]> git.sesse.net Git - ffmpeg/blob - libswresample/swresample.c
thp: set duration
[ffmpeg] / libswresample / swresample.c
1 /*
2  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3  *
4  * This file is part of libswresample
5  *
6  * libswresample is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * libswresample is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with libswresample; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "libavutil/opt.h"
22 #include "swresample_internal.h"
23 #include "audioconvert.h"
24 #include "libavutil/avassert.h"
25 #include "libavutil/channel_layout.h"
26
27 #include <float.h>
28
29 #define  C30DB  M_SQRT2
30 #define  C15DB  1.189207115
31 #define C__0DB  1.0
32 #define C_15DB  0.840896415
33 #define C_30DB  M_SQRT1_2
34 #define C_45DB  0.594603558
35 #define C_60DB  0.5
36
37 #define ALIGN 32
38
39 //TODO split options array out?
40 #define OFFSET(x) offsetof(SwrContext,x)
41 #define PARAM AV_OPT_FLAG_AUDIO_PARAM
42
43 static const AVOption options[]={
44 {"ich"                  , "set input channel count"     , OFFSET( in.ch_count   ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
45 {"in_channel_count"     , "set input channel count"     , OFFSET( in.ch_count   ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
46 {"och"                  , "set output channel count"    , OFFSET(out.ch_count   ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
47 {"out_channel_count"    , "set output channel count"    , OFFSET(out.ch_count   ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
48 {"uch"                  , "set used channel count"      , OFFSET(used_ch_count  ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
49 {"used_channel_count"   , "set used channel count"      , OFFSET(used_ch_count  ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
50 {"isr"                  , "set input sample rate"       , OFFSET( in_sample_rate), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , INT_MAX   , PARAM},
51 {"in_sample_rate"       , "set input sample rate"       , OFFSET( in_sample_rate), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , INT_MAX   , PARAM},
52 {"osr"                  , "set output sample rate"      , OFFSET(out_sample_rate), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , INT_MAX   , PARAM},
53 {"out_sample_rate"      , "set output sample rate"      , OFFSET(out_sample_rate), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , INT_MAX   , PARAM},
54 {"isf"                  , "set input sample format"     , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
55 {"in_sample_fmt"        , "set input sample format"     , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
56 {"osf"                  , "set output sample format"    , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
57 {"out_sample_fmt"       , "set output sample format"    , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
58 {"tsf"                  , "set internal sample format"  , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
59 {"internal_sample_fmt"  , "set internal sample format"  , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
60 {"icl"                  , "set input channel layout"    , OFFSET( in_ch_layout  ), AV_OPT_TYPE_INT64, {.i64=0                     }, 0      , INT64_MAX , PARAM, "channel_layout"},
61 {"in_channel_layout"    , "set input channel layout"    , OFFSET( in_ch_layout  ), AV_OPT_TYPE_INT64, {.i64=0                     }, 0      , INT64_MAX , PARAM, "channel_layout"},
62 {"ocl"                  , "set output channel layout"   , OFFSET(out_ch_layout  ), AV_OPT_TYPE_INT64, {.i64=0                     }, 0      , INT64_MAX , PARAM, "channel_layout"},
63 {"out_channel_layout"   , "set output channel layout"   , OFFSET(out_ch_layout  ), AV_OPT_TYPE_INT64, {.i64=0                     }, 0      , INT64_MAX , PARAM, "channel_layout"},
64 {"clev"                 , "set center mix level"        , OFFSET(clev           ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB                }, -32    , 32        , PARAM},
65 {"center_mix_level"     , "set center mix level"        , OFFSET(clev           ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB                }, -32    , 32        , PARAM},
66 {"slev"                 , "set surround mix level"      , OFFSET(slev           ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB                }, -32    , 32        , PARAM},
67 {"surround_mix_level"   , "set surround mix Level"      , OFFSET(slev           ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB                }, -32    , 32        , PARAM},
68 {"lfe_mix_level"        , "set LFE mix level"           , OFFSET(lfe_mix_level  ), AV_OPT_TYPE_FLOAT, {.dbl=0                     }, -32    , 32        , PARAM},
69 {"rmvol"                , "set rematrix volume"         , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0                   }, -1000  , 1000      , PARAM},
70 {"rematrix_volume"      , "set rematrix volume"         , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0                   }, -1000  , 1000      , PARAM},
71
72 {"flags"                , "set flags"                   , OFFSET(flags          ), AV_OPT_TYPE_FLAGS, {.i64=0                     }, 0      , UINT_MAX  , PARAM, "flags"},
73 {"swr_flags"            , "set flags"                   , OFFSET(flags          ), AV_OPT_TYPE_FLAGS, {.i64=0                     }, 0      , UINT_MAX  , PARAM, "flags"},
