2 * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #ifndef SWSCALE_SWSCALE_INTERNAL_H
22 #define SWSCALE_SWSCALE_INTERNAL_H
32 #include "libavutil/avassert.h"
33 #include "libavutil/avutil.h"
34 #include "libavutil/common.h"
35 #include "libavutil/intreadwrite.h"
36 #include "libavutil/log.h"
37 #include "libavutil/pixfmt.h"
38 #include "libavutil/pixdesc.h"
40 #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
42 #define YUVRGB_TABLE_HEADROOM 256
44 #define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE
49 #define ALT32_CORR (-1)
64 #define RETCODE_USE_CASCADE -12345
68 typedef enum SwsDither {
78 typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
79 int srcStride[], int srcSliceY, int srcSliceH,
80 uint8_t *dst[], int dstStride[]);
83 * Write one line of horizontally scaled data to planar output
84 * without any additional vertical scaling (or point-scaling).
86 * @param src scaled source data, 15bit for 8-10bit output,
87 * 19-bit for 16bit output (in int32_t)
88 * @param dest pointer to the output plane. For >8bit
89 * output, this is in uint16_t
90 * @param dstW width of destination in pixels
91 * @param dither ordered dither array of type int16_t and size 8
92 * @param offset Dither offset
94 typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
95 const uint8_t *dither, int offset);
98 * Write one line of horizontally scaled data to planar output
99 * with multi-point vertical scaling between input pixels.
101 * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
102 * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
103 * 19-bit for 16bit output (in int32_t)
104 * @param filterSize number of vertical input lines to scale
105 * @param dest pointer to output plane. For >8bit
106 * output, this is in uint16_t
107 * @param dstW width of destination pixels
108 * @param offset Dither offset
110 typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
111 const int16_t **src, uint8_t *dest, int dstW,
112 const uint8_t *dither, int offset);
115 * Write one line of horizontally scaled chroma to interleaved output
116 * with multi-point vertical scaling between input pixels.
118 * @param c SWS scaling context
119 * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
120 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
121 * 19-bit for 16bit output (in int32_t)
122 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
123 * 19-bit for 16bit output (in int32_t)
124 * @param chrFilterSize number of vertical chroma input lines to scale
125 * @param dest pointer to the output plane. For >8bit
126 * output, this is in uint16_t
127 * @param dstW width of chroma planes
129 typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
130 const int16_t *chrFilter,
132 const int16_t **chrUSrc,
133 const int16_t **chrVSrc,
134 uint8_t *dest, int dstW);
137 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
138 * output without any additional vertical scaling (or point-scaling). Note
139 * that this function may do chroma scaling, see the "uvalpha" argument.
141 * @param c SWS scaling context
142 * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
143 * 19-bit for 16bit output (in int32_t)
144 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
145 * 19-bit for 16bit output (in int32_t)
146 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
147 * 19-bit for 16bit output (in int32_t)
148 * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
149 * 19-bit for 16bit output (in int32_t)
150 * @param dest pointer to the output plane. For 16bit output, this is
152 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
153 * to write into dest[]
154 * @param uvalpha chroma scaling coefficient for the second line of chroma
155 * pixels, either 2048 or 0. If 0, one chroma input is used
156 * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
157 * is set, it generates 1 output pixel). If 2048, two chroma
158 * input pixels should be averaged for 2 output pixels (this
159 * only happens if SWS_FLAG_FULL_CHR_INT is not set)
160 * @param y vertical line number for this output. This does not need
161 * to be used to calculate the offset in the destination,
162 * but can be used to generate comfort noise using dithering
163 * for some output formats.
165 typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
166 const int16_t *chrUSrc[2],
167 const int16_t *chrVSrc[2],
168 const int16_t *alpSrc, uint8_t *dest,
169 int dstW, int uvalpha, int y);
171 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
172 * output by doing bilinear scaling between two input lines.
