]> git.sesse.net Git - ffmpeg/blob - libswresample/rematrix.c
avformat/avio: Add Metacube support
[ffmpeg] / libswresample / rematrix.c
1 /*
2  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3  *
4  * This file is part of libswresample
5  *
6  * libswresample is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * libswresample is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with libswresample; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "swresample_internal.h"
22 #include "libavutil/avassert.h"
23 #include "libavutil/channel_layout.h"
24
25 #define TEMPLATE_REMATRIX_FLT
26 #include "rematrix_template.c"
27 #undef TEMPLATE_REMATRIX_FLT
28
29 #define TEMPLATE_REMATRIX_DBL
30 #include "rematrix_template.c"
31 #undef TEMPLATE_REMATRIX_DBL
32
33 #define TEMPLATE_REMATRIX_S16
34 #include "rematrix_template.c"
35 #define TEMPLATE_CLIP
36 #include "rematrix_template.c"
37 #undef TEMPLATE_CLIP
38 #undef TEMPLATE_REMATRIX_S16
39
40 #define TEMPLATE_REMATRIX_S32
41 #include "rematrix_template.c"
42 #undef TEMPLATE_REMATRIX_S32
43
44 #define FRONT_LEFT             0
45 #define FRONT_RIGHT            1
46 #define FRONT_CENTER           2
47 #define LOW_FREQUENCY          3
48 #define BACK_LEFT              4
49 #define BACK_RIGHT             5
50 #define FRONT_LEFT_OF_CENTER   6
51 #define FRONT_RIGHT_OF_CENTER  7
52 #define BACK_CENTER            8
53 #define SIDE_LEFT              9
54 #define SIDE_RIGHT             10
55 #define TOP_CENTER             11
56 #define TOP_FRONT_LEFT         12
57 #define TOP_FRONT_CENTER       13
58 #define TOP_FRONT_RIGHT        14
59 #define TOP_BACK_LEFT          15
60 #define TOP_BACK_CENTER        16
61 #define TOP_BACK_RIGHT         17
62 #define NUM_NAMED_CHANNELS     18
63
64 int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
65 {
66     int nb_in, nb_out, in, out;
67
68     if (!s || s->in_convert) // s needs to be allocated but not initialized
69         return AVERROR(EINVAL);
70     memset(s->matrix, 0, sizeof(s->matrix));
71     memset(s->matrix_flt, 0, sizeof(s->matrix_flt));
72     nb_in = (s->user_in_ch_count > 0) ? s->user_in_ch_count :
73         av_get_channel_layout_nb_channels(s->user_in_ch_layout);
74     nb_out = (s->user_out_ch_count > 0) ? s->user_out_ch_count :
75         av_get_channel_layout_nb_channels(s->user_out_ch_layout);
76     for (out = 0; out < nb_out; out++) {
77         for (in = 0; in < nb_in; in++)
78             s->matrix_flt[out][in] = s->matrix[out][in] = matrix[in];
79         matrix += stride;
80     }
81     s->rematrix_custom = 1;
82     return 0;
83 }
84
85 static int even(int64_t layout){
86     if(!layout) return 1;
87     if(layout&(layout-1)) return 1;
88     return 0;
89 }
90
91 static int64_t clean_layout(void *s, int64_t layout){
92     if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
93         char buf[128];
94         av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
95         av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
96         return AV_CH_FRONT_CENTER;
97     }
98
99     return layout;
100 }
101
102 static int sane_layout(int64_t layout){
103     if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
104         return 0;
105     if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
106         return 0;
107     if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT)))   // no asymetric side
108         return 0;
109     if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
110         return 0;
111     if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
112         return 0;
113     if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
114         return 0;
115
116     return 1;
117 }
118
119 av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param,
120                              double center_mix_level, double surround_mix_level,
121                              double lfe_mix_level, double maxval,
122                              double rematrix_volume, double *matrix_param,
123                              int stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
124 {
125     int i, j, out_i;
126     double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS]={{0}};
127     int64_t unaccounted, in_ch_layout, out_ch_layout;
128     double maxcoef=0;
129     char buf[128];
130
131      in_ch_layout = clean_layout(log_context,  in_ch_layout_param);
132     out_ch_layout = clean_layout(log_context, out_ch_layout_param);
133
134     if(   out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
135        && (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
136     )
137         out_ch_layout = AV_CH_LAYOUT_STEREO;
138
139     if(    in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
140        && (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
141     )
142         in_ch_layout = AV_CH_LAYOUT_STEREO;
143
144     if (in_ch_layout == AV_CH_LAYOUT_22POINT2 &&
145         out_ch_layout != AV_CH_LAYOUT_22POINT2) {
146         in_ch_layout = (AV_CH_LAYOUT_7POINT1_WIDE_BACK|AV_CH_BACK_CENTER);