74 {"res"                  , "force resampling"            , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE     }, INT_MIN, INT_MAX   , PARAM, "flags"},
75
76 {"dither_scale"         , "set dither scale"            , OFFSET(dither_scale   ), AV_OPT_TYPE_FLOAT, {.dbl=1                     }, 0      , INT_MAX   , PARAM},
77
78 {"dither_method"        , "set dither method"           , OFFSET(dither_method  ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_DITHER_NB-1, PARAM, "dither_method"},
79 {"rectangular"          , "select rectangular dither"   , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX   , PARAM, "dither_method"},
80 {"triangular"           , "select triangular dither"    , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX   , PARAM, "dither_method"},
81 {"triangular_hp"        , "select triangular dither with high pass" , 0                 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
82
83 {"filter_size"          , "set resampling filter size"  , OFFSET(filter_size)    , AV_OPT_TYPE_INT  , {.i64=16                    }, 0      , INT_MAX   , PARAM },
84 {"phase_shift"          , "set resampling phase shift"  , OFFSET(phase_shift)    , AV_OPT_TYPE_INT  , {.i64=10                    }, 0      , 30        , PARAM },
85 {"linear_interp"        , "enable linear interpolation" , OFFSET(linear_interp)  , AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , 1         , PARAM },
86 {"cutoff"               , "set cutoff frequency ratio"  , OFFSET(cutoff)         , AV_OPT_TYPE_DOUBLE,{.dbl=0.                    }, 0      , 1         , PARAM },
87 {"resampler"            , "set resampling Engine"       , OFFSET(engine)         , AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_ENGINE_NB-1, PARAM, "resampler"},
88 {"swr"                  , "select SW Resampler"         , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR        }, INT_MIN, INT_MAX   , PARAM, "resampler"},
89 {"soxr"                 , "select SoX Resampler"        , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR       }, INT_MIN, INT_MAX   , PARAM, "resampler"},
90 {"precision"            , "set resampling precision"    , OFFSET(precision)      , AV_OPT_TYPE_DOUBLE,{.dbl=20.0                  }, 15.0   , 33.0      , PARAM },
91 {"cheby"                , "enable Chebyshev passband"   , OFFSET(cheby)          , AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , 1         , PARAM },
92 {"min_comp"             , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
93                                                         , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX               }, 0      , FLT_MAX   , PARAM },
94 {"min_hard_comp"        , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
95                                                         , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1                   }, 0      , INT_MAX   , PARAM },
96 {"comp_duration"        , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
97                                                         , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1                     }, 0      , INT_MAX   , PARAM },
98 {"max_soft_comp"        , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
99                                                         , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0                     }, INT_MIN, INT_MAX   , PARAM },
100
101 { "matrix_encoding"     , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT   ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE,     AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
102     { "none",  "select none",               0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE  }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
103     { "dolby", "select Dolby",              0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
104     { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
105
106 { "filter_type"         , "select filter type"          , OFFSET(filter_type)    , AV_OPT_TYPE_INT  , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
107     { "cubic"           , "select cubic"                , 0                      , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC            }, INT_MIN, INT_MAX, PARAM, "filter_type" },
108     { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0             , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
109     { "kaiser"          , "select Kaiser Windowed Sinc" , 0                      , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER           }, INT_MIN, INT_MAX, PARAM, "filter_type" },
110
111 { "kaiser_beta"         , "set Kaiser Window Beta"      , OFFSET(kaiser_beta)    , AV_OPT_TYPE_INT  , {.i64=9                     }, 2      , 16        , PARAM },
112
113 {0}
114 };
115
116 static const char* context_to_name(void* ptr) {
117     return "SWR";
118 }
119
120 static const AVClass av_class = {
121     .class_name                = "SWResampler",
122     .item_name                 = context_to_name,
123     .option                    = options,
124     .version                   = LIBAVUTIL_VERSION_INT,
125     .log_level_offset_offset   = OFFSET(log_level_offset),
126     .parent_log_context_offset = OFFSET(log_ctx),
127     .category                  = AV_CLASS_CATEGORY_SWRESAMPLER,
128 };
129
130 unsigned swresample_version(void)
131 {
