]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/util.h
Update bcachefs sources to b9bd69421f73 bcachefs: x-macro-ify inode flags enum
[bcachefs-tools-debian] / libbcachefs / util.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_UTIL_H
3 #define _BCACHEFS_UTIL_H
4
5 #include <linux/bio.h>
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/clock.h>
12 #include <linux/llist.h>
13 #include <linux/log2.h>
14 #include <linux/percpu.h>
15 #include <linux/preempt.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/workqueue.h>
20 #include <linux/mean_and_variance.h>
21
22 #include "darray.h"
23
24 struct closure;
25
26 #ifdef CONFIG_BCACHEFS_DEBUG
27 #define EBUG_ON(cond)           BUG_ON(cond)
28 #else
29 #define EBUG_ON(cond)
30 #endif
31
32 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
33 #define CPU_BIG_ENDIAN          0
34 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
35 #define CPU_BIG_ENDIAN          1
36 #endif
37
38 /* type hackery */
39
40 #define type_is_exact(_val, _type)                                      \
41         __builtin_types_compatible_p(typeof(_val), _type)
42
43 #define type_is(_val, _type)                                            \
44         (__builtin_types_compatible_p(typeof(_val), _type) ||           \
45          __builtin_types_compatible_p(typeof(_val), const _type))
46
47 /* Userspace doesn't align allocations as nicely as the kernel allocators: */
48 static inline size_t buf_pages(void *p, size_t len)
49 {
50         return DIV_ROUND_UP(len +
51                             ((unsigned long) p & (PAGE_SIZE - 1)),
52                             PAGE_SIZE);
53 }
54
55 static inline void vpfree(void *p, size_t size)
56 {
57         if (is_vmalloc_addr(p))
58                 vfree(p);
59         else
60                 free_pages((unsigned long) p, get_order(size));
61 }
62
63 static inline void *vpmalloc(size_t size, gfp_t gfp_mask)
64 {
65         return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN,
66                                          get_order(size)) ?:
67                 __vmalloc(size, gfp_mask);
68 }
69
70 static inline void kvpfree(void *p, size_t size)
71 {
72         if (size < PAGE_SIZE)
73                 kfree(p);
74         else
75                 vpfree(p, size);
76 }
77
78 static inline void *kvpmalloc(size_t size, gfp_t gfp_mask)
79 {
80         return size < PAGE_SIZE
81                 ? kmalloc(size, gfp_mask)
82                 : vpmalloc(size, gfp_mask);
83 }
84
85 int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t);
86
87 #define HEAP(type)                                                      \
88 struct {                                                                \
89         size_t size, used;                                              \
90         type *data;                                                     \
91 }
92
93 #define DECLARE_HEAP(type, name) HEAP(type) name
94
95 #define init_heap(heap, _size, gfp)                                     \
96 ({                                                                      \
97         (heap)->used = 0;                                               \
98         (heap)->size = (_size);                                         \
99         (heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\
100                                  (gfp));                                \
101 })
102
103 #define free_heap(heap)                                                 \
104 do {                                                                    \
105         kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0]));  \
106         (heap)->data = NULL;                                            \
107 } while (0)
108
109 #define heap_set_backpointer(h, i, _fn)                                 \
110 do {                                                                    \
111         void (*fn)(typeof(h), size_t) = _fn;                            \
112         if (fn)                                                         \
113                 fn(h, i);                                               \
114 } while (0)
115
116 #define heap_swap(h, i, j, set_backpointer)                             \
117 do {                                                                    \
118         swap((h)->data[i], (h)->data[j]);                               \
119         heap_set_backpointer(h, i, set_backpointer);                    \
120         heap_set_backpointer(h, j, set_backpointer);                    \
121 } while (0)
122
123 #define heap_peek(h)                                                    \
124 ({                                                                      \
125         EBUG_ON(!(h)->used);                                            \
126         (h)->data[0];                                                   \
127 })
128
129 #define heap_full(h)    ((h)->used == (h)->size)
130
131 #define heap_sift_down(h, i, cmp, set_backpointer)                      \
132 do {                                                                    \
133         size_t _c, _j = i;                                              \
134                                                                         \