147         av_get_channel_layout_string(buf, sizeof(buf), -1, in_ch_layout);
148         av_log(log_context, AV_LOG_WARNING,
149                "Full-on remixing from 22.2 has not yet been implemented! "
150                "Processing the input as '%s'\n",
151                buf);
152     }
153
154     if(!sane_layout(in_ch_layout)){
155         av_get_channel_layout_string(buf, sizeof(buf), -1, in_ch_layout_param);
156         av_log(log_context, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
157         return AVERROR(EINVAL);
158     }
159
160     if(!sane_layout(out_ch_layout)){
161         av_get_channel_layout_string(buf, sizeof(buf), -1, out_ch_layout_param);
162         av_log(log_context, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
163         return AVERROR(EINVAL);
164     }
165
166     for(i=0; i<FF_ARRAY_ELEMS(matrix); i++){
167         if(in_ch_layout & out_ch_layout & (1ULL<<i))
168             matrix[i][i]= 1.0;
169     }
170
171     unaccounted= in_ch_layout & ~out_ch_layout;
172
173 //FIXME implement dolby surround
174 //FIXME implement full ac3
175
176
177     if(unaccounted & AV_CH_FRONT_CENTER){
178         if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
179             if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
180                 matrix[ FRONT_LEFT][FRONT_CENTER]+= center_mix_level;
181                 matrix[FRONT_RIGHT][FRONT_CENTER]+= center_mix_level;
182             } else {
183                 matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
184                 matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
185             }
186         }else
187             av_assert0(0);
188     }
189     if(unaccounted & AV_CH_LAYOUT_STEREO){
190         if(out_ch_layout & AV_CH_FRONT_CENTER){
191             matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
192             matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
193             if(in_ch_layout & AV_CH_FRONT_CENTER)
194                 matrix[FRONT_CENTER][ FRONT_CENTER] = center_mix_level*sqrt(2);
195         }else
196             av_assert0(0);
197     }
198
199     if(unaccounted & AV_CH_BACK_CENTER){
200         if(out_ch_layout & AV_CH_BACK_LEFT){
201             matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
202             matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
203         }else if(out_ch_layout & AV_CH_SIDE_LEFT){
204             matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
205             matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
206         }else if(out_ch_layout & AV_CH_FRONT_LEFT){
207             if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
208                 matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
209                 if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
210                     matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level * M_SQRT1_2;
211                     matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
212                 } else {
213                     matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level;
214                     matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level;
215                 }
216             } else {
217                 matrix[ FRONT_LEFT][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
218                 matrix[FRONT_RIGHT][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
219             }
220         }else if(out_ch_layout & AV_CH_FRONT_CENTER){
221             matrix[ FRONT_CENTER][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
222         }else
223             av_assert0(0);
224     }
225     if(unaccounted & AV_CH_BACK_LEFT){
226         if(out_ch_layout & AV_CH_BACK_CENTER){
227             matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
228             matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
229         }else if(out_ch_layout & AV_CH_SIDE_LEFT){
230             if(in_ch_layout & AV_CH_SIDE_LEFT){
231                 matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
232                 matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
233             }else{
234             matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
235             matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
236             }
237         }else if(out_ch_layout & AV_CH_FRONT_LEFT){
238             if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
239                 matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * M_SQRT1_2;
240                 matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
241                 matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
242                 matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * M_SQRT1_2;
243             } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
244                 matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * SQRT3_2;
245                 matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