174 * @param c SWS scaling context
175 * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
176 * 19-bit for 16bit output (in int32_t)
177 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
178 * 19-bit for 16bit output (in int32_t)
179 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
180 * 19-bit for 16bit output (in int32_t)
181 * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
182 * 19-bit for 16bit output (in int32_t)
183 * @param dest pointer to the output plane. For 16bit output, this is
185 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
186 * to write into dest[]
187 * @param yalpha luma/alpha scaling coefficients for the second input line.
188 * The first line's coefficients can be calculated by using
190 * @param uvalpha chroma scaling coefficient for the second input line. The
191 * first line's coefficients can be calculated by using
193 * @param y vertical line number for this output. This does not need
194 * to be used to calculate the offset in the destination,
195 * but can be used to generate comfort noise using dithering
196 * for some output formats.
198 typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
199 const int16_t *chrUSrc[2],
200 const int16_t *chrVSrc[2],
201 const int16_t *alpSrc[2],
203 int dstW, int yalpha, int uvalpha, int y);
205 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
206 * output by doing multi-point vertical scaling between input pixels.
208 * @param c SWS scaling context
209 * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
210 * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
211 * 19-bit for 16bit output (in int32_t)
212 * @param lumFilterSize number of vertical luma/alpha input lines to scale
213 * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
214 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
215 * 19-bit for 16bit output (in int32_t)
216 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
217 * 19-bit for 16bit output (in int32_t)
218 * @param chrFilterSize number of vertical chroma input lines to scale
219 * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
220 * 19-bit for 16bit output (in int32_t)
221 * @param dest pointer to the output plane. For 16bit output, this is
223 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
224 * to write into dest[]
225 * @param y vertical line number for this output. This does not need
226 * to be used to calculate the offset in the destination,
227 * but can be used to generate comfort noise using dithering
228 * or some output formats.
230 typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
231 const int16_t **lumSrc, int lumFilterSize,
232 const int16_t *chrFilter,
233 const int16_t **chrUSrc,
234 const int16_t **chrVSrc, int chrFilterSize,
235 const int16_t **alpSrc, uint8_t *dest,
239 * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
240 * output by doing multi-point vertical scaling between input pixels.
242 * @param c SWS scaling context
243 * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
244 * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
245 * 19-bit for 16bit output (in int32_t)
246 * @param lumFilterSize number of vertical luma/alpha input lines to scale
247 * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
248 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
249 * 19-bit for 16bit output (in int32_t)
250 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
251 * 19-bit for 16bit output (in int32_t)
252 * @param chrFilterSize number of vertical chroma input lines to scale
253 * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
254 * 19-bit for 16bit output (in int32_t)
255 * @param dest pointer to the output planes. For 16bit output, this is
257 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
258 * to write into dest[]
259 * @param y vertical line number for this output. This does not need
260 * to be used to calculate the offset in the destination,
261 * but can be used to generate comfort noise using dithering
262 * or some output formats.
264 typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
265 const int16_t **lumSrc, int lumFilterSize,
266 const int16_t *chrFilter,
267 const int16_t **chrUSrc,
268 const int16_t **chrVSrc, int chrFilterSize,
269 const int16_t **alpSrc, uint8_t **dest,
272 /* This struct should be aligned on at least a 32-byte boundary. */
273 typedef struct SwsContext {
275 * info on struct for av_log
277 const AVClass *av_class;
280 * Note that src, dst, srcStride, dstStride will be copied in the
281 * sws_scale() wrapper so they can be freely modified here.
284 int srcW; ///< Width of source luma/alpha planes.
285 int srcH; ///< Height of source luma/alpha planes.
286 int dstH; ///< Height of destination luma/alpha planes.
287 int chrSrcW; ///< Width of source chroma planes.
288 int chrSrcH; ///< Height of source chroma planes.
289 int chrDstW; ///< Width of destination chroma planes.
290 int chrDstH; ///< Height of destination chroma planes.