135         for (; _j * 2 + 1 < (h)->used; _j = _c) {                       \
136                 _c = _j * 2 + 1;                                        \
137                 if (_c + 1 < (h)->used &&                               \
138                     cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0)      \
139                         _c++;                                           \
140                                                                         \
141                 if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0)          \
142                         break;                                          \
143                 heap_swap(h, _c, _j, set_backpointer);                  \
144         }                                                               \
145 } while (0)
146
147 #define heap_sift_up(h, i, cmp, set_backpointer)                        \
148 do {                                                                    \
149         while (i) {                                                     \
150                 size_t p = (i - 1) / 2;                                 \
151                 if (cmp(h, (h)->data[i], (h)->data[p]) >= 0)            \
152                         break;                                          \
153                 heap_swap(h, i, p, set_backpointer);                    \
154                 i = p;                                                  \
155         }                                                               \
156 } while (0)
157
158 #define __heap_add(h, d, cmp, set_backpointer)                          \
159 ({                                                                      \
160         size_t _i = (h)->used++;                                        \
161         (h)->data[_i] = d;                                              \
162         heap_set_backpointer(h, _i, set_backpointer);                   \
163                                                                         \
164         heap_sift_up(h, _i, cmp, set_backpointer);                      \
165         _i;                                                             \
166 })
167
168 #define heap_add(h, d, cmp, set_backpointer)                            \
169 ({                                                                      \
170         bool _r = !heap_full(h);                                        \
171         if (_r)                                                         \
172                 __heap_add(h, d, cmp, set_backpointer);                 \
173         _r;                                                             \
174 })
175
176 #define heap_add_or_replace(h, new, cmp, set_backpointer)               \
177 do {                                                                    \
178         if (!heap_add(h, new, cmp, set_backpointer) &&                  \
179             cmp(h, new, heap_peek(h)) >= 0) {                           \
180                 (h)->data[0] = new;                                     \
181                 heap_set_backpointer(h, 0, set_backpointer);            \
182                 heap_sift_down(h, 0, cmp, set_backpointer);             \
183         }                                                               \
184 } while (0)
185
186 #define heap_del(h, i, cmp, set_backpointer)                            \
187 do {                                                                    \
188         size_t _i = (i);                                                \
189                                                                         \
190         BUG_ON(_i >= (h)->used);                                        \
191         (h)->used--;                                                    \
192         if ((_i) < (h)->used) {                                         \
193                 heap_swap(h, _i, (h)->used, set_backpointer);           \
194                 heap_sift_up(h, _i, cmp, set_backpointer);              \
195                 heap_sift_down(h, _i, cmp, set_backpointer);            \
196         }                                                               \
197 } while (0)
198
199 #define heap_pop(h, d, cmp, set_backpointer)                            \
200 ({                                                                      \
201         bool _r = (h)->used;                                            \
202         if (_r) {                                                       \
203                 (d) = (h)->data[0];                                     \
204                 heap_del(h, 0, cmp, set_backpointer);                   \
205         }                                                               \
206         _r;                                                             \
207 })
208
209 #define heap_resort(heap, cmp, set_backpointer)                         \
210 do {                                                                    \
211         ssize_t _i;                                                     \
212         for (_i = (ssize_t) (heap)->used / 2 -  1; _i >= 0; --_i)       \
213                 heap_sift_down(heap, _i, cmp, set_backpointer);         \
