;
1926 }
1927
1928 /* Filesystem open: */
1929
1930 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
1931                             struct bch_opts opts)
1932 {
1933         DARRAY(struct bch_sb_handle) sbs = { 0 };
1934         struct bch_fs *c = NULL;
1935         struct bch_sb_handle *sb, *best = NULL;
1936         struct printbuf errbuf = PRINTBUF;
1937         int ret = 0;
1938
1939         if (!try_module_get(THIS_MODULE))
1940                 return ERR_PTR(-ENODEV);
1941
1942         if (!nr_devices) {
1943                 ret = -EINVAL;
1944                 goto err;
1945         }
1946
1947         ret = darray_make_room(&sbs, nr_devices);
1948         if (ret)
1949                 goto err;
1950
1951         for (unsigned i = 0; i < nr_devices; i++) {
1952                 struct bch_sb_handle sb = { NULL };
1953
1954                 ret = bch2_read_super(devices[i], &opts, &sb);
1955                 if (ret)
1956                         goto err;
1957
1958                 BUG_ON(darray_push(&sbs, sb));
1959         }
1960
1961         darray_for_each(sbs, sb)
1962                 if (!best || le64_to_cpu(sb->sb->seq) > le64_to_cpu(best->sb->seq))
1963                         best = sb;
1964
1965         darray_for_each_reverse(sbs, sb) {
1966                 if (sb != best && !bch2_dev_exists(best->sb, sb->sb->dev_idx)) {
1967                         pr_info("%pg has been removed, skipping", sb->bdev);
1968                         bch2_free_super(sb);
1969                         darray_remove_item(&sbs, sb);
1970                         best -= best > sb;
1971                         continue;
1972                 }
1973
1974                 ret = bch2_dev_in_fs(best->sb, sb->sb);
1975                 if (ret)
1976                         goto err_print;
1977         }
1978
1979         c = bch2_fs_alloc(best->sb, opts);
1980         ret = PTR_ERR_OR_ZERO(c);
1981         if (ret)
1982                 goto err;
1983
1984         down_write(&c->state_lock);
1985         darray_for_each(sbs, sb) {
1986                 ret = bch2_dev_attach_bdev(c, sb);
1987                 if (ret) {
1988                         up_write(&c->state_lock);
1989                         goto err;
1990                 }
1991         }
1992         up_write(&c->state_lock);
1993
1994         if (!bch2_fs_may_start(c)) {
1995                 ret = -BCH_ERR_insufficient_devices_to_start;
1996                 goto err_print;
1997         }
1998
1999         if (!c->opts.nostart) {
2000                 ret = bch2_fs_start(c);
2001                 if (ret)
2002                         goto err;
2003         }
2004 out:
2005         darray_for_each(sbs, sb)
2006                 bch2_free_super(sb);
2007         darray_exit(&sbs);
2008         printbuf_exit(&errbuf);
2009         module_put(THIS_MODULE);
2010         return c;
2011 err_print:
2012         pr_err("bch_fs_open err opening %s: %s",
2013                devices[0], bch2_err_str(ret));
2014 err:
2015         if (!IS_ERR_OR_NULL(c))
2016                 bch2_fs_stop(c);
2017         c = ERR_PTR(ret);
2018         goto out;
2019 }
2020
2021 /* Global interfaces/init */
2022
2023 static void bcachefs_exit(void)
2024 {
2025         bch2_debug_exit();
2026         bch2_vfs_exit();
2027         bch2_chardev_exit();
2028         bch2_btree_key_cache_exit();
2029         if (bcachefs_kset)
2030                 kset_unregister(bcachefs_kset);
2031 }
2032
2033 static int __init bcachefs_init(void)
2034 {
2035         bch2_bkey_pack_test();
2036
2037         if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2038             bch2_btree_key_cache_init() ||
2039             bch2_chardev_init() ||
2040             bch2_vfs_init() ||
2041             bch2_debug_init())
2042                 goto err;
2043
2044         return 0;
2045 err:
2046         bcachefs_exit();
2047         return -ENOMEM;
2048 }
2049
2050 #define BCH_DEBUG_PARAM(name, description)                      \
2051         bool bch2_##name;                                       \
2052         module_param_named(name, bch2_##name, bool, 0644);      \
2053         MODULE_PARM_DESC(name, description);
2054 BCH_DEBUG_PARAMS()
2055 #undef BCH_DEBUG_PARAM
2056
2057 __maybe_unused
2058 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2059 module_param_named(version, bch2_metadata_version, uint, 0400);
2060
2061 module_exit(bcachefs_exit);
2062 module_init(bcachefs_init);