132     av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
133     return LIBSWRESAMPLE_VERSION_INT;
134 }
135
136 const char *swresample_configuration(void)
137 {
138     return FFMPEG_CONFIGURATION;
139 }
140
141 const char *swresample_license(void)
142 {
143 #define LICENSE_PREFIX "libswresample license: "
144     return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
145 }
146
147 int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
148     if(!s || s->in_convert) // s needs to be allocated but not initialized
149         return AVERROR(EINVAL);
150     s->channel_map = channel_map;
151     return 0;
152 }
153
154 const AVClass *swr_get_class(void)
155 {
156     return &av_class;
157 }
158
159 av_cold struct SwrContext *swr_alloc(void){
160     SwrContext *s= av_mallocz(sizeof(SwrContext));
161     if(s){
162         s->av_class= &av_class;
163         av_opt_set_defaults(s);
164     }
165     return s;
166 }
167
168 struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
169                                       int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
170                                       int64_t  in_ch_layout, enum AVSampleFormat  in_sample_fmt, int  in_sample_rate,
171                                       int log_offset, void *log_ctx){
172     if(!s) s= swr_alloc();
173     if(!s) return NULL;
174
175     s->log_level_offset= log_offset;
176     s->log_ctx= log_ctx;
177
178     av_opt_set_int(s, "ocl", out_ch_layout,   0);
179     av_opt_set_int(s, "osf", out_sample_fmt,  0);
180     av_opt_set_int(s, "osr", out_sample_rate, 0);
181     av_opt_set_int(s, "icl", in_ch_layout,    0);
182     av_opt_set_int(s, "isf", in_sample_fmt,   0);
183     av_opt_set_int(s, "isr", in_sample_rate,  0);
184     av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE,   0);
185     av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
186     av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
187     av_opt_set_int(s, "uch", 0, 0);
188     return s;
189 }
190
191 static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
192     a->fmt   = fmt;
193     a->bps   = av_get_bytes_per_sample(fmt);
194     a->planar= av_sample_fmt_is_planar(fmt);
195 }
196
197 static void free_temp(AudioData *a){
198     av_free(a->data);
199     memset(a, 0, sizeof(*a));
200 }
201
202 av_cold void swr_free(SwrContext **ss){
203     SwrContext *s= *ss;
204     if(s){
205         free_temp(&s->postin);
206         free_temp(&s->midbuf);
207         free_temp(&s->preout);
208         free_temp(&s->in_buffer);
209         free_temp(&s->dither);
210         swri_audio_convert_free(&s-> in_convert);
211         swri_audio_convert_free(&s->out_convert);
212         swri_audio_convert_free(&s->full_convert);
213         if (s->resampler)
214             s->resampler->free(&s->resample);
215         swri_rematrix_free(s);
216     }
217
218     av_freep(ss);
219 }
220
221 av_cold int swr_init(struct SwrContext *s){
222     s->in_buffer_index= 0;
223     s->in_buffer_count= 0;
224     s->resample_in_constraint= 0;
225     free_temp(&s->postin);
226     free_temp(&s->midbuf);
227     free_temp(&s->preout);
228     free_temp(&s->in_buffer);
229     free_temp(&s->dither);
230     memset(s->in.ch, 0, sizeof(s->in.ch));
231     memset(s->out.ch, 0, sizeof(s->out.ch));
232     swri_audio_convert_free(&s-> in_convert);
233     swri_audio_convert_free(&s->out_convert);
234     swri_audio_convert_free(&s->full_convert);
235     swri_rematrix_free(s);
236
237     s->flushed = 0;
238
239     if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
240         av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
241         return AVERROR(EINVAL);
242     }
243     if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
244         av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
245         return AVERROR(EINVAL);
246     }
247
248     if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
249         if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
250             s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
251         }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
252             s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
253         }else{
254             av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
255             s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
256         }
257     }
258
259     if(   s->int_sample_fmt != AV_SAMPLE_FMT_S16P
260         &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
261         &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
262         &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
263         av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
264         return AVERROR(EINVAL);
265     }
266
267     switch(s->engine){
268 #if CONFIG_LIBSOXR
269         extern struct Resampler const soxr_resampler;
270         case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
271 #endif
272         case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
273         default:
274             av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
275             return AVERROR(EINVAL);
276     }
277
278     set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
279     set_audiodata_fmt(&s->out, s->out_sample_fmt);
280
281     if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
282         s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
283     }else