291 int lumXInc, chrXInc;
292 int lumYInc, chrYInc;
293 enum AVPixelFormat dstFormat; ///< Destination pixel format.
294 enum AVPixelFormat srcFormat; ///< Source pixel format.
295 int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
296 int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
298 int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
299 int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
300 int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
301 int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
302 int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
303 int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
304 double param[2]; ///< Input parameters for scaling algorithms that need them.
306 /* The cascaded_* fields allow spliting a scaler task into multiple
307 * sequential steps, this is for example used to limit the maximum
308 * downscaling factor that needs to be supported in one scaler.
310 struct SwsContext *cascaded_context[2];
311 int cascaded_tmpStride[4];
312 uint8_t *cascaded_tmp[4];
314 uint32_t pal_yuv[256];
315 uint32_t pal_rgb[256];
318 * @name Scaled horizontal lines ring buffer.
319 * The horizontal scaler keeps just enough scaled lines in a ring buffer
320 * so they may be passed to the vertical scaler. The pointers to the
321 * allocated buffers for each line are duplicated in sequence in the ring
322 * buffer to simplify indexing and avoid wrapping around between lines
323 * inside the vertical scaler code. The wrapping is done before the
324 * vertical scaler is called.
327 int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
328 int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
329 int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
330 int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
331 int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
332 int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
333 int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
334 int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
335 int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
336 int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
339 uint8_t *formatConvBuffer;
342 * @name Horizontal and vertical filters.
343 * To better understand the following fields, here is a pseudo-code of
344 * their usage in filtering a horizontal line:
346 * for (i = 0; i < width; i++) {
348 * for (j = 0; j < filterSize; j++)
349 * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
350 * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
355 int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
356 int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
357 int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
358 int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
359 int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
360 int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
361 int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
362 int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
363 int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
364 int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
365 int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
366 int vChrFilterSize; ///< Vertical filter size for chroma pixels.
369 int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
370 int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
371 uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
372 uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
376 int dstY; ///< Last destination vertical line output from last slice.
377 int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
378 void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
379 // alignment ensures the offset can be added in a single
380 // instruction on e.g. ARM
381 DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM];
382 uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
383 uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
384 uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
385 DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points
395 #define RGB2YUV_SHIFT 15
397 int *dither_error[4];
400 int contrast, brightness, saturation; // for sws_getColorspaceDetails
401 int srcColorspaceTable[4];
402 int dstColorspaceTable[4];
403 int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
404 int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
413 int yuv2rgb_y_offset;
415 int yuv2rgb_v2r_coeff;
416 int yuv2rgb_v2g_coeff;
417 int yuv2rgb_u2g_coeff;
418 int yuv2rgb_u2b_coeff;
420 #define RED_DITHER "0*8"
421 #define GREEN_DITHER "1*8"
422 #define BLUE_DITHER "2*8"
423 #define Y_COEFF "3*8"
424 #define VR_COEFF "4*8"
425 #define UB_COEFF "5*8"
426 #define VG_COEFF "6*8"
427 #define UG_COEFF "7*8"
428 #define Y_OFFSET "8*8"
429 #define U_OFFSET "9*8"
430 #define V_OFFSET "10*8"
431 #define LUM_MMX_FILTER_OFFSET "11*8"
432 #define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)
433 #define DSTW_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"
434 #define ESP_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"
435 #define VROUNDER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"
436 #define U_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"
437 #define V_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"
438 #define Y_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"
439 #define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"
440 #define UV_OFF_PX "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"
441 #define UV_OFF_BYTE "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"
442 #define DITHER16 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"
443 #define DITHER32 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"
444 #define DITHER32_INT (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake
446 DECLARE_ALIGNED(8, uint64_t, redDither);
447 DECLARE_ALIGNED(8, uint64_t, greenDither);
448 DECLARE_ALIGNED(8, uint64_t, blueDither);
450 DECLARE_ALIGNED(8, uint64_t, yCoeff);
451 DECLARE_ALIGNED(8, uint64_t, vrCoeff);
452 DECLARE_ALIGNED(8, uint64_t, ubCoeff);
453 DECLARE_ALIGNED(8, uint64_t, vgCoeff);
454 DECLARE_ALIGNED(8, uint64_t, ugCoeff);
455 DECLARE_ALIGNED(8, uint64_t, yOffset);
456 DECLARE_ALIGNED(8, uint64_t, uOffset);
457 DECLARE_ALIGNED(8, uint64_t, vOffset);
458 int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
459 int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
460 int dstW; ///< Width of destination luma/alpha planes.