246                 matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
247                 matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * SQRT3_2;
248             } else {
249                 matrix[ FRONT_LEFT][ BACK_LEFT] += surround_mix_level;
250                 matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level;
251             }
252         }else if(out_ch_layout & AV_CH_FRONT_CENTER){
253             matrix[ FRONT_CENTER][BACK_LEFT ]+= surround_mix_level*M_SQRT1_2;
254             matrix[ FRONT_CENTER][BACK_RIGHT]+= surround_mix_level*M_SQRT1_2;
255         }else
256             av_assert0(0);
257     }
258
259     if(unaccounted & AV_CH_SIDE_LEFT){
260         if(out_ch_layout & AV_CH_BACK_LEFT){
261             /* if back channels do not exist in the input, just copy side
262                channels to back channels, otherwise mix side into back */
263             if (in_ch_layout & AV_CH_BACK_LEFT) {
264                 matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
265                 matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
266             } else {
267                 matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
268                 matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
269             }
270         }else if(out_ch_layout & AV_CH_BACK_CENTER){
271             matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
272             matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
273         }else if(out_ch_layout & AV_CH_FRONT_LEFT){
274             if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
275                 matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * M_SQRT1_2;
276                 matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
277                 matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
278                 matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * M_SQRT1_2;
279             } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
280                 matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * SQRT3_2;
281                 matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
282                 matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
283                 matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * SQRT3_2;
284             } else {
285                 matrix[ FRONT_LEFT][ SIDE_LEFT] += surround_mix_level;
286                 matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level;
287             }
288         }else if(out_ch_layout & AV_CH_FRONT_CENTER){
289             matrix[ FRONT_CENTER][SIDE_LEFT ]+= surround_mix_level * M_SQRT1_2;
290             matrix[ FRONT_CENTER][SIDE_RIGHT]+= surround_mix_level * M_SQRT1_2;
291         }else
292             av_assert0(0);
293     }
294
295     if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
296         if(out_ch_layout & AV_CH_FRONT_LEFT){
297             matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
298             matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
299         }else if(out_ch_layout & AV_CH_FRONT_CENTER){
300             matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
301             matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
302         }else
303             av_assert0(0);
304     }
305     /* mix LFE into front left/right or center */
306     if (unaccounted & AV_CH_LOW_FREQUENCY) {
307         if (out_ch_layout & AV_CH_FRONT_CENTER) {
308             matrix[FRONT_CENTER][LOW_FREQUENCY] += lfe_mix_level;
309         } else if (out_ch_layout & AV_CH_FRONT_LEFT) {
310             matrix[FRONT_LEFT ][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
311             matrix[FRONT_RIGHT][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
312         } else
313             av_assert0(0);
314     }
315
316     for(out_i=i=0; i<64; i++){
317         double sum=0;
318         int in_i=0;
319         if((out_ch_layout & (1ULL<<i)) == 0)
320             continue;
321         for(j=0; j<64; j++){
322             if((in_ch_layout & (1ULL<<j)) == 0)
323                continue;
324             if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0]))
325                 matrix_param[stride*out_i + in_i] = matrix[i][j];
326             else
327                 matrix_param[stride*out_i + in_i] = i == j && (in_ch_layout & out_ch_layout & (1ULL<<i));
328             sum += fabs(matrix_param[stride*out_i + in_i]);
329             in_i++;
330         }
331         maxcoef= FFMAX(maxcoef, sum);
332         out_i++;
333     }
334     if(rematrix_volume  < 0)
335         maxcoef = -rematrix_volume;
336
337     if(maxcoef > maxval || rematrix_volume  < 0){
338         maxcoef /= maxval;
339         for(i=0; i<SWR_CH_MAX; i++)
340             for(j=0; j<SWR_CH_MAX; j++){
341                 matrix_param[stride*i + j] /= maxcoef;
342             }
343     }
344
345     if(rematrix_volume > 0){
346         for(i=0; i<SWR_CH_MAX; i++)
347             for(j=0; j<SWR_CH_MAX; j++){
348                 matrix_param[stride*i + j] *= rematrix_volume;