284         s->resampler->free(&s->resample);
285     if(    s->int_sample_fmt != AV_SAMPLE_FMT_S16P
286         && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
287         && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
288         && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
289         && s->resample){
290         av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
291         return -1;
292     }
293
294     if(!s->used_ch_count)
295         s->used_ch_count= s->in.ch_count;
296
297     if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
298         av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
299         s-> in_ch_layout= 0;
300     }
301
302     if(!s-> in_ch_layout)
303         s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
304     if(!s->out_ch_layout)
305         s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
306
307     s->rematrix= s->out_ch_layout  !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
308                  s->rematrix_custom;
309
310 #define RSC 1 //FIXME finetune
311     if(!s-> in.ch_count)
312         s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
313     if(!s->used_ch_count)
314         s->used_ch_count= s->in.ch_count;
315     if(!s->out.ch_count)
316         s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
317
318     if(!s-> in.ch_count){
319         av_assert0(!s->in_ch_layout);
320         av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
321         return -1;
322     }
323
324     if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
325         av_log(s, AV_LOG_ERROR, "Rematrix is needed but there is not enough information to do it\n");
326         return -1;
327     }
328
329 av_assert0(s->used_ch_count);
330 av_assert0(s->out.ch_count);
331     s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
332
333     s->in_buffer= s->in;
334
335     if(!s->resample && !s->rematrix && !s->channel_map && !s->dither_method){
336         s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
337                                                    s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
338         return 0;
339     }
340
341     s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
342                                              s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
343     s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
344                                              s->int_sample_fmt, s->out.ch_count, NULL, 0);
345
346
347     s->postin= s->in;
348     s->preout= s->out;
349     s->midbuf= s->in;
350
351     if(s->channel_map){
352         s->postin.ch_count=
353         s->midbuf.ch_count= s->used_ch_count;
354         if(s->resample)
355             s->in_buffer.ch_count= s->used_ch_count;
356     }
357     if(!s->resample_first){
358         s->midbuf.ch_count= s->out.ch_count;
359         if(s->resample)
360             s->in_buffer.ch_count = s->out.ch_count;
361     }
362
363     set_audiodata_fmt(&s->postin, s->int_sample_fmt);
364     set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
365     set_audiodata_fmt(&s->preout, s->int_sample_fmt);
366
367     if(s->resample){
368         set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
369     }
370
371     s->dither = s->preout;
372
373     if(s->rematrix || s->dither_method)
374         return swri_rematrix_init(s);
375
376     return 0;
377 }
378
379 int swri_realloc_audio(AudioData *a, int count){
380     int i, countb;
381     AudioData old;
382
383     if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
384         return AVERROR(EINVAL);
385
386     if(a->count >= count)
387         return 0;
388
389     count*=2;
390
391     countb= FFALIGN(count*a->bps, ALIGN);
392     old= *a;
393
394     av_assert0(a->bps);
395     av_assert0(a->ch_count);
396
397     a->data= av_mallocz(countb*a->ch_count);
398     if(!a->data)
399         return AVERROR(ENOMEM);
400     for(i=0; i<a->ch_count; i++){
401         a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
402         if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
403     }
404     if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
405     av_free(old.data);
406     a->count= count;
407
408     return 1;
409 }
410
411 static void copy(AudioData *out, AudioData *in,
412                  int count){
413     av_assert0(out->planar == in->planar);
414     av_assert0(out->bps == in->bps);
415     av_assert0(out->ch_count == in->ch_count);
416     if(out->planar){
417         int ch;
418         for(ch=0; ch<out->ch_count; ch++)
419             memcpy(out->ch[ch], in->ch[ch], count*out->bps);
420     }else
421         memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
422 }
423
424 static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
425     int i;
426     if(!in_arg){
427         memset(out->ch, 0, sizeof(out->ch));
428     }else if(out->planar){
429         for(i=0; i<out->ch_count; i++)
430             out->ch[i]= in_arg[i];
431     }else{
432         for(i=0; i<out->ch_count; i++)
433             out->ch[i]= in_arg[0] + i*out->bps;
434     }
435 }
436
437 static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
438     int i;
439     if(out->planar){
440         for(i=0; i<out->ch_count; i++)
441             in_arg[i]= out->ch[i];
442     }else{
443         in_arg[0]= out->ch[0];
444     }
445 }
446
447 /**
448  *
449  * out may be equal in.