461 DECLARE_ALIGNED(8, uint64_t, esp);
462 DECLARE_ALIGNED(8, uint64_t, vRounder);
463 DECLARE_ALIGNED(8, uint64_t, u_temp);
464 DECLARE_ALIGNED(8, uint64_t, v_temp);
465 DECLARE_ALIGNED(8, uint64_t, y_temp);
466 int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
467 // alignment of these values is not necessary, but merely here
468 // to maintain the same offset across x8632 and x86-64. Once we
469 // use proper offset macros in the asm, they can be removed.
470 DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
471 DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
472 DECLARE_ALIGNED(8, uint16_t, dither16)[8];
473 DECLARE_ALIGNED(8, uint32_t, dither32)[8];
475 const uint8_t *chrDither8, *lumDither8;
478 vector signed short CY;
479 vector signed short CRV;
480 vector signed short CBU;
481 vector signed short CGU;
482 vector signed short CGV;
483 vector signed short OY;
484 vector unsigned short CSHIFT;
485 vector signed short *vYCoeffsBank, *vCCoeffsBank;
490 /* pre defined color-spaces gamma */
491 #define XYZ_GAMMA (2.6f)
492 #define RGB_GAMMA (2.2f)
495 int16_t *xyzgammainv;
496 int16_t *rgbgammainv;
497 int16_t xyz2rgb_matrix[3][4];
498 int16_t rgb2xyz_matrix[3][4];
500 /* function pointers for swscale() */
501 yuv2planar1_fn yuv2plane1;
502 yuv2planarX_fn yuv2planeX;
503 yuv2interleavedX_fn yuv2nv12cX;
504 yuv2packed1_fn yuv2packed1;
505 yuv2packed2_fn yuv2packed2;
506 yuv2packedX_fn yuv2packedX;
507 yuv2anyX_fn yuv2anyX;
509 /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
510 void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
511 int width, uint32_t *pal);
512 /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
513 void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
514 int width, uint32_t *pal);
515 /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
516 void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
517 const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
518 int width, uint32_t *pal);
521 * Functions to read planar input, such as planar RGB, and convert
522 * internally to Y/UV/A.
525 void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
526 void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
527 int width, int32_t *rgb2yuv);
528 void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
532 * Scale one horizontal line of input data using a bilinear filter
533 * to produce one line of output data. Compared to SwsContext->hScale(),
534 * please take note of the following caveats when using these:
535 * - Scaling is done using only 7bit instead of 14bit coefficients.
536 * - You can use no more than 5 input pixels to produce 4 output
537 * pixels. Therefore, this filter should not be used for downscaling
538 * by more than ~20% in width (because that equals more than 5/4th
539 * downscaling and thus more than 5 pixels input per 4 pixels output).
540 * - In general, bilinear filters create artifacts during downscaling
541 * (even when <20%), because one output pixel will span more than one
542 * input pixel, and thus some pixels will need edges of both neighbor
543 * pixels to interpolate the output pixel. Since you can use at most
544 * two input pixels per output pixel in bilinear scaling, this is
545 * impossible and thus downscaling by any size will create artifacts.
546 * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
547 * in SwsContext->flags.