349             }
350     }
351
352     av_log(log_context, AV_LOG_DEBUG, "Matrix coefficients:\n");
353     for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
354         const char *c =
355             av_get_channel_name(av_channel_layout_extract_channel(out_ch_layout, i));
356         av_log(log_context, AV_LOG_DEBUG, "%s: ", c ? c : "?");
357         for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
358             c = av_get_channel_name(av_channel_layout_extract_channel(in_ch_layout, j));
359             av_log(log_context, AV_LOG_DEBUG, "%s:%f ", c ? c : "?", matrix_param[stride*i + j]);
360         }
361         av_log(log_context, AV_LOG_DEBUG, "\n");
362     }
363     return 0;
364 }
365
366 av_cold static int auto_matrix(SwrContext *s)
367 {
368     double maxval;
369     int ret;
370
371     if (s->rematrix_maxval > 0) {
372         maxval = s->rematrix_maxval;
373     } else if (   av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
374                || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) {
375         maxval = 1.0;
376     } else
377         maxval = INT_MAX;
378
379     memset(s->matrix, 0, sizeof(s->matrix));
380     ret = swr_build_matrix(s->in_ch_layout, s->out_ch_layout,
381                            s->clev, s->slev, s->lfe_mix_level,
382                            maxval, s->rematrix_volume, (double*)s->matrix,
383                            s->matrix[1] - s->matrix[0], s->matrix_encoding, s);
384
385     if (ret >= 0 && s->int_sample_fmt == AV_SAMPLE_FMT_FLTP) {
386         int i, j;
387         for (i = 0; i < FF_ARRAY_ELEMS(s->matrix[0]); i++)
388             for (j = 0; j < FF_ARRAY_ELEMS(s->matrix[0]); j++)
389                 s->matrix_flt[i][j] = s->matrix[i][j];
390     }
391
392     return ret;
393 }
394
395 av_cold int swri_rematrix_init(SwrContext *s){
396     int i, j;
397     int nb_in  = s->used_ch_count;
398     int nb_out = s->out.ch_count;
399
400     s->mix_any_f = NULL;
401
402     if (!s->rematrix_custom) {
403         int r = auto_matrix(s);
404         if (r)
405             return r;
406     }
407     if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
408         int maxsum = 0;
409         s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
410         s->native_one    = av_mallocz(sizeof(int));
411         if (!s->native_matrix || !s->native_one)
412             return AVERROR(ENOMEM);
413         for (i = 0; i < nb_out; i++) {
414             double rem = 0;
415             int sum = 0;
416
417             for (j = 0; j < nb_in; j++) {
418                 double target = s->matrix[i][j] * 32768 + rem;
419                 ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target);
420                 rem += target - ((int*)s->native_matrix)[i * nb_in + j];
421                 sum += FFABS(((int*)s->native_matrix)[i * nb_in + j]);
422             }
423             maxsum = FFMAX(maxsum, sum);
424         }
425         *((int*)s->native_one) = 32768;
426         if (maxsum <= 32768) {
427             s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
428             s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
429             s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
430         } else {
431             s->mix_1_1_f = (mix_1_1_func_type*)copy_clip_s16;
432             s->mix_2_1_f = (mix_2_1_func_type*)sum2_clip_s16;
433             s->mix_any_f = (mix_any_func_type*)get_mix_any_func_clip_s16(s);
434         }
435     }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
436         s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
437         s->native_one    = av_mallocz(sizeof(float));
438         if (!s->native_matrix || !s->native_one)
439             return AVERROR(ENOMEM);
440         for (i = 0; i < nb_out; i++)
441             for (j = 0; j < nb_in; j++)
442                 ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
443         *((float*)s->native_one) = 1.0;
444         s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
445         s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
446         s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
447     }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
448         s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
449         s->native_one    = av_mallocz(sizeof(double));
450         if (!s->native_matrix || !s->native_one)
451             return AVERROR(ENOMEM);
452         for (i = 0; i < nb_out; i++)
453             for (j = 0; j < nb_in; j++)
454                 ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
455         *((double*)s->native_one) = 1.0;
456         s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
457         s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
458         s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
459     }else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
460         s->native_one    = av_mallocz(sizeof(int));
461         if (!s->native_one)
462             return AVERROR(ENOMEM);