450  */
451 static void buf_set(AudioData *out, AudioData *in, int count){
452     int ch;
453     if(in->planar){
454         for(ch=0; ch<out->ch_count; ch++)
455             out->ch[ch]= in->ch[ch] + count*out->bps;
456     }else{
457         for(ch=out->ch_count-1; ch>=0; ch--)
458             out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
459     }
460 }
461
462 /**
463  *
464  * @return number of samples output per channel
465  */
466 static int resample(SwrContext *s, AudioData *out_param, int out_count,
467                              const AudioData * in_param, int in_count){
468     AudioData in, out, tmp;
469     int ret_sum=0;
470     int border=0;
471
472     av_assert1(s->in_buffer.ch_count == in_param->ch_count);
473     av_assert1(s->in_buffer.planar   == in_param->planar);
474     av_assert1(s->in_buffer.fmt      == in_param->fmt);
475
476     tmp=out=*out_param;
477     in =  *in_param;
478
479     do{
480         int ret, size, consumed;
481         if(!s->resample_in_constraint && s->in_buffer_count){
482             buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
483             ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
484             out_count -= ret;
485             ret_sum += ret;
486             buf_set(&out, &out, ret);
487             s->in_buffer_count -= consumed;
488             s->in_buffer_index += consumed;
489
490             if(!in_count)
491                 break;
492             if(s->in_buffer_count <= border){
493                 buf_set(&in, &in, -s->in_buffer_count);
494                 in_count += s->in_buffer_count;
495                 s->in_buffer_count=0;
496                 s->in_buffer_index=0;
497                 border = 0;
498             }
499         }
500
501         if((s->flushed || in_count) && !s->in_buffer_count){
502             s->in_buffer_index=0;
503             ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
504             out_count -= ret;
505             ret_sum += ret;
506             buf_set(&out, &out, ret);
507             in_count -= consumed;
508             buf_set(&in, &in, consumed);
509         }
510
511         //TODO is this check sane considering the advanced copy avoidance below
512         size= s->in_buffer_index + s->in_buffer_count + in_count;
513         if(   size > s->in_buffer.count
514            && s->in_buffer_count + in_count <= s->in_buffer_index){
515             buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
516             copy(&s->in_buffer, &tmp, s->in_buffer_count);
517             s->in_buffer_index=0;
518         }else
519             if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
520                 return ret;
521
522         if(in_count){
523             int count= in_count;
524             if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
525
526             buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
527             copy(&tmp, &in, /*in_*/count);
528             s->in_buffer_count += count;
529             in_count -= count;
530             border += count;
531             buf_set(&in, &in, count);
532             s->resample_in_constraint= 0;
533             if(s->in_buffer_count != count || in_count)
534                 continue;
535         }
536         break;
537     }while(1);
538
539     s->resample_in_constraint= !!out_count;
540
541     return ret_sum;
542 }
543
544 static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
545                                                       AudioData *in , int  in_count){
546     AudioData *postin, *midbuf, *preout;
547     int ret/*, in_max*/;
548     AudioData preout_tmp, midbuf_tmp;
549
550     if(s->full_convert){
551         av_assert0(!s->resample);
552         swri_audio_convert(s->full_convert, out, in, in_count);
553         return out_count;
554     }
555
556 //     in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
557 //     in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
558
559     if((ret=swri_realloc_audio(&s->postin, in_count))<0)
560         return ret;
561     if(s->resample_first){
562         av_assert0(s->midbuf.ch_count == s->used_ch_count);
563         if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
564             return ret;
565     }else{
566         av_assert0(s->midbuf.ch_count ==  s->out.ch_count);
567         if((ret=swri_realloc_audio(&s->midbuf,  in_count))<0)
568             return ret;
569     }
570     if((ret=swri_realloc_audio(&s->preout, out_count))<0)
571         return ret;
572
573     postin= &s->postin;
574
575     midbuf_tmp= s->midbuf;
576     midbuf= &midbuf_tmp;
577     preout_tmp= s->preout;
578     preout= &preout_tmp;
579
580     if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
581         postin= in;