550 void (*hyscale_fast)(struct SwsContext *c,
551 int16_t *dst, int dstWidth,
552 const uint8_t *src, int srcW, int xInc);
553 void (*hcscale_fast)(struct SwsContext *c,
554 int16_t *dst1, int16_t *dst2, int dstWidth,
555 const uint8_t *src1, const uint8_t *src2,
560 * Scale one horizontal line of input data using a filter over the input
561 * lines, to produce one (differently sized) line of output data.
563 * @param dst pointer to destination buffer for horizontally scaled
564 * data. If the number of bits per component of one
565 * destination pixel (SwsContext->dstBpc) is <= 10, data
566 * will be 15bpc in 16bits (int16_t) width. Else (i.e.
567 * SwsContext->dstBpc == 16), data will be 19bpc in
568 * 32bits (int32_t) width.
569 * @param dstW width of destination image
570 * @param src pointer to source data to be scaled. If the number of
571 * bits per component of a source pixel (SwsContext->srcBpc)
572 * is 8, this is 8bpc in 8bits (uint8_t) width. Else
573 * (i.e. SwsContext->dstBpc > 8), this is native depth
574 * in 16bits (uint16_t) width. In other words, for 9-bit
575 * YUV input, this is 9bpc, for 10-bit YUV input, this is
576 * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
577 * @param filter filter coefficients to be used per output pixel for
578 * scaling. This contains 14bpp filtering coefficients.
579 * Guaranteed to contain dstW * filterSize entries.
580 * @param filterPos position of the first input pixel to be used for
581 * each output pixel during scaling. Guaranteed to
582 * contain dstW entries.
583 * @param filterSize the number of input coefficients to be used (and
584 * thus the number of input pixels to be used) for
585 * creating a single output pixel. Is aligned to 4
586 * (and input coefficients thus padded with zeroes)
587 * to simplify creating SIMD code.
590 void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
591 const uint8_t *src, const int16_t *filter,
592 const int32_t *filterPos, int filterSize);
593 void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
594 const uint8_t *src, const int16_t *filter,
595 const int32_t *filterPos, int filterSize);
598 /// Color range conversion function for luma plane if needed.
599 void (*lumConvertRange)(int16_t *dst, int width);
600 /// Color range conversion function for chroma planes if needed.
601 void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
603 int needs_hcscale; ///< Set if there are chroma planes to be converted.
607 //FIXME check init (where 0)
609 SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
610 int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
611 int fullRange, int brightness,
612 int contrast, int saturation);
613 void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
614 int brightness, int contrast, int saturation);
616 void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
617 int lastInLumBuf, int lastInChrBuf);
619 av_cold void ff_sws_init_range_convert(SwsContext *c);
621 SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
622 SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
624 static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
626 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
628 return desc->comp[0].depth_minus1 == 15;
631 static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
633 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
635 return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
638 #define isNBPS(x) is9_OR_10BPS(x)
640 static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
642 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