214 } while (0)
215
216 #define ANYSINT_MAX(t)                                                  \
217         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
218
219 #include "printbuf.h"
220
221 #define prt_vprintf(_out, ...)          bch2_prt_vprintf(_out, __VA_ARGS__)
222 #define prt_printf(_out, ...)           bch2_prt_printf(_out, __VA_ARGS__)
223 #define printbuf_str(_buf)              bch2_printbuf_str(_buf)
224 #define printbuf_exit(_buf)             bch2_printbuf_exit(_buf)
225
226 #define printbuf_tabstops_reset(_buf)   bch2_printbuf_tabstops_reset(_buf)
227 #define printbuf_tabstop_pop(_buf)      bch2_printbuf_tabstop_pop(_buf)
228 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n)
229
230 #define printbuf_indent_add(_out, _n)   bch2_printbuf_indent_add(_out, _n)
231 #define printbuf_indent_sub(_out, _n)   bch2_printbuf_indent_sub(_out, _n)
232
233 #define prt_newline(_out)               bch2_prt_newline(_out)
234 #define prt_tab(_out)                   bch2_prt_tab(_out)
235 #define prt_tab_rjust(_out)             bch2_prt_tab_rjust(_out)
236
237 #define prt_bytes_indented(...)         bch2_prt_bytes_indented(__VA_ARGS__)
238 #define prt_u64(_out, _v)               prt_printf(_out, "%llu", (u64) (_v))
239 #define prt_human_readable_u64(...)     bch2_prt_human_readable_u64(__VA_ARGS__)
240 #define prt_human_readable_s64(...)     bch2_prt_human_readable_s64(__VA_ARGS__)
241 #define prt_units_u64(...)              bch2_prt_units_u64(__VA_ARGS__)
242 #define prt_units_s64(...)              bch2_prt_units_s64(__VA_ARGS__)
243 #define prt_string_option(...)          bch2_prt_string_option(__VA_ARGS__)
244 #define prt_bitflags(...)               bch2_prt_bitflags(__VA_ARGS__)
245
246 void bch2_pr_time_units(struct printbuf *, u64);
247 void bch2_prt_date_seconds(struct printbuf *, time64_t);
248
249 #ifdef __KERNEL__
250 static inline void uuid_unparse_lower(u8 *uuid, char *out)
251 {
252         sprintf(out, "%pUb", uuid);
253 }
254 #else
255 #include <uuid/uuid.h>
256 #endif
257
258 static inline void pr_uuid(struct printbuf *out, u8 *uuid)
259 {
260         char uuid_str[40];
261
262         uuid_unparse_lower(uuid, uuid_str);
263         prt_printf(out, "%s", uuid_str);
264 }
265
266 int bch2_strtoint_h(const char *, int *);
267 int bch2_strtouint_h(const char *, unsigned int *);
268 int bch2_strtoll_h(const char *, long long *);
269 int bch2_strtoull_h(const char *, unsigned long long *);
270 int bch2_strtou64_h(const char *, u64 *);
271
272 static inline int bch2_strtol_h(const char *cp, long *res)
273 {
274 #if BITS_PER_LONG == 32
275         return bch2_strtoint_h(cp, (int *) res);
276 #else
277         return bch2_strtoll_h(cp, (long long *) res);
278 #endif
279 }
280
281 static inline int bch2_strtoul_h(const char *cp, long *res)
282 {
283 #if BITS_PER_LONG == 32
284         return bch2_strtouint_h(cp, (unsigned int *) res);
285 #else
286         return bch2_strtoull_h(cp, (unsigned long long *) res);
287 #endif
288 }
289
290 #define strtoi_h(cp, res)                                               \
291         ( type_is(*res, int)            ? bch2_strtoint_h(cp, (void *) res)\
292         : type_is(*res, long)           ? bch2_strtol_h(cp, (void *) res)\
293         : type_is(*res, long long)      ? bch2_strtoll_h(cp, (void *) res)\
294         : type_is(*res, unsigned)       ? bch2_strtouint_h(cp, (void *) res)\
295         : type_is(*res, unsigned long)  ? bch2_strtoul_h(cp, (void *) res)\
296         : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
297         : -EINVAL)
298
299 #define strtoul_safe(cp, var)                                           \
300 ({                                                                      \
301         unsigned long _v;                                               \
302         int _r = kstrtoul(cp, 10, &_v);                                 \
303         if (!_r)                                                        \
304                 var = _v;                                               \
305         _r;                                                             \
306 })
307
308 #define strtoul_safe_clamp(cp, var, min, max)                           \
309 ({                                                                      \
310         unsigned long _v;                                               \
311         int _r = kstrtoul(cp, 10, &_v);                                 \
312         if (!_r)                                                        \
313                 var = clamp_t(typeof(var), _v, min, max);               \
314         _r;                                                             \
315 })
316
317 #define strtoul_safe_restrict(cp, var, min, max)                        \
318 ({                                                                      \
319         unsigned long _v;                                               \
320         int _r = kstrtoul(cp, 10, &_v);                                 \
321         if (!_r && _v >= min && _v <= max)                              \
322                 var = _v;                                               \
323         else                                                            \