582
583     if(s->resample_first ? !s->resample : !s->rematrix)
584         midbuf= postin;
585
586     if(s->resample_first ? !s->rematrix : !s->resample)
587         preout= midbuf;
588
589     if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
590         if(preout==in){
591             out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
592             av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
593             copy(out, in, out_count);
594             return out_count;
595         }
596         else if(preout==postin) preout= midbuf= postin= out;
597         else if(preout==midbuf) preout= midbuf= out;
598         else                    preout= out;
599     }
600
601     if(in != postin){
602         swri_audio_convert(s->in_convert, postin, in, in_count);
603     }
604
605     if(s->resample_first){
606         if(postin != midbuf)
607             out_count= resample(s, midbuf, out_count, postin, in_count);
608         if(midbuf != preout)
609             swri_rematrix(s, preout, midbuf, out_count, preout==out);
610     }else{
611         if(postin != midbuf)
612             swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
613         if(midbuf != preout)
614             out_count= resample(s, preout, out_count, midbuf, in_count);
615     }
616
617     if(preout != out && out_count){
618         if(s->dither_method){
619             int ch;
620             int dither_count= FFMAX(out_count, 1<<16);
621             av_assert0(preout != in);
622
623             if((ret=swri_realloc_audio(&s->dither, dither_count))<0)
624                 return ret;
625             if(ret)
626                 for(ch=0; ch<s->dither.ch_count; ch++)
627                     swri_get_dither(s, s->dither.ch[ch], s->dither.count, 12345678913579<<ch, s->out_sample_fmt, s->int_sample_fmt);
628             av_assert0(s->dither.ch_count == preout->ch_count);
629
630             if(s->dither_pos + out_count > s->dither.count)
631                 s->dither_pos = 0;
632
633             for(ch=0; ch<preout->ch_count; ch++)
634                 s->mix_2_1_f(preout->ch[ch], preout->ch[ch], s->dither.ch[ch] + s->dither.bps * s->dither_pos, s->native_one, 0, 0, out_count);
635
636             s->dither_pos += out_count;
637         }
638 //FIXME packed doesnt need more than 1 chan here!
639         swri_audio_convert(s->out_convert, out, preout, out_count);
640     }
641     return out_count;
642 }
643
644 int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
645                                 const uint8_t *in_arg [SWR_CH_MAX], int  in_count){
646     AudioData * in= &s->in;
647     AudioData *out= &s->out;
648
649     if(s->drop_output > 0){
650         int ret;
651         AudioData tmp = s->out;
652         uint8_t *tmp_arg[SWR_CH_MAX];
653         tmp.count = 0;
654         tmp.data  = NULL;
655         if((ret=swri_realloc_audio(&tmp, s->drop_output))<0)
656             return ret;
657
658         reversefill_audiodata(&tmp, tmp_arg);
659         s->drop_output *= -1; //FIXME find a less hackish solution
660         ret = swr_convert(s, tmp_arg, -s->drop_output, in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
661         s->drop_output *= -1;
662         if(ret>0)
663             s->drop_output -= ret;
664
665         av_freep(&tmp.data);
666         if(s->drop_output || !out_arg)
667             return 0;
668         in_count = 0;
669     }
670
671     if(!in_arg){
672         if(s->resample){
673             if (!s->flushed)
674                 s->resampler->flush(s);
675             s->resample_in_constraint = 0;
676             s->flushed = 1;
677         }else if(!s->in_buffer_count){
678             return 0;
679         }
680     }else
681         fill_audiodata(in ,  (void*)in_arg);
682
683     fill_audiodata(out, out_arg);
684
685     if(s->resample){
686         int ret = swr_convert_internal(s, out, out_count, in, in_count);
687         if(ret>0 && !s->drop_output)
688             s->outpts += ret * (int64_t)s->in_sample_rate;
689         return ret;
690     }else{
691         AudioData tmp= *in;
692         int ret2=0;
693         int ret, size;
694         size = FFMIN(out_count, s->in_buffer_count);
695         if(size){
696             buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
697             ret= swr_convert_internal(s, out, size, &tmp, size);
698             if(ret<0)
699                 return ret;
700             ret2= ret;
701             s->in_buffer_count -= ret;
702             s->in_buffer_index += ret;
703             buf_set(out, out, ret);
704             out_count -= ret;
705             if(!s->in_buffer_count)
706                 s->in_buffer_index = 0;
707         }
708
709         if(in_count){
710             size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