463         s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
464         if (!s->native_matrix) {
465             av_freep(&s->native_one);
466             return AVERROR(ENOMEM);
467         }
468         for (i = 0; i < nb_out; i++) {
469             double rem = 0;
470
471             for (j = 0; j < nb_in; j++) {
472                 double target = s->matrix[i][j] * 32768 + rem;
473                 ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target);
474                 rem += target - ((int*)s->native_matrix)[i * nb_in + j];
475             }
476         }
477         *((int*)s->native_one) = 32768;
478         s->mix_1_1_f = (mix_1_1_func_type*)copy_s32;
479         s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32;
480         s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s);
481     }else
482         av_assert0(0);
483     //FIXME quantize for integeres
484     for (i = 0; i < SWR_CH_MAX; i++) {
485         int ch_in=0;
486         for (j = 0; j < SWR_CH_MAX; j++) {
487             s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
488             if(s->matrix[i][j])
489                 s->matrix_ch[i][++ch_in]= j;
490         }
491         s->matrix_ch[i][0]= ch_in;
492     }
493
494     if(HAVE_X86ASM && HAVE_MMX)
495         return swri_rematrix_init_x86(s);
496
497     return 0;
498 }
499
500 av_cold void swri_rematrix_free(SwrContext *s){
501     av_freep(&s->native_matrix);
502     av_freep(&s->native_one);
503     av_freep(&s->native_simd_matrix);
504     av_freep(&s->native_simd_one);
505 }
506
507 int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
508     int out_i, in_i, i, j;
509     int len1 = 0;
510     int off = 0;
511
512     if(s->mix_any_f) {
513         s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
514         return 0;
515     }
516
517     if(s->mix_2_1_simd || s->mix_1_1_simd){
518         len1= len&~15;
519         off = len1 * out->bps;
520     }
521
522     av_assert0(!s->out_ch_layout || out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
523     av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
524
525     for(out_i=0; out_i<out->ch_count; out_i++){
526         switch(s->matrix_ch[out_i][0]){
527         case 0:
528             if(mustcopy)
529                 memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
530             break;
531         case 1:
532             in_i= s->matrix_ch[out_i][1];
533             if(s->matrix[out_i][in_i]!=1.0){
534                 if(s->mix_1_1_simd && len1)
535                     s->mix_1_1_simd(out->ch[out_i]    , in->ch[in_i]    , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
536                 if(len != len1)
537                     s->mix_1_1_f   (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
538             }else if(mustcopy){
539                 memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
540             }else{
541                 out->ch[out_i]= in->ch[in_i];
542             }
543             break;
544         case 2: {
545             int in_i1 = s->matrix_ch[out_i][1];
546             int in_i2 = s->matrix_ch[out_i][2];
547             if(s->mix_2_1_simd && len1)
548                 s->mix_2_1_simd(out->ch[out_i]    , in->ch[in_i1]    , in->ch[in_i2]    , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
549             else
550                 s->mix_2_1_f   (out->ch[out_i]    , in->ch[in_i1]    , in->ch[in_i2]    , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
551             if(len != len1)
552                 s->mix_2_1_f   (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
553             break;}
554         default:
555             if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
556                 for(i=0; i<len; i++){
557                     float v=0;
558                     for(j=0; j<s->matrix_ch[out_i][0]; j++){
559                         in_i= s->matrix_ch[out_i][1+j];
560                         v+= ((float*)in->ch[in_i])[i] * s->matrix_flt[out_i][in_i];
561                     }
562                     ((float*)out->ch[out_i])[i]= v;
563                 }
564             }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
565                 for(i=0; i<len; i++){
566                     double v=0;
567                     for(j=0; j<s->matrix_ch[out_i][0]; j++){
568                         in_i= s->matrix_ch[out_i][1+j];
569                         v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
570                     }
571                     ((double*)out->ch[out_i])[i]= v;
572                 }
573             }else{
574                 for(i=0; i<len; i++){
575                     int v=0;
576                     for(j=0; j<s->matrix_ch[out_i][0]; j++){
577                         in_i= s->matrix_ch[out_i][1+j];
578                         v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
579                     }
580                     ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
581                 }
582             }
583         }
584     }
585     return 0;
586 }