644 return desc->flags & AV_PIX_FMT_FLAG_BE;
647 static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
649 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
651 return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
654 static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
656 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
658 return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
661 static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
663 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
665 return (desc->flags & AV_PIX_FMT_FLAG_RGB);
670 (!(av_pix_fmt_desc_get(x)->flags & AV_PIX_FMT_FLAG_PAL) && \
671 av_pix_fmt_desc_get(x)->nb_components <= 2)
674 ((x) == AV_PIX_FMT_GRAY8 || \
675 (x) == AV_PIX_FMT_YA8 || \
676 (x) == AV_PIX_FMT_GRAY16BE || \
677 (x) == AV_PIX_FMT_GRAY16LE || \
678 (x) == AV_PIX_FMT_YA16BE || \
679 (x) == AV_PIX_FMT_YA16LE)
682 #define isRGBinInt(x) \
684 (x) == AV_PIX_FMT_RGB48BE || \
685 (x) == AV_PIX_FMT_RGB48LE || \
686 (x) == AV_PIX_FMT_RGB32 || \
687 (x) == AV_PIX_FMT_RGB32_1 || \
688 (x) == AV_PIX_FMT_RGB24 || \
689 (x) == AV_PIX_FMT_RGB565BE || \
690 (x) == AV_PIX_FMT_RGB565LE || \
691 (x) == AV_PIX_FMT_RGB555BE || \
692 (x) == AV_PIX_FMT_RGB555LE || \
693 (x) == AV_PIX_FMT_RGB444BE || \
694 (x) == AV_PIX_FMT_RGB444LE || \
695 (x) == AV_PIX_FMT_RGB8 || \
696 (x) == AV_PIX_FMT_RGB4 || \
697 (x) == AV_PIX_FMT_RGB4_BYTE || \
698 (x) == AV_PIX_FMT_RGBA64BE || \
699 (x) == AV_PIX_FMT_RGBA64LE || \
700 (x) == AV_PIX_FMT_MONOBLACK || \
701 (x) == AV_PIX_FMT_MONOWHITE \
703 #define isBGRinInt(x) \
705 (x) == AV_PIX_FMT_BGR48BE || \
706 (x) == AV_PIX_FMT_BGR48LE || \
707 (x) == AV_PIX_FMT_BGR32 || \
708 (x) == AV_PIX_FMT_BGR32_1 || \
709 (x) == AV_PIX_FMT_BGR24 || \
710 (x) == AV_PIX_FMT_BGR565BE || \
711 (x) == AV_PIX_FMT_BGR565LE || \
712 (x) == AV_PIX_FMT_BGR555BE || \
713 (x) == AV_PIX_FMT_BGR555LE || \
714 (x) == AV_PIX_FMT_BGR444BE || \
715 (x) == AV_PIX_FMT_BGR444LE || \
716 (x) == AV_PIX_FMT_BGR8 || \
717 (x) == AV_PIX_FMT_BGR4 || \
718 (x) == AV_PIX_FMT_BGR4_BYTE || \
719 (x) == AV_PIX_FMT_BGRA64BE || \
720 (x) == AV_PIX_FMT_BGRA64LE || \
721 (x) == AV_PIX_FMT_MONOBLACK || \
722 (x) == AV_PIX_FMT_MONOWHITE \
725 #define isRGBinBytes(x) ( \
726 (x) == AV_PIX_FMT_RGB48BE \
727 || (x) == AV_PIX_FMT_RGB48LE \
728 || (x) == AV_PIX_FMT_RGBA64BE \
729 || (x) == AV_PIX_FMT_RGBA64LE \
730 || (x) == AV_PIX_FMT_RGBA \
731 || (x) == AV_PIX_FMT_ARGB \
732 || (x) == AV_PIX_FMT_RGB24 \
734 #define isBGRinBytes(x) ( \
735 (x) == AV_PIX_FMT_BGR48BE \
736 || (x) == AV_PIX_FMT_BGR48LE \
737 || (x) == AV_PIX_FMT_BGRA64BE \
738 || (x) == AV_PIX_FMT_BGRA64LE \
739 || (x) == AV_PIX_FMT_BGRA \
740 || (x) == AV_PIX_FMT_ABGR \
741 || (x) == AV_PIX_FMT_BGR24 \
744 #define isBayer(x) ( \
745 (x)==AV_PIX_FMT_BAYER_BGGR8 \
746 || (x)==AV_PIX_FMT_BAYER_BGGR16LE \
747 || (x)==AV_PIX_FMT_BAYER_BGGR16BE \
748 || (x)==AV_PIX_FMT_BAYER_RGGB8 \
749 || (x)==AV_PIX_FMT_BAYER_RGGB16LE \
750 || (x)==AV_PIX_FMT_BAYER_RGGB16BE \
751 || (x)==AV_PIX_FMT_BAYER_GBRG8 \
752 || (x)==AV_PIX_FMT_BAYER_GBRG16LE \
753 || (x)==AV_PIX_FMT_BAYER_GBRG16BE \
754 || (x)==AV_PIX_FMT_BAYER_GRBG8 \
755 || (x)==AV_PIX_FMT_BAYER_GRBG16LE \
756 || (x)==AV_PIX_FMT_BAYER_GRBG16BE \
759 #define isAnyRGB(x) \
767 static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
769 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
771 if (pix_fmt == AV_PIX_FMT_PAL8)
773 return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
777 #define isPacked(x) ( \
778 (x)==AV_PIX_FMT_PAL8 \
779 || (x)==AV_PIX_FMT_YUYV422 \
780 || (x)==AV_PIX_FMT_YVYU422 \
781 || (x)==AV_PIX_FMT_UYVY422 \
782 || (x)==AV_PIX_FMT_YA8 \
783 || (x)==AV_PIX_FMT_YA16LE \
784 || (x)==AV_PIX_FMT_YA16BE \
789 static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
791 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
793 return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
794 pix_fmt == AV_PIX_FMT_PAL8);
798 static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
800 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
802 return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
805 static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
807 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
809 return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
812 static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
814 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
816 return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
817 (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
820 static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
822 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
824 return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL);
827 extern const uint64_t ff_dither4[2];
828 extern const uint64_t ff_dither8[2];
830 extern const uint8_t ff_dither_2x2_4[3][8];
831 extern const uint8_t ff_dither_2x2_8[3][8];
832 extern const uint8_t ff_dither_4x4_16[5][8];
833 extern const uint8_t ff_dither_8x8_32[9][8];
834 extern const uint8_t ff_dither_8x8_73[9][8];
835 extern const uint8_t ff_dither_8x8_128[9][8];
836 extern const uint8_t ff_dither_8x8_220[9][8];
838 extern const int32_t ff_yuv2rgb_coeffs[8][4];
840 extern const AVClass sws_context_class;
843 * Set c->swscale to an unscaled converter if one exists for the specific
844 * source and destination formats, bit depths, flags, etc.
846 void ff_get_unscaled_swscale(SwsContext *c);
847 void ff_get_unscaled_swscale_ppc(SwsContext *c);
848 void ff_get_unscaled_swscale_arm(SwsContext *c);
851 * Return function pointer to fastest main scaler path function depending
852 * on architecture and available optimizations.
854 SwsFunc ff_getSwsFunc(SwsContext *c);
856 void ff_sws_init_input_funcs(SwsContext *c);
857 void ff_sws_init_output_funcs(SwsContext *c,
858 yuv2planar1_fn *yuv2plane1,
859 yuv2planarX_fn *yuv2planeX,
860 yuv2interleavedX_fn *yuv2nv12cX,
861 yuv2packed1_fn *yuv2packed1,
862 yuv2packed2_fn *yuv2packed2,
863 yuv2packedX_fn *yuv2packedX,
864 yuv2anyX_fn *yuv2anyX);
865 void ff_sws_init_swscale_ppc(SwsContext *c);
866 void ff_sws_init_swscale_x86(SwsContext *c);
868 void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,
869 const uint8_t *src, int srcW, int xInc);
870 void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,
871 int dstWidth, const uint8_t *src1,
872 const uint8_t *src2, int srcW, int xInc);
873 int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
874 int16_t *filter, int32_t *filterPos,
876 void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst,
877 int dstWidth, const uint8_t *src,
879 void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2,
880 int dstWidth, const uint8_t *src1,
881 const uint8_t *src2, int srcW, int xInc);
883 static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
884 int alpha, int bits, const int big_endian)
887 uint8_t *ptr = plane + stride * y;
888 int v = alpha ? 0xFFFF>>(15-bits) : (1<<bits);
889 for (i = 0; i < height; i++) {
890 #define FILL(wfunc) \
891 for (j = 0; j < width; j++) {\
903 #endif /* SWSCALE_SWSCALE_INTERNAL_H */