324                 _r = -EINVAL;                                           \
325         _r;                                                             \
326 })
327
328 #define snprint(out, var)                                               \
329         prt_printf(out,                                                 \
330                    type_is(var, int)            ? "%i\n"                \
331                  : type_is(var, unsigned)       ? "%u\n"                \
332                  : type_is(var, long)           ? "%li\n"               \
333                  : type_is(var, unsigned long)  ? "%lu\n"               \
334                  : type_is(var, s64)            ? "%lli\n"              \
335                  : type_is(var, u64)            ? "%llu\n"              \
336                  : type_is(var, char *)         ? "%s\n"                \
337                  : "%i\n", var)
338
339 bool bch2_is_zero(const void *, size_t);
340
341 u64 bch2_read_flag_list(char *, const char * const[]);
342
343 void bch2_prt_u64_binary(struct printbuf *, u64, unsigned);
344
345 void bch2_print_string_as_lines(const char *prefix, const char *lines);
346
347 typedef DARRAY(unsigned long) bch_stacktrace;
348 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *);
349 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
350 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *);
351
352 #define NR_QUANTILES    15
353 #define QUANTILE_IDX(i) inorder_to_eytzinger0(i, NR_QUANTILES)
354 #define QUANTILE_FIRST  eytzinger0_first(NR_QUANTILES)
355 #define QUANTILE_LAST   eytzinger0_last(NR_QUANTILES)
356
357 struct bch2_quantiles {
358         struct bch2_quantile_entry {
359                 u64     m;
360                 u64     step;
361         }               entries[NR_QUANTILES];
362 };
363
364 struct bch2_time_stat_buffer {
365         unsigned        nr;
366         struct bch2_time_stat_buffer_entry {
367                 u64     start;
368                 u64     end;
369         }               entries[32];
370 };
371
372 struct bch2_time_stats {
373         spinlock_t      lock;
374         /* all fields are in nanoseconds */
375         u64             max_duration;
376         u64             min_duration;
377         u64             max_freq;
378         u64             min_freq;
379         u64             last_event;
380         struct bch2_quantiles quantiles;
381
382         struct mean_and_variance          duration_stats;
383         struct mean_and_variance_weighted duration_stats_weighted;
384         struct mean_and_variance          freq_stats;
385         struct mean_and_variance_weighted freq_stats_weighted;
386         struct bch2_time_stat_buffer __percpu *buffer;
387 };
388
389 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
390 void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64);
391 #else
392 static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {}
393 #endif
394
395 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start)
396 {
397         __bch2_time_stats_update(stats, start, local_clock());
398 }
399
400 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
401
402 void bch2_time_stats_exit(struct bch2_time_stats *);
403 void bch2_time_stats_init(struct bch2_time_stats *);
404
405 #define ewma_add(ewma, val, weight)                                     \
406 ({                                                                      \
407         typeof(ewma) _ewma = (ewma);                                    \
408         typeof(weight) _weight = (weight);                              \
409                                                                         \
410         (((_ewma << _weight) - _ewma) + (val)) >> _weight;              \
411 })
412
413 struct bch_ratelimit {
414         /* Next time we want to do some work, in nanoseconds */
415         u64                     next;
416
417         /*
418          * Rate at which we want to do work, in units per nanosecond
419          * The units here correspond to the units passed to
420          * bch2_ratelimit_increment()
421          */
422         unsigned                rate;
423 };
424
425 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
426 {
427         d->next = local_clock();
428 }
429
430 u64 bch2_ratelimit_delay(struct bch_ratelimit *);
431 void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
432
433 struct bch_pd_controller {
434         struct bch_ratelimit    rate;
435         unsigned long           last_update;
436
437         s64                     last_actual;
438         s64                     smoothed_derivative;
439
440         unsigned                p_term_inverse;
441         unsigned                d_smooth;
442         unsigned                d_term;
443
444         /* for exporting to sysfs (no effect on behavior) */
445         s64                     last_derivative;
446         s64                     last_proportional;
447         s64                     last_change;
448         s64                     last_target;
449
450         /*
451          * If true, the rate will not increase if bch2_ratelimit_delay()
452          * is not being called often enough.
453          */
454         bool                    backpressure;
455 };
456
457 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
458 void bch2_pd_controller_init(struct bch_pd_controller *);
459 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
460
461 #define sysfs_pd_controller_attribute(name)                             \
462         rw_attribute(name##_rate);                                      \
463         rw_attribute(name##_rate_bytes);                                \
464         rw_attribute(name##_rate_d_term);                               \
465         rw_attribute(name##_rate_p_term_inverse);                       \
466         read_attribute(name##_rate_debug)
467
468 #define sysfs_pd_controller_files(name)                                 \
469         &sysfs_##name##_rate,                                           \
470         &sysfs_##name##_rate_bytes,                                     \
471         &sysfs_##name##_rate_d_term,                                    \
472         &sysfs_##name##_rate_p_term_inverse,                            \
473         &sysfs_##name##_rate_debug
474
475 #define sysfs_pd_controller_show(name, var)                             \
476 do {                                                                    \
477         sysfs_hprint(name##_rate,               (var)->rate.rate);      \
478         sysfs_print(name##_rate_bytes,          (var)->rate.rate);      \
479         sysfs_print(name##_rate_d_term,         (var)->d_term);         \
480         sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \
481                                                                         \
482         if (attr == &sysfs_##name##_rate_debug)                         \
483                 bch2_pd_controller_debug_to_text(out, var);             \
484 } while (0)
485
486 #define sysfs_pd_controller_store(name, var)                            \
487 do {                                                                    \
488         sysfs_strtoul_clamp(name##_rate,                                \
489                             (var)->rate.rate, 1, UINT_MAX);             \
490         sysfs_strtoul_clamp(name##_rate_bytes,                          \
491                             (var)->rate.rate, 1, UINT_MAX);             \
492         sysfs_strtoul(name##_rate_d_term,       (var)->d_term);         \
493         sysfs_strtoul_clamp(name##_rate_p_term_inverse,                 \
494                             (var)->p_term_inverse, 1, INT_MAX);         \
495 } while (0)
496
497 #define container_of_or_null(ptr, type, member)                         \
498 ({                                                                      \
499         typeof(ptr) _ptr = ptr;                                         \
500         _ptr ? container_of(_ptr, type, member) : NULL;                 \
501 })
502
503 /* Does linear interpolation between powers of two */
504 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
505 {
506         unsigned fract = x & ~(~0 << fract_bits);
507
508         x >>= fract_bits;
509         x   = 1 << x;
510         x  += (x * fract) >> fract_bits;
511
512         return x;
513 }
514
515 void bch2_bio_map(struct bio *bio, void *base, size_t);
516 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
517
518 static inline sector_t bdev_sectors(struct block_device *bdev)
519 {
520         return bdev->bd_inode->i_size >> 9;
521 }
522
523 #define closure_bio_submit(bio, cl)                                     \
524 do {                                                                    \
525         closure_get(cl);                                                \
526         submit_bio(bio);                                                \
527 } while (0)
528
529 #define kthread_wait(cond)                                              \
530 ({                                                                      \
531         int _ret = 0;                                                   \
532                                                                         \
533         while (1) {                                                     \
534                 set_current_state(TASK_INTERRUPTIBLE);                  \
535                 if (kthread_should_stop()) {                            \
536                         _ret = -1;                                      \
537                         break;                                          \
538                 }                                                       \
539                                                                         \
540                 if (cond)                                               \
541                         break;                                          \
542                                                                         \
543                 schedule();                                             \
544         }                                                               \
545         set_current_state(TASK_RUNNING);                                \
546         _ret;                                                           \
547 })
548
549 #define kthread_wait_freezable(cond)                                    \
550 ({                                                                      \
551         int _ret = 0;                                                   \
552         while (1) {                                                     \
553                 set_current_state(TASK_INTERRUPTIBLE);                  \
554                 if (kthread_should_stop()) {                            \
555                         _ret = -1;                                      \
556                         break;                                          \
557                 }                                                       \
558                                                                         \
559                 if (cond)                                               \
560                         break;                                          \
561                                                                         \
562                 schedule();                                             \
563                 try_to_freeze();                                        \
564         }                                                               \
565         set_current_state(TASK_RUNNING);                                \
566         _ret;                                                           \
567 })
568
569 size_t bch2_rand_range(size_t);
570
571 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
572 void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
573
574 static inline void memcpy_u64s_small(void *dst, const void *src,
575                                      unsigned u64s)
576 {
577         u64 *d = dst;
578         const u64 *s = src;
579
580         while (u64s--)
581                 *d++ = *s++;
582 }
583
584 static inline void __memcpy_u64s(void *dst, const void *src,
585                                  unsigned u64s)
586 {
587 #ifdef CONFIG_X86_64
588         long d0, d1, d2;
589
590         asm volatile("rep ; movsq"
591                      : "=&c" (d0), "=&D" (d1), "=&S" (d2)
592                      : "0" (u64s), "1" (dst), "2" (src)
593                      : "memory");
594 #else
595         u64 *d = dst;
596         const u64 *s = src;
597
598         while (u64s--)
599                 *d++ = *s++;
600 #endif
601 }
602
603 static inline void memcpy_u64s(void *dst, const void *src,
604                                unsigned u64s)
605 {
606         EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
607                  dst + u64s * sizeof(u64) <= src));
608
609         __memcpy_u64s(dst, src, u64s);
610 }
611
612 static inline void __memmove_u64s_down(void *dst, const void *src,
613                                        unsigned u64s)
614 {
615         __memcpy_u64s(dst, src, u64s);
616 }
617
618 static inline void memmove_u64s_down(void *dst, const void *src,
619                                      unsigned u64s)
620 {
621         EBUG_ON(dst > src);
622
623         __memmove_u64s_down(dst, src, u64s);
624 }
625
626 static inline void __memmove_u64s_down_small(void *dst, const void *src,
627                                        unsigned u64s)
628 {
629         memcpy_u64s_small(dst, src, u64s);
630 }
631
632 static inline void memmove_u64s_down_small(void *dst, const void *src,
633                                      unsigned u64s)
634 {
635         EBUG_ON(dst > src);
636
637         __memmove_u64s_down_small(dst, src, u64s);
638 }
639
640 static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
641                                            unsigned u64s)
642 {
643         u64 *dst = (u64 *) _dst + u64s;
644         u64 *src = (u64 *) _src + u64s;
645
646         while (u64s--)
647                 *--dst = *--src;
648 }
649
650 static inline void memmove_u64s_up_small(void *dst, const void *src,
651                                          unsigned u64s)
652 {
653         EBUG_ON(dst < src);
654
655         __memmove_u64s_up_small(dst, src, u64s);
656 }
657
658 static inline void __memmove_u64s_up(void *_dst, const void *_src,
659                                      unsigned u64s)
660 {
661         u64 *dst = (u64 *) _dst + u64s - 1;
662         u64 *src = (u64 *) _src + u64s - 1;
663
664 #ifdef CONFIG_X86_64
665         long d0, d1, d2;
666
667         asm volatile("std ;\n"
668                      "rep ; movsq\n"
669                      "cld ;\n"
670                      : "=&c" (d0), "=&D" (d1), "=&S" (d2)
671                      : "0" (u64s), "1" (dst), "2" (src)
672                      : "memory");
673 #else
674         while (u64s--)
675                 *dst-- = *src--;
676 #endif
677 }
678
679 static inline void memmove_u64s_up(void *dst, const void *src,
680                                    unsigned u64s)
681 {
682         EBUG_ON(dst < src);
683
684         __memmove_u64s_up(dst, src, u64s);
685 }
686
687 static inline void memmove_u64s(void *dst, const void *src,
688                                 unsigned u64s)
689 {
690         if (dst < src)
691                 __memmove_u64s_down(dst, src, u64s);
692         else
693                 __memmove_u64s_up(dst, src, u64s);
694 }
695
696 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
697 static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
698 {
699         unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
700
701         memset(s + bytes, c, rem);
702 }
703
704 void sort_cmp_size(void *base, size_t num, size_t size,
705           int (*cmp_func)(const void *, const void *, size_t),
706           void (*swap_func)(void *, void *, size_t));
707
708 /* just the memmove, doesn't update @_nr */
709 #define __array_insert_item(_array, _nr, _pos)                          \
710         memmove(&(_array)[(_pos) + 1],                                  \
711                 &(_array)[(_pos)],                                      \
712                 sizeof((_array)[0]) * ((_nr) - (_pos)))
713
714 #define array_insert_item(_array, _nr, _pos, _new_item)                 \
715 do {                                                                    \
716         __array_insert_item(_array, _nr, _pos);                         \
717         (_nr)++;                                                        \
718         (_array)[(_pos)] = (_new_item);                                 \
719 } while (0)
720
721 #define array_remove_items(_array, _nr, _pos, _nr_to_remove)            \
722 do {                                                                    \
723         (_nr) -= (_nr_to_remove);                                       \
724         memmove(&(_array)[(_pos)],                                      \
725                 &(_array)[(_pos) + (_nr_to_remove)],                    \
726                 sizeof((_array)[0]) * ((_nr) - (_pos)));                \
727 } while (0)
728
729 #define array_remove_item(_array, _nr, _pos)                            \
730         array_remove_items(_array, _nr, _pos, 1)
731
732 static inline void __move_gap(void *array, size_t element_size,
733                               size_t nr, size_t size,
734                               size_t old_gap, size_t new_gap)
735 {
736         size_t gap_end = old_gap + size - nr;
737
738         if (new_gap < old_gap) {
739                 size_t move = old_gap - new_gap;
740
741                 memmove(array + element_size * (gap_end - move),
742                         array + element_size * (old_gap - move),
743                                 element_size * move);
744         } else if (new_gap > old_gap) {
745                 size_t move = new_gap - old_gap;
746
747                 memmove(array + element_size * old_gap,
748                         array + element_size * gap_end,
749                                 element_size * move);
750         }
751 }
752
753 /* Move the gap in a gap buffer: */
754 #define move_gap(_array, _nr, _size, _old_gap, _new_gap)        \
755         __move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap)
756
757 #define bubble_sort(_base, _nr, _cmp)                                   \
758 do {                                                                    \
759         ssize_t _i, _last;                                              \
760         bool _swapped = true;                                           \
761                                                                         \
762         for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
763                 _swapped = false;                                       \
764                 for (_i = 0; _i < _last; _i++)                          \
765                         if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) {   \
766                                 swap((_base)[_i], (_base)[_i + 1]);     \
767                                 _swapped = true;                        \
768                         }                                               \
769         }                                                               \
770 } while (0)
771
772 static inline u64 percpu_u64_get(u64 __percpu *src)
773 {
774         u64 ret = 0;
775         int cpu;
776
777         for_each_possible_cpu(cpu)
778                 ret += *per_cpu_ptr(src, cpu);
779         return ret;
780 }
781
782 static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
783 {
784         int cpu;
785
786         for_each_possible_cpu(cpu)
787                 *per_cpu_ptr(dst, cpu) = 0;
788         this_cpu_write(*dst, src);
789 }
790
791 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
792 {
793         unsigned i;
794
795         for (i = 0; i < nr; i++)
796                 acc[i] += src[i];
797 }
798
799 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
800                                    unsigned nr)
801 {
802         int cpu;
803
804         for_each_possible_cpu(cpu)
805                 acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
806 }
807
808 static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
809 {
810         int cpu;
811
812         for_each_possible_cpu(cpu)
813                 memset(per_cpu_ptr(p, cpu), c, bytes);
814 }
815
816 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
817
818 #define cmp_int(l, r)           ((l > r) - (l < r))
819
820 static inline int u8_cmp(u8 l, u8 r)
821 {
822         return cmp_int(l, r);
823 }
824
825 static inline int cmp_le32(__le32 l, __le32 r)
826 {
827         return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
828 }
829
830 #include <linux/uuid.h>
831
832 #endif /* _BCACHEFS_UTIL_H */