711
712             if(in_count > out_count) { //FIXME move after swr_convert_internal
713                 if(   size > s->in_buffer.count
714                 && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
715                     buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
716                     copy(&s->in_buffer, &tmp, s->in_buffer_count);
717                     s->in_buffer_index=0;
718                 }else
719                     if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
720                         return ret;
721             }
722
723             if(out_count){
724                 size = FFMIN(in_count, out_count);
725                 ret= swr_convert_internal(s, out, size, in, size);
726                 if(ret<0)
727                     return ret;
728                 buf_set(in, in, ret);
729                 in_count -= ret;
730                 ret2 += ret;
731             }
732             if(in_count){
733                 buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
734                 copy(&tmp, in, in_count);
735                 s->in_buffer_count += in_count;
736             }
737         }
738         if(ret2>0 && !s->drop_output)
739             s->outpts += ret2 * (int64_t)s->in_sample_rate;
740         return ret2;
741     }
742 }
743
744 int swr_drop_output(struct SwrContext *s, int count){
745     s->drop_output += count;
746
747     if(s->drop_output <= 0)
748         return 0;
749
750     av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
751     return swr_convert(s, NULL, s->drop_output, NULL, 0);
752 }
753
754 int swr_inject_silence(struct SwrContext *s, int count){
755     int ret, i;
756     AudioData silence = s->in;
757     uint8_t *tmp_arg[SWR_CH_MAX];
758
759     if(count <= 0)
760         return 0;
761
762     silence.count = 0;
763     silence.data  = NULL;
764     if((ret=swri_realloc_audio(&silence, count))<0)
765         return ret;
766
767     if(silence.planar) for(i=0; i<silence.ch_count; i++) {
768         memset(silence.ch[i], silence.bps==1 ? 0x80 : 0, count*silence.bps);
769     } else
770         memset(silence.ch[0], silence.bps==1 ? 0x80 : 0, count*silence.bps*silence.ch_count);
771
772     reversefill_audiodata(&silence, tmp_arg);
773     av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
774     ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
775     av_freep(&silence.data);
776     return ret;
777 }
778
779 int64_t swr_get_delay(struct SwrContext *s, int64_t base){
780     if (s->resampler && s->resample){
781         return s->resampler->get_delay(s, base);
782     }else{
783         return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
784     }
785 }
786
787 int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
788     int ret;
789
790     if (!s || compensation_distance < 0)
791         return AVERROR(EINVAL);
792     if (!compensation_distance && sample_delta)
793         return AVERROR(EINVAL);
794     if (!s->resample) {
795         s->flags |= SWR_FLAG_RESAMPLE;
796         ret = swr_init(s);
797         if (ret < 0)
798             return ret;
799     }
800     if (!s->resampler->set_compensation){
801         return AVERROR(EINVAL);
802     }else{
803         return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
804     }
805 }
806
807 int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
808     if(pts == INT64_MIN)
809         return s->outpts;
810     if(s->min_compensation >= FLT_MAX) {
811         return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
812     } else {
813         int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts;
814         double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
815
816         if(fabs(fdelta) > s->min_compensation) {
817             if(!s->outpts || fabs(fdelta) > s->min_hard_compensation){
818                 int ret;
819                 if(delta > 0) ret = swr_inject_silence(s,  delta / s->out_sample_rate);
820                 else          ret = swr_drop_output   (s, -delta / s-> in_sample_rate);
821                 if(ret<0){
822                     av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
823                 }
824             } else if(s->soft_compensation_duration && s->max_soft_compensation) {
825                 int duration = s->out_sample_rate * s->soft_compensation_duration;
826                 double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
827                 int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
828                 av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
829                 swr_set_compensation(s, comp, duration);
830             }
831         }
832
833         return s->outpts;
834     }